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The main results of this talk are joint work with Han Peters (an
ex-Michiganite), now at University of Amsterdam.

Some of the ideas for the proofs I will talk about I got while
walking around Ann Arbor while attending an earlier RTG
workshop.

I can in fact pinpoint the precise locations on my walk from
Lamp Post Inn to the department.

Then both Han and I were at another RTG a year later, we got
some more ideas.
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Proper maps

For bounded U ⊂ Cn and V ⊂ CN we wish to study holomorphic
maps F : U→ V.

But not just any maps:

A continuous map F : U→ V is proper if F−1(K) ⊂⊂ U whenever
K ⊂⊂ V.

If F extends continuously to the boundary, i.e. F : Ū→ V̄, then
F is proper if and only if F(∂U) ⊂ ∂V.

If F is holomorphic and proper, then F is finite-to-one.
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Proper maps of balls

Let
Bn = “unit ball in Cn” = {z ∈ Cn : ‖z‖ < 1}.

Natural question
For two integers n and N, classify the proper holomorphic
maps F : Bn→ BN.

F
BN

F(Bn)Bn
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Exercises

Here are a few exercises:

Exercise
Let D ⊂ C be the unit disc. If F : D→ D is a proper holomorphic
map, then F is a finite Blaschke product. That is,

F(z) = eiθ
∏k

j=1
z−aj

1−ājz
for some aj ∈ D.

Exercise
If n > N, no proper holomorphic map F : Bn→ BN exists.
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Equidimensional case (n = N)

When n = 1, z 7→ zd is a proper map for every d ∈ N.

Theorem (Alexander ’77 (complicated history. . . ))
If F : Bn→ Bn (n ≥ 2) is a proper holomorphic map then
F ∈ Aut(Bn).

An automorphism of the ball is a linear fractional
transformation. That is, F can be written as

F(z) = U
w− Lwz

1− 〈z,w〉

for some w ∈ Cn, a unitary map U, and a linear map Lw.

Note that F is degree 1.
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Maps in low dimensions

Theorem (Faran ’82)
If F : B2→ B3 is a proper map that is C3 up to the boundary,
then F is spherically equivalent to one of

(z1, z2) 7→ (z1, z2, 0) (linear embedding)

(z1, z2) 7→ (z1, z1z2, z2
2) (Whitney map)

(z1, z2) 7→ (z2
1,
p

2 z1z2, z2
2) (deg 2 homogeneous map)

(z1, z2) 7→ (z3
1,
p

3 z1z2, z3
2) (Faran map)

F and G are spherically equivalent when there exist
automorphisms χ ∈ Aut(Bn) and τ ∈ Aut(BN) such that
F = τ ◦G ◦ χ
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All (sufficiently smooth) proper maps are
rational

Theorem (Forstnerič ’89)
Let N ≥ n ≥ 2. If F : Bn→ BN is a proper holomorphic map that
is smooth (C∞) up to the boundary, then F is rational.
Furthermore,

degF ≤ C(n,N).

Write a rational map F = f /g in lowest terms. Then
degF = max{deg f ,degg}.

Best known bound is:

degF ≤
N(N− 1)

2(2n− 3)

(n = 2 by Meylan ’06, and n ≥ 3 by D’Angelo-L. ’09).
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Jǐrí Lebl (UW) Polynomials constant on a hyperplane October 8th, 2011 8 / 34



Degree bounds conjecture

Conjecture (D’Angelo)
If F : Bn→ BN, n ≥ 2, is a rational proper map then

degF ≤
¨

2N− 3 if n = 2,
N−1
n−1 if n ≥ 3.

The bound is sharp if true: there exist maps that give equality
above.

Getting the sharp bounds for all rational maps is hard.

Known for certain smaller classes, e.g. Huang-Ji-Xu ’06 show
the sharp bound for maps of “geometric rank 1” for n ≥ 3.

Similarly true for n ≥ 3 for polynomial maps constructed by
“partial tensoring” (D’Angelo ’88).

In this talk we will consider monomial maps.
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Monomial maps

A map is monomial if every component is a monomial, e.g.
(z1, z2) 7→ (z1, z1z2, z2

2).

Theorem (D’Angelo-Kos-Riehl ’03)
If F : B2→ BN is a monomial proper map then

degF ≤ 2N− 3.

Theorem (L.-Peters ’11 and ’12?)
If F : Bn→ BN, n ≥ 3, is a monomial proper map then

degF ≤
N− 1

n− 1
.
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Homotopic to monomials?

All known examples of rational proper maps of balls are
homotopic to a monomial map in the following sense:

F : Bn→ BN and G : Bn→ BN are homotopic if there exist a
continuous map

H : Bn × [0,1]→ BN

such that H(z,0) = F(z), H(z,1) = G(z), and z 7→ H(z, t) is a
rational proper map of balls.

If all maps are homotopic in this way, then we should be able
to apply the monomial degree bounds. It would be nice to
resolve this question.

Note: D’Angelo showed that any two maps are homotopic if
you embed the problem in a sufficiently high dimension.
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The real polynomials
Let f : Bn→ BN be a monomial proper map, that is:

f = (cα1zα1 ,cα2zα2 , . . . ,cαNzαN)

f takes sphere to sphere so

N
∑

j=1

�

�cαjz
αj
�

�

2
= 1 on

n
∑

j=1

�

�zj

�

�

2
= 1

Replace
�

�zj

�

�

2 with xj:

p(x) =

N
∑

j=1

�

�cαj

�

�

2
xαj = 1 on

n
∑

j=1

xj = 1

So consider real polynomials p(x) in n variables with
nonnegative coefficients such that p(x) = 1 on x1 + · · ·+ xn = 1.

N is the number of nonzero coefficients.
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The theorem (again)

Theorem (D’Angelo-Kos-Riehl ’03, L.-Peters ’11 and ’12)
Let p(x1, . . . ,xn), n ≥ 2, be a polynomial with nonnegative
coefficients such that p = 1 whenever x1 + · · ·+ xn = 1. If d is
the degree of p and N is the number of coefficients of p, then

d ≤
¨

2N− 3 if n = 2,
N−1
n−1 if n ≥ 3.

Moreover, the inequality is sharp.
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Examples

Here’s a way to construct examples (e.g. with n = 3): We
know that x1 + x2 + x3 = 1. So start:

x1 + x2 + x3

x1 + x2 + x3(x1 + x2 + x3) = x1 + x2 + x1x3 + x2x3 + x2
3

x1 + x2 + x1x3(x1 + x2 + x3) + x2x3 + x2
3 =

= x1 + x2 + x2x3 + x2
3 + x2

1x3 + x1x2x3 + x1x2
3

We’ll call such polynomials generalized Whitney polynomials.
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Exercise

For those that are bored (and haven’t seen this before)

Exercise
Easy: Show that the polynomial corresponding to the Faran
map p(x1,x2) = x3

1 + 3x1x2 + x3
2 is not generalized Whitney.

Harder: Show how you can obtain this polynomial if you also
allow dividing (x1 + x2).
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The quotient

If p(x) = 1 whenever x1 + · · ·+ xn = 1, then let

q(x) =
p(x)− 1

x1 + · · ·+ xn − 1

For example: if p(x1,x2) = x3
1 + 3x1x2 + x3

2 then

q(x) =
x3

1 + 3x1x2 + x3
2 − 1

x1 + x2 − 1
= x2

1 − x1x2 + x2
2 + x1 + x2 + 1.
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Newton diagram (n = 2)

Now take q(x) and write down its Newton diagram also
marking positive and negative coefficients. For example,

x3
1 + 3x1x2 + x3

2 − 1

x1 + x2 − 1
= +x2

1−x1x2+x2
2+x1+x2+1.

P

1

P x2Px1

P x2
2N

x1x2

Px2
1
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Sinks

P

1

P x2Px1

P x2
2N

x1x2

Px2
1

(x1 + x2 − 1)(Px1 + Px2 + Nx1x2) =

= (P + P−N)x1x2+Px2
1+Nx2

1x2+Px2
2+Nx1x2

2−Px1−Px2

This is the only way that x1x2 is formed in p− 1 so there must
be x1x2 term in p− 1. Call this a sink. If a negative term is
forced, we say it is a source.
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All sinks sources

So here they all are (i for sink, o for source):

P

PP

PNP

o

ii

i

So in p− 1, there are positive terms x3
1, x1x2, and x3

2, and
there is a negative term 1.

Remember p = x3
1 + 3x1x2 + x3

2
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Now do it for a complicated diagram

P

PP

PNP

PNP P

PNP

o

i

i

i

i

i

And obtain d ≤ 2N− 3, where d is the “size” of the diagram, N
is the number of sinks, and there should be at most one
source. (Here d = 5, N = 5, so 5 ≤ 2(5)− 3 = 7)
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In higher dimensions

We get higher dimensional newton diagrams. For n = 3 we get
3 dimensional diagrams.

P

P
P

P

P
N

N
P

P P

This is the diagram for

p(x1,x2,x3) = x3
1 + 3x1(x2 + x3) + (x2 + x3)3,

which has 7 terms.
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Throw away the insides

1) Consider the diagram as
a solid and look at its faces.

2) Now apply the
2-dimensional result
to each face.

3) Obtain:

d ≤
N− 1

2

OK this is possible
for “nice” diagrams, but not
easy for “ugly” diagrams.
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So 1) fill
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2) cut

3) Induction!
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If it were only so easy

There are of course some technicalities.

1) You have to allow sources to appear.

2) You have to handle “inside” edges of two dimensional
diagrams.

3) The top faces are slightly different.

Now finally obtain:

d ≤
N− 1

2
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4 dimensions are hard to draw

In 4 dimensions we cannot fill, but ...

We can prove the estimate for n ≥ 4 by induction starting with
n = 3.

What we do is “view” the diagram along an edge. Here is an
example from 3 to 2 dimensions (I can’t draw 4 dimensions)

P

P PP

PN N P
P

P
x3

x2

x1

P

PP

NP P

[ x2x1
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4 dimensions

The “view” of a 4 dimensional diagram is a 3 dimensional
diagram.

Certain sinks are “hidden” as some faces are hidden. Apply
the 3 dimensional result and at least d− 1 sinks are hidden.

Do induction and obtain for all n ≥ 4:

d ≤
N− 1

n− 1
or

N ≥ d(n− 1) + 1

It is not possible to start at n = 2 to get the sharp bound. You
must use n = 3 (the hardest case).
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Classification of sharp polynomials (n ≥ 4)

When counting the hidden sinks, unless the diagram
corresponds to a generalized Whitney polynomial we hide too
many sinks!

So if we obtain equality in the bound, that is N = d(n− 1) + 1,
the polynomial is a generalized Whitney polynomial.

Recall: a generalized Whitney polynomial is obtained by
multiplication using x1 + · · ·+ xn, e.g.

x1 + x2 + x3 + x4(x1 + x2 + x3 + x4(x1 + x2 + x3 + x4))
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Sharp polynomials in n = 3

For n = 3 there are sharp generalized Whitney polynomials.
e.g.

x1 + x2 + x3(x1 + x2 + x3(x1 + x2 + x3))

has 7 terms (and N−1
2 = 7−1

2 = 3 = d)

But, the polynomial

p(x1,x2,x3) = x3
1 + 3x1(x2 + x3) + (x2 + x3)3,

is not Whitney and also has 7 terms.

We don’t know if other non-Whitney sharp examples exist, if
you exclude ones formed using p and x1 + x2 + x3 such as:

x1 + x2 + x3(x3
1 + 3x1(x2 + x3) + (x2 + x3)3)
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1 + 3x1(x2 + x3) + (x2 + x3)3)
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Sharp polynomials in n = 3
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Sharp polynomials in n = 2
When n = 2, no sharp polynomial of degree 3 or greater is
Whitney. Here are all the sharp polynomials up to degree 17.
(Lichtblau,L. ’10)

d Sharp polynomials, p(x,y) = 1 when x + y = 1

1 x + y

3 x3 + 3xy + y3

5 x5 + 5x3y + 5xy2 + y5

7 x7 + 7x3y + 14x2y3 + 7xy5 + y7

x7 + 7x3y + 7x3y3 + 7xy3 + y7

x7 + 7
2 x5y + 7

2 xy + 7
2 xy5 + y7

9 x9 + 9x7y + 27x5y2 + 30x3y3 + 9xy4 + y9

11 x11 + 11x9y + 44x7y2 + 77x5y3 + 55x3y4 + 11xy5 + y11

x11 + 11x5y + 11x5y5 + 55x4y3 + 55x3y5 + 11xy5 + y11

13 x13 + 13x11y + 65x9y2 + 156x7y3 + 182x5y4 + 91x3y5 + 13xy6 + y13

x13 + 13x11y + 65x9y2 + 221
2 x7y3 + 92

2 x3y3 + 91
2 x3y7 + 13xy6 + y13

x13 + 234
25 x11y + 143

5 x8y2 + 143
5 x7y4 + 91

25 xy + 143
25 xy6 + 91

25 xy11 + y13

x13 + 234
25 x11y + 143

5 x9y2 + 143
5 x7y3 + 91

25 xy + 143
25 xy6 + 91

25 xy11 + y13

15 x15 + 15x13y + 90x11y2 + 275x9y3 + 450x7y4 + 378x5y5 + 140x3y6 + 15xy7 + y15

x15 + 140x9y3 + 15x7y + 420x7y4 + 15x7y7 + 378x5y5 + 140x3y6 + 15xy7 + y15

17 x17 + 17x15y + 119x13y2 + 442x11y3 + 935x9y4 + 1122x7y5 + 714x5y6 + 204x3y7 + 17xy8 + y17
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Further directions ...
Here’s an example where proving the monomial case proves
the general case.

Theorem (Huang ‘99)

If
∑N

j=1±
�

�fj(z)
�

�

2
= q(z, z̄) ‖z‖2 is nonzero, then N ≥ n.

Theorem (D’Angelo-L. ’11?)

Let p(x) = q(x)(x1 + · · ·+ xn)d be a nonzero polynomial, then

p(x) has at least
�n−1+d

d

�

terms.

Which can be used to prove

Corollary (D’Angelo-L. ’11?)

If
∑N

j=1±
�

�fj(z)
�

�

2
= q(z, z̄) ‖z‖2d is nonzero, then N ≥

�n−1+d
d

�

.
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Further directions II...

For degree bounds we have the following:

Let n ≥ 3 and p(x) = q(x)(x1 + · · ·+ xn)

Suppose no monomial divides p(x), and if

p(x) = p1(x)(x1 + · · ·+ xn) + p2(x)(x1 + · · ·+ xn)

where p1 and p2 have no monomials in common, then p1 or p2
is zero. Call p indecomposable.

Theorem (L.,-Peters ’11)
If N is the number of terms in p and p is indecomposable, then

degp ≤ C(n,N)

We only know the sharp value of C for n = 3.
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Examples

x2
1 + x1x2 + x3(−x2 − x3) = x2

1 + x1x2 − x2x3 − x2
3

is indecomposable.

x1 +x2 +x3 +xd−1
1 (x1 +x2 +x3) = x1 +x2 +x3 +xd

1 +xd−1
1 x2 +xd−1

1 x3

is decomposable, has 6 terms and has arbitrary degree d.
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How to use the result

Q(a,b)
def
=
n

z ∈ Cn :
a
∑

j=1

�

�zj

�

�

2 −
a+b
∑

j=a+1

�

�zj

�

�

2
= 1

o

Say a rational map f : Q(a,b)→ Q(A,B) is indecomposable “if
we cannot write it in homogeneous coordinates as a direct
sum of two hyperquadric maps.”

Corollary (L., Peters ’11)
Let n = a + b ≥ 2 and N = A + B. Let f : Q(a,b)→ Q(A,B) be an
indecomposable (rational) monomial map. Then

deg f ≤ C(n,N)

For monomial maps indecomposable translates to the
condition of the previous slide.
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