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1. Introduction and research philosophy

My primary interests lie in complex analysis, and in CR geometry in particular. Research in CR
geometry also led me to problems in many other fields of mathematics. My research philosophy is
not to simply solve problems within the confines of a particular area but to look for connections and
applications to other areas of mathematics and even other disciplines. In this statement, for sake of
brevity, I talk only about my main interest, which is CR geometry, and I will only highlight those
results which lead to some recent ongoing work or future plans. For a complete list of publications
and preprints completed since my last evaluation in November 2017, see §??.

In CR geometry, very broadly, I study singularities and complexity. I am assuming that the
reader has some basic background in several complex variables. In CR geometry, one generally
studies CR submanifolds, that is, a submanifolds with a vector bundle that is the restriction of
the Cauchy–Riemann equations. However, this CR structure can develop singularities when the
submanifold is not a hypersurface, and we can also consider subvarieties instead of submanifolds,
or perhaps even more general subsets. One part of my work deals with trying to understand such
singularities, and analogues of results from the nonsingular context to the singular setting.

Another part of my work concerns the complexity of the CR structure. One way this complexity
may be studied is via an analogue of the Nash embedding theorem, that is, by studying maps to
spheres and hyperquadrics, which are the model CR manifolds of hypersurface type. We can ask
which maps exist and how complicated such maps are.

The common technique underlying most of the work mentioned below is the study of real power
series, both formal and convergent, and its application to the questions above. In particular, one
way to describe the relation of a real power series to the complex structure is by the use of the
Segre varieties and related techniques. One of these techniques is to “diagonalize” the hermitian
matrix of coefficients of a real-analytic function to write it as ∥f(z)∥2 − ∥g(z)∥2 for holomorphic
mappings (Cm- or possibly ℓ2-valued) f and g. This decomposition naturally gives rise to maps to
spheres and hyperquadrics.

2. Higher codimension CR singular submanifolds

Let M ⊂ Cn be a smooth submanifold. The CR structure of M is the restriction of the Cauchy–
Riemann equations to the complexified tangent bundle of M . If the CR structure is a vector
bundle, we say that M is a CR manifold. When M is of higher codimension than 1, the CR
structure naturally develops singularities. E. Bishop [4] first studied the nondegenerate CR singular
submanifolds of real codimension 2 in C2. These have the form

w = zz̄ + λ(z2 + z̄2) +O(3), (1)

for λ ∈ [0,∞] (λ = ∞ means w = z2 + z̄2 +O(3)).
In this direction, I am primarily interested in CR singular submanifolds of codimension 2 in

Cm for m > 2. In particular, I am particularly interested in the local function theory on these
manifolds. On CR manifolds, there is a natural notion of a so-called CR function: a function
killed by vector fields in the CR structure. If both the submanifold M and the function f are
real-analytic, then the classical theorem of Severi says that if f is CR then it is a restriction of a
holomorphic function. On CR singular submanifolds, the notion of a CR function does not have a
single obvious generalization. A current project I am working on is a discussion of several distinct
and natural generalizations of the notion of CR function to a CR singular manifold.

The simplest possibility is to extend the definition above to the CR singular manifold. We will
say f : M → C is a CR function if near every point it is killed by every anti-holomorphic vector
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field tangent to M . This definition is equivalent to asking f to be a CR function on the CR points
of M , a set that we denote MCR.

The theorem of Severi mentioned above that a real-analytic CR function f on a real-analytic
CR submanifold M is a restriction of a holomorphic function, no longer holds in the CR singular
case. The simplest example is the Bishop surface w = |z|2 in C2, where z̄ is CR according to
our definition but is not a restriction of a holomorphic function. In C2, we proved a Severi-type
theorem in the elliptic case by introducing a certain natural moment condition.

In C3 and higher dimensions, the solution is somewhat simpler, and we found a simple sufficient
condition on M . A codimension two CR singular submanifold M ⊂ Cn+1 can be put into the form

w = z∗Az + ztBz + ztCz + E(z, z̄), (2)

where the coordinates are (z, w) ∈ Cn × C, A,B,C are complex n × n matrices, B and C are

symmetric, and E is O(∥z∥3). We treat z as a column vector, zt is the transpose, and z∗ means
the conjugate transpose. We have the following analogue of Severi:

Theorem 2.1 (Lebl–Noell–Ravisankar [32]). Let M ⊂ Cn+1 be a real-analytic submanifold in the
form (2) such that rank

[
A∗
B

]
≥ 2. Then any real-analytic function that is CR at CR points of M

is locally a restriction of a holomorphic function.

The theorem is sharp; for A and B that do not satisfy the rank condition, there exists a coun-
terexample M and f such that f is not the restriction of a holomorphic function.

The smooth (C∞) case is more complicated, even in the CR case. A classical theorem of Lewy
shows that a smooth CR function f on a smooth hypersurface M ⊂ Cm extends as a holomorphic
function to one side ofM as long as the Levi-form ofM has at least one nonzero eigenvalue. If it has
eigenvalues of both signs, then f is a restriction of a holomorphic function. We wanted to ask what
is the analogue in higher codimension submanifolds. The first question to ask is what “extends to
one side” means. The simplest case seems to be when M is holomorphically-flat, that is, if after a
change of variables, M ⊂ Cn × R. Conditions for being holomorphically-flat in higher dimensions
have been of much interest lately; for some recent work, see [14,20,21] and the references within. A
holomorphically-flat M is a hypersurface in the canonical Levi-flat hypersurface Cn×R, and hence
M is codimension 2 in Cn+1. In this case, we put M in the form

w = z∗Az + ztBz + ztBz + E(z, z̄), (3)

where A is hermitian, B symmetric, and E real-valued. The matrix A is the one that represents
the analogue of the Levi-form in this case. Let the “positive side” of M in the Cn × R be

H+ : Rew ≥ z∗Az + ztBz + ztBz + E(z, z̄), Imw = 0. (4)

Theorem 2.2 (Lebl–Noell–Ravisankar [30]). Let H+ and M be as above, n ≥ 2, and suppose

that the real quadratic form z∗Az + ztBz + ztBz is nondegenerate. If A has at least two positive
eigenvalues, then there exists a neighborhood U ⊂ Cn × R of the origin such that every function
f ∈ C∞(M) ∩CR(MCR) extends to a smooth CR function on U ∩H+. If A also has two negative
eigenvalues, then f extends to a smooth CR function on U .

The theorem is optimal in the sense that one positive eigenvalue is not enough for extension.
In the non-holomorphically-flat case, extension may be attempted into a wedge with edge M ,

and such a result was proved by Tumanov [40] for CR manifolds. Recently, Noell, Ravisankar,
and I [33] studied some consequences of this wedge being an open subset, including in the singular
case. In particular, we proved a Cartan-uniqueness-like theorem for such sets (the classical Cartan
uniqueness theorem says that if the derivative of a self-map of a bounded domain is the identity at
a single fixed point, then the map is the identity).



3

We are currently interested in analyzing other natural possible definitions of the set of CR
functions. In particular, we are interested in conditions that give an analogue of the Baouendi–
Trèves theorem on polynomial approximation of CR functions, which does not hold as is for CR
singular submanifolds.

3. Levi-flat hypersurfaces and Segre varieties

Levi-flat hypersurfaces, that is, hypersurfaces pseudoconvex from both sides, possess a natural
foliation by complex hypersurfaces and are a much studied object in CR geometry and the theory of
holomorphic foliations. E.g., a famous, and as yet not fully solved, problem in CR geometry is the
claimed non-existence of a smooth Levi-flat hypersurface in the n dimensional complex projective
space when n ≥ 2. This nonexistence was proved for real-analytic hypersurfaces for n ≥ 3 by
Lins Neto [36], and has since been extended to lower regularity by many others. The case n = 2
stubbornly remains unsolved.

A subset of the n-dimensional projective space naturally induces a complex cone in Cn+1, that is,
a singular set. So a natural type of object to consider is a real-analytic subvariety. We call a real-
analytic subvariety H of codimension 1 a real hypervariety. Write H∗ for the set of points regular
points of hypersurface dimension (not necessarily the same as the set of regular points). We sayH is
Levi-flat if H∗ is a Levi-flat hypersurface. Levi-flat hypervarieties have some properties of complex
analytic subvarieties; however, they also possess many of the rather considerable pathologies of real-
analytic subvarieties, which makes their study difficult. For example, a real subvariety may not
be coherent: the defining equation of H at one point need not be the defining equation at points
arbitrarily near. One of many pathologies this leads to is irreducible hypervarieties where the
relative closure of H∗ is a proper subset of H. Singular Levi-flat hypersurfaces were first studied by
Burns–Gong [5], and many others more recently, see e.g., Fernández-Pérez [16], Pinchuk–Shafikov–
Sukhov [39], and the references within. Let me list some of my own older results that are relevant
to some of my current work.

(1) In [26] I proved that the singular set of the relative closure of H∗ is Levi-flat where it is a
real-analytic CR submanifold. In other words, the singular set of H is Levi-flat itself.

(2) In [24] I proved an analogue of the well known Chow’s theorem for Levi-flat hypervarieties in
Pn, n ≥ 2: If H is locally the pullback of a real-analytic curve via a meromorphic function,
and if H has infinitely many compact leaves in its Levi-foliation, then H is contained in the
pullback of a real-algebraic curve via a rational function, i.e., H is semi-algebraic.

(3) In [27] I studied Levi-flat hypersurfaces that are induced by curves in the Grassmanian,
that is, those that are unions of complex hyperplanes. All singular Levi-flats are in some
sense realizable as subsets of such a union of hyperplanes in much higher dimension. I also
proved that a general Chow-like result cannot hold by constructing a non-algebraic Levi-flat
hypervariety in P2.

The main technique in attacking Levi-flat hypersurfaces is the Segre variety: If H is defined near
the origin by the equation ρ(z, z̄) = 0, then the Segre variety is given by the equation ρ(z, 0) = 0.
For example, for the nonsingular Levi-flat hypersurface 0 = Im z1 = z1−z̄1

2i , the Segre variety is
z1 = 0. Note that this variety agrees with the leaf of the Levi-foliation. Segre varieties first gained
prominence in CR geometry with the work of Webster [41] and Diederich–Fornæss [13] for the
nonsingular cases. For the most part this technique still works in the singular case, but with some
pathologies. First, if H is not coherent, then the germ of the equation ρ = 0 might not define
the right ideals at points arbitrarily near the origin, and hence we cannot simply define the Segre
varieties in a neighborhood with a single function ρ. The second pathology is that ρ(z, 0) may in
fact be identically zero. We say this point is Segre-degenerate. It is not difficult to show that such
points are a subset of a codimension 2 complex subvariety; however, this set itself need not even
be a subvariety. In [28] I proved that it has at least the structure of a semianalytic set.
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Theorem 3.1. Let X be a real hypervariety in Cn and X[n] be the set of Segre-degenerate points.
Then X[n] is semianalytic. If X is coherent, then X[n] is complex analytic.

In the same paper I give examples where X[n] is not a real subvariety, and also where X[n]

does not have complex structure (not a complex subvariety). For Levi-flat hypersurfaces, the
Segre-degenerate singularities correspond to dicritical singularities of the underlying foliation, hence
understanding their structure is important.

A long term goal for Levi-flat hypervarieties is to prove a Levi-flat stratification. This plan
requires classifying and understanding higher codimension Levi-flat submanifolds, including the
CR singular ones. Together with Xianghong Gong [18], we studied the CR singular Levi-flat
submanifolds of codimension 2 in Cm, m ≥ 3. We obtained a normal form for the quadratic terms
and a complete formal normal form for the nondegenerate case in C3.

One connection to the CR singular submanifolds of codimension 2 is the study of Levi-flat singular
hypersurfaces via their intersections with a compact CR manifold such as a sphere, generating a
Milnor-link like manifold, a holomorphically-flat CR singular compact submanifold. The opposite
direction, that is, starting with a compact CR singular manifold and getting a Levi-flat (possibly
singular) hypersurface with this given boundary is the so-called Levi-flat Plateau problem, which
we recently studied with Noell and Ravisankar in [31] for CR singular manifolds with nondegenerate
elliptic singularities that are images of compact submanifolds in Cn × R.

More recently, Bernhard Lamel and I [22] considered totally-real subvarieties, that is, subvarieties
with no CR vectors at their regular points. However, their singularity, unless it is degenerate, does
induce a certain “finite” CR structure via Segre varieties. Let X be such a subvariety. The Segre
variety of X is a finite set. We proved that given a real-analytic function f(z, z̄) and averaging f
over the Segre variety {ξ1, . . . , ξk}, to get Af = 1

k

∑
f(z, ξj), gives an operator with the following

property: f on X is the restriction of a holomorphic function if and only if

A(f ℓ) = (Af)ℓ for all ℓ = 1, . . . , k. (5)

Restrict this operator A to just the antiholomorphic functions and call this restricted operator R.
We proved that R actually contains all the information about the germ of the subvariety (X, 0):
Finding a normal form for R is equivalent to finding a normal form for (X, 0).

We are currently working on generalizing this work to subvarieties of lower codimension, in which
case the Segre variety has higher codimension, and one cannot simply average over the Segre variety.

4. CR maps between spheres and hyperquadrics

LetM ⊂ Cn andM ′ ⊂ CN be real submanifolds. A fundamental question is to classify CR maps
between M and M ′. Let M ′ be a hyperquadric, that is, M ′ is defined by ⟨z, z⟩ = 1, where ⟨·, ·⟩ is a
nondegenerate (not necessarily positive definite) Hermitian product. Hyperquadrics are the model
hypersurfaces of different signatures of the Levi-form. The classification of real-analytic CR maps
φ : M →M ′ amounts to understanding the ideal of real functions vanishing on M . For simplicity,
let ρ(z, z̄) be a polynomial vanishing on M . Write

ρ(z, z̄) = ∥f(z)∥2 − ∥g(z)∥2 , (6)

where f and g are holomorphic maps to some k and m dimensional spaces. The numbers k and
m are are the number of positive and negative eigenvalues of the matrix of coefficients of ρ. The
map (f, g) induces (by dividing by one of the components) a CR map φ : M → M ′, unique up to
fractional linear transformations preservingM ′, whereM ′ is the hyperquadric of signature (k,m−1)
or (k−1,m). The problem rests in studying the signature pair (the number of positive and negative
eigenvalues) of functions in the ideal generated by M . The possible numbers can be thought of as
giving the “CR complexity” of M .

A well-studied case is when M = S2n−1 ⊂ Cn and M ′ = S2N−1 ⊂ CN are unit spheres, alterna-
tively this problem studies proper holomorphic maps of Bn to BN . When N < n no nonconstant



5

CR maps exist. Two maps are spherically equivalent if the they are conjugates of each other via
linear fractional automorphisms of the spheres. When n = N = 1, the map zd takes the unit circle
to itself and is of arbitrary degree d. A well-known theorem (Pincuk [38], Alexander [1], and others)
states that if n = N ≥ 2, then any CR map of spheres must be linear fractional, a rational map of
degree 1. So degree-one maps are equivalent to the identity. A map is monomial if each component
is a single monomial. For degree-2 maps we have:

Theorem 4.1 (Lebl [25]). Let f : S2n−1 → S2N−1, n ≥ 2, be a rational CR map of degree 2. Then
f is spherically equivalent to a monomial map. Furthermore, the normal form for such a map is

z ∈ Cn 7→ Lz ⊕ (
√
I − L∗Lz)⊗ z, (7)

where L is a diagonal matrix with nonnegative diagonal entries sorted by size, such that I − L∗L
also has nonnegative entries. All maps of the form (7) are mutually spherically inequivalent.

Forstnerič [17] proved that if n ≥ 2 and the map is C∞, then the map is rational of degree d
bounded by a function of n and N . A sharp bound on d is unknown, but D’Angelo conjectured:

d ≤

{
2N − 3 if n = 2,
N−1
n−1 if n ≥ 3.

(8)

Monomial examples that achieve equality exist. The best currently known bound d ≤ N(N−1)
2(2n−3)

was proved by Meylan [37] for n = 2 and extended to n ≥ 3 by D’Angelo and myself [10]. The
combinatorics in the monomial case seems to capture the complexity of the general problem, and
the sharp bound is known in this case:

Theorem 4.2 (D’Angelo–Kos–Riehl [8] for n = 2, and Lebl–Peters [34, 35] for n ≥ 3). Suppose
that f : S2n−1 → S2N−1, n ≥ 2, is a monomial CR map of degree d. Then (8) holds and is sharp.

Spherical equivalence is not the only natural notion of equivalence for proper holomorphic maps.
The obstruction in many problems in complex analysis is topological, so it is natural to study the
topology of the space of proper maps.

Theorem 4.3 (D’Angelo–Lebl [12]). Let S denote the set of homotopy classes of proper rational
maps f : Bn → BN . If n ≥ 2, then S is a finite set.

On the other hand, if Ht is a homotopy of two proper maps, such that H0 and H1 are spherically
inequivalent, then Ht contains uncountably many spherically inequivalent maps.

The result suggests that studying homotopy classes is more tractable. When only finitely many
spherically inequivalent maps exist for a certain pair of dimensions, then these are also inequivalent
homotopically. For example, Faran [15] proved that a proper map f : B2 → B3, smooth up to
∂B2, is spherically equivalent to exactly one of four maps, (z, w, 0), (z, zw,w2), (z2,

√
2 zw,w2), or

(z3,
√
3 zw,w3). Hence there are also 4 homotopy classes of maps from B2 to B3.

Unfortunately, degree is not a homotopy invariant. From known examples, however, it appears
that one can construct a homotopy from a rational map to a polynomial map of the same degree
by shrinking the nonconstant parts of the denominator. If this conjecture is true, then the degree
bounds can be reduced to polynomial maps. Furthermore, homotopy classes would have polynomial
representatives, simplifying the classification up to homotopy. Further conjecture is then that
polynomial maps can be homotoped to monomial maps. It is not difficult to see that polynomial or
rational maps constructed by partial tensoring can be homotoped down to monomial maps of the
same or higher degree. D’Angelo’s (see [7]) classification of polynomial maps by partial tensoring
and untensoring then suggests that this result may be true for all maps. Furthermore, when n = 1
it can be proved that that all proper rational maps f : D → BN are homotopy equivalent to a
monomial map of the same degree. Thus, homotopy provides not only a new way to classify proper
maps, but also a program for solving the degree bound conjecture.
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Studying the denominator is related to the homotopy question asked above. Thus, I have recently
found the normal form under spherical equivalence for the denominator of a proper rational map.
Namely the linear terms in the denominator can be zeroed out by a unique pair of automorphisms.

Theorem 4.4 (Lebl [29]). Suppose f : Bn → BN is a rational proper map of degree d. Then there
exist 0 ≤ σ1 ≤ · · · ≤ σn ≤ d−1

2 , and ψ ∈ aut(Bn) and τ ∈ aut(BN ) such that τ ◦ f ◦ ψ = P
G , where

P (0) = 0,

G(z) = 1 +

n∑
k=1

σkz
2
k + E(z), (9)

and E(z) is of order at least 3 and degree at most d − 1. The numbers σ1, . . . , σn are spherical
invariants and f is in normal form up to composition with unitary maps.

To see the power of this theorem, note that if 0 < σ1 < · · · < σn are all distinct, then the V above
is a diagonal map with 1s and −1s on the diagonal. The U could be used to put the coefficients of
P into the row echelon form with positive pivots, and then we have a normal form up to a finite
group (possible flipping of signs of the variables). We can also decide if a map is equivalent to
a polynomial map taking the origin to the origin by putting it into this normal form. While my
previous work shows that all degree 2 maps are spherically equivalent to polynomial (monomial,
in fact) maps, the generic degree 3 map is not. The theorem is a consequence of the taking the
critical point of the following function to the origin.

Theorem 4.5 (Lebl [29]). Suppose f = p
g : Bn → BN is a rational proper map of degree d written

in lowest terms. Then the function

Λ(z, z̄) =
|g(z)|2 − ∥p(z)∥2

(1− ∥z∥2)d
(10)

is a strictly plurisubharmonic exhaustion function of Bn. Moreover, the function transforms natu-
rally under composition with automorphisms.

By work of Catlin and D’Angelo [6], every polynomial g(z) not vanishing on the closed ball is
the denominator of some rational proper map (possibly of large degree). It is also possible to show
that for all small enough σ1, . . . , σn, there is a proper map of degree 3 with the denominator being
1 + σ1z

2
1 + · · ·+ σnz

2
n. The next step in the classification up to homotopy, is to show that not only

are there maps realizing the given denominator, but that these maps can be chosen to have the
same target dimension and that this solution may be varied continuously.

We can generalize the manifold ∂Bn to a hyperquadric Q(a, b) defined by |z1|2 + · · · + |za|2 −
|za+1|2 − · · · − |za+b|2 = 1. With D’Angelo, we proved in [11] that for any n, and all A and B with
A + B large enough, there exists a rational map taking Q(n, 0) = ∂Bn to Q(A,B) in a nontrivial
way, that is, the image does not lie in a complex hyperplane (the components are affine linear
independent). On the other hand, with Dusty Grundmeier and Liz Vivas [19], we proved that
a similar result does not hold when the source is not a sphere. Let a ≥ 2, b ≥ 1, and a > b.
We proved that if f is a real-analytic CR map of an open piece of Q(a, b) to Q(A,B) whose
image does not lie in a complex hyperplane, then A ≤ C(a, b, B), where C(a, b, B) is a constant
depending only on a, b, and B. We constructed maps for all (A,B) in a sector with A + B large
enough. When the codimension is small, even more can be proved. Baouendi–Huang [3] proved
that if f : Q(a, b) → Q(A, b) is CR with a > b ≥ 1 and A ≥ b > 1, then f is equivalent to a
linear embedding. Baouendi–Ebenfelt–Huang [2] proved that if f : Q(a, b) → Q(A,B) is CR with
a > b ≥ 1 and A ≥ B > 1 and B < 2b− 1, then f maps to a complex hyperplane.

Embedding a CR manifold into Q(A,B) in a nontrivial way is the CR analogue of the Nash
embedding theorem, which fails for general submanifolds. Those manifolds that can be embedded
into some Q(A,B), can be considered as having a “finite CR complexity”, and it is a natural
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question to ask, which (A,B) allow such a map. In the results above, we have partial answers for
the hyperquadric itself, and we can already see that the answer is nontrivial. Despite much work
by various authors, this question is not completely answered even for the sphere-to-sphere case.

5. Future plans

All the results mentioned suggest fertile ground for further work, and I am actively pursuing
some of these avenues as noted above. Let me very briefly summarize my current work and future
plans. Alan Noell, Sivaguru Ravisankar, and I are working on further understanding the set of
CR functions (and the correct definition). Together with Bernhard Lamel, we are working on
generalizing the technique of the averaging operator to subvarieties of lower codimension. More
generally and along these two directions, I am working on understanding singular sets in CR
geometry, namely the Levi-flat singular subvarieties. I am also working on refining the normal form
for proper maps and extending the work to more general context. I hope this work will lead to
better classification of these and more general hyperquadric maps, and hopefully also a complete
solution to the degree bounds conjecture.
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[30] Jǐŕı Lebl, Alan Noell, and Sivaguru Ravisankar, On Lewy extension for smooth hypersurfaces in Cn × R, Trans.

Amer. Math. Soc. 371 (2019), no. 9, 6581–6603. arXiv:1704.08662.
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