Rigidity of CR maps of hyperquadrics

Jiří Lebl
joint work with Dusty Grundmeier and Liz Vivas

Department of Mathematics, University of Wisconsin-Madison

July 2012

Setup

Let $M \subset \mathbb{C}^{n}$ and $M^{\prime} \subset \mathbb{C}^{N}$ be real submanifolds.
$F: M \rightarrow M^{\prime}$ is $C R$ if it satisfies tangential Cauchy-Riemann equations.

Setup

Let $M \subset \mathbb{C}^{n}$ and $M^{\prime} \subset \mathbb{C}^{N}$ be real submanifolds.
$F: M \rightarrow M^{\prime}$ is $C R$ if it satisfies tangential Cauchy-Riemann equations.

Goal

Classify $C R$ maps from M to M^{\prime}.

Setup

Let $M \subset \mathbb{C}^{n}$ and $M^{\prime} \subset \mathbb{C}^{N}$ be real submanifolds.
$F: M \rightarrow M^{\prime}$ is $C R$ if it satisfies tangential Cauchy-Riemann equations.

Goal

Classify $C R$ maps from M to M^{\prime}.

This is very hard.
So perhaps we can ask the question in some specific scenario.

Spheres

We could study spheres. That is

$$
S^{2 n-1}=\left\{z \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left|z_{j}\right|^{2}=\|z\|^{2}=1\right\}
$$

Consider CR maps $F: S^{2 n-1} \rightarrow S^{2 N-1}$, with $n \geq 2$.

Spheres

We could study spheres. That is

$$
S^{2 n-1}=\left\{z \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left|z_{j}\right|^{2}=\|z\|^{2}=1\right\}
$$

Consider CR maps $F: S^{2 n-1} \rightarrow S^{2 N-1}$, with $n \geq 2$.
The smallest N^{\prime} such that $F\left(S^{2 n-1}\right)$ lies in an N^{\prime}-dimensional affine space is the embedding dimension of F.

If $F\left(S^{2 n-1}\right) \not \subset H$ for any affine complex hyperplane $H \subset \mathbb{C}^{N}$, then we'll say F has minimal target dimension $\left(N=N^{\prime}\right)$.

Embedding dimensions for maps of $S^{2 n-1}$ to $S^{2 N-1}$

Which embedding dimensions are possible?

Embedding dimensions for maps of $S^{2 n-1}$ to $S^{2 N-1}$

Which embedding dimensions are possible?
No maps possible if $N<n$.

Embedding dimensions for maps of $S^{2 n-1}$ to $S^{2 N-1}$

Which embedding dimensions are possible?
No maps possible if $N<n$.
If $n=N$ then the only map is an automorphism of the unit ball (a linear fractional map) (Poincaré '07, Pinčuk '75).

Embedding dimensions for maps of $S^{2 n-1}$ to $S^{2 N-1}$

Which embedding dimensions are possible?
No maps possible if $N<n$.
If $n=N$ then the only map is an automorphism of the unit ball (a linear fractional map) (Poincaré '07, Pinčuk '75).

Theorem (Webster '79)

If $n \geq 3$ there is no C^{3} smooth $C R$ map of spheres with embedding dimension $N=n+1$.

Embedding dimensions for maps of $S^{2 n-1}$ to $S^{2 N-1}$

Which embedding dimensions are possible?
No maps possible if $N<n$.
If $n=N$ then the only map is an automorphism of the unit ball (a linear fractional map) (Poincaré '07, Pinčuk '75).

```
Theorem (Webster '79)
If \(n \geq 3\) there is no \(C^{3}\) smooth \(C R\) map of spheres with embedding dimension \(N=n+1\).
```

Dor ('90) constructed a continuous CR map with embedding dimension $N=n+1$.

Gaps for maps $F: S^{2 n-1} \rightarrow S^{2 N-1}$

No CR maps of spheres with minimal target dimension for the following "gaps":

n	Target dimension	Regularity
$n>2$	$n<N<2 n-1$	real-analytic (Faran '86) C^{N-n+1} (Forstnerič '86, Cima-Suffridge '90) C^{2} (Huang '99)
$n>4$	$2 n<N<3 n-3$	C^{3} (Huang-Ji-Xu '06)
$n>7$	$3 n<N<4 n-6$	C^{3} (Huang-Ji-Yin '12)

Conjectured k th gap is $k n<N<(k+1) n-\frac{k(k+1)}{2}$.
For $n=2$ there are no gaps.

Large codimension

Theorem (D'Angelo, L. '09)
Let $n \geq 2$. \exists an M such that $\forall N \geq M$ there exists a polynomial $C R$ map $F: S^{2 n-1} \rightarrow S^{2 N-1}$ with minimal target dimension.

So everything is possible for the sphere (beyond a certain point).

Large codimension

```
Theorem (D'Angelo, L. '09)
Let n\geq2. \exists an M such that }\forallN\geqM\mathrm{ there exists a polynomial \(C R\) map \(F: S^{2 n-1} \rightarrow S^{2 N-1}\) with minimal target dimension.
```

So everything is possible for the sphere (beyond a certain point).
The sphere is defined by a positive definite form. What about surfaces defined by nondegenerate forms.

Hyperquadrics

Define

$$
Q(a, b) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{a+b}: \sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}=1\right\}
$$

Note that

$$
S^{2 n-1}=Q(n, 0)
$$

Hyperquadrics

Define

$$
Q(a, b) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{a+b}: \sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}=1\right\}
$$

Note that

$$
S^{2 n-1}=Q(n, 0)
$$

1) $a \geq 1$.
2) Levi-form of $Q(a, b)$ is of signature $(a-1, b)$.

Starting with a sphere

```
Theorem (D'Angelo, L. '11)
Let }n\geq2.\existsM\mathrm{ such that }\forallA,B\mathrm{ with }A\geq1,B\geq0,A+B\geqM\mathrm{ ,
there exists a rational CR map F: S Sn-1}->Q(A,B) with minimal target dimension.
```

Minimal target dimension is the same idea: $F\left(S^{2 n-1}\right)$ not contained in an affine complex hyperplane.

So really everything is possible when starting from a sphere (if we go far enough out).

CR maps between hyperquadrics

Suppose $F: U \subset Q(a, b) \rightarrow Q(A, B)$ is CR.

CR maps between hyperquadrics

Suppose $F: U \subset Q(a, b) \rightarrow Q(A, B)$ is CR.
When $Q(a, b)$ is not equivalent to a sphere, it is enough to consider real-analytic CR maps by a theorem of Lewy.

CR maps between hyperquadrics

Suppose $F: U \subset Q(a, b) \rightarrow Q(A, B)$ is CR.
When $Q(a, b)$ is not equivalent to a sphere, it is enough to consider real-analytic CR maps by a theorem of Lewy.
$Q(a, b) \cong Q(b+1, a-1)$ by a linear fractional map. So always assume that $a>b$ and $A>B$. Then $Q(a, b)$ is not equivalent to a sphere when $b \geq 1$.

Minimal target dimension
Let $F: U \subset Q(a, b) \rightarrow Q(A, B)$ be CR.

Minimal target dimension

Let $F: U \subset Q(a, b) \rightarrow Q(A, B)$ be CR.
If $F(U) \subset H$, where $H \subset \mathbb{C}^{A+B}$ is an affine complex hyperplane, then after an affine change of variables on the target side we have a map:

$$
\tilde{F}: U \rightarrow Q\left(A^{\prime}, B^{\prime}\right) \times \mathbb{C}^{k}
$$

For some k, some $A^{\prime} \leq A$, and $B^{\prime} \leq B$.

Minimal target dimension

Let $F: U \subset Q(a, b) \rightarrow Q(A, B)$ be CR.
If $F(U) \subset H$, where $H \subset \mathbb{C}^{A+B}$ is an affine complex hyperplane, then after an affine change of variables on the target side we have a map:

$$
\tilde{F}: U \rightarrow Q\left(A^{\prime}, B^{\prime}\right) \times \mathbb{C}^{k}
$$

For some k, some $A^{\prime} \leq A$, and $B^{\prime} \leq B$.
Example: Let F be

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}, z_{2}, \varphi(z), z_{3}, \varphi(z)\right)
$$

takes $Q(2,1)$ to $Q(3,2)$ (φ is arbitrary CR function). $H=\left\{w_{3}=w_{5}\right\}$. Changing coordinates we obtain:

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}, z_{2}, z_{3}, \varphi(z), 0\right)
$$

Note $Q(3,2) \cap H$ is equivalent to $Q(2,1) \times \mathbb{C}$.

Super-rigidity

Let

$$
F: U \subset Q(a, b) \rightarrow Q(A, B)
$$

be a real-analytic CR map. Suppose that $a>b \geq 1, A>B \geq 1$. Further suppose that F has minimal target dimension.

Super-rigidity

Let

$$
F: U \subset Q(a, b) \rightarrow Q(A, B)
$$

be a real-analytic CR map. Suppose that $a>b \geq 1, A>B \geq 1$. Further suppose that F has minimal target dimension.

Theorem (Baouendi-Huang '05)

If $b=B$, then $a=A$ and F is equivalent (via an LFT) to the identity.

Super-rigidity

Let

$$
F: U \subset Q(a, b) \rightarrow Q(A, B)
$$

be a real-analytic CR map. Suppose that $a>b \geq 1, A>B \geq 1$. Further suppose that F has minimal target dimension.

Theorem (Baouendi-Huang '05)
If $b=B$, then $a=A$ and F is equivalent (via an LFT) to the identity.

Theorem (Baouendi-Ebenfelt-Huang '09)

If $B<2 b$, then $a=A, b=B$ and F is equivalent to the identity.

Failure of super-rigidity

Let $(z, w) \in \mathbb{C}^{a} \times \mathbb{C}^{b}$. Then

$$
(z, w) \mapsto\left(z_{1}, \ldots, z_{a-1}, z_{a} z_{1}, \ldots, z_{a}^{2}, z_{a} w_{1}, \ldots, z_{a} w_{b}, w_{1}, \ldots, w_{b}\right)
$$

takes $Q(a, b)$ to $Q(2 a-1,2 b)$.

Rigidity

Theorem (Grundmeier, L., Vivas, '11)

Let $a>b \geq 1$. Let $U \subset Q(a, b)$ be a connected open set and $F: U \rightarrow Q(A, B)$ be a real-analytic $C R$ map with minimal target dimension, then

$$
A \leq N(a, b, B)
$$

where $N(a, b, B)$ is a constant depending only a, b, and B.

Stability

Theorem (Grundmeier, L., Vivas, '11)

Suppose $a>b \geq 1$, then there exists an N such that if $A+B \geq N$, and

$$
\frac{B-b+3}{A} \geq \frac{b}{a} \quad \text { and } \quad \frac{A-b+2}{B+1} \geq \frac{b}{a}
$$

then there exists a rational $C R$ map $F: Q(a, b) \rightarrow Q(A, B)$ whose image does not lie in an affine complex hyperplane.

Picture is worth a thousand words $Q(4,1)$
B

Picture is worth a thousand words $Q(4,1)$
B

Hermitian forms

Let r be a real-analytic function. Write

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

for holomorphic Hilbert-space valued maps $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{A}$ and $g: \mathbb{C}^{n} \rightarrow \mathbb{C}^{B}$ with linearly independent components. Allow A and B to be ∞. (See D'Angelo '93)

Hermitian forms

Let r be a real-analytic function. Write

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

for holomorphic Hilbert-space valued maps $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{A}$ and $g: \mathbb{C}^{n} \rightarrow \mathbb{C}^{B}$ with linearly independent components. Allow A and B to be ∞. (See D'Angelo '93)
Define

$$
\text { rank } r=A+B \quad \text { signature pair of } r=(A, B)
$$

The decomposition non-unique, but A and B are well-defined.

Hermitian forms

Let r be a real-analytic function. Write

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

for holomorphic Hilbert-space valued maps $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{A}$ and $g: \mathbb{C}^{n} \rightarrow \mathbb{C}^{B}$ with linearly independent components. Allow A and B to be ∞. (See D'Angelo '93)
Define

$$
\text { rank } r=A+B \quad \text { signature pair of } r=(A, B)
$$

The decomposition non-unique, but A and B are well-defined.
Note that it looks like we are plugging $f \oplus g$ into the defining equation of a hyperquadric.

Matrix of coefficients

Assuming r is defined near 0 we can write

$$
r(z, \bar{z})=\langle C \mathcal{Z}, \mathcal{Z}\rangle
$$

where $\mathcal{Z}=\left(1, z_{1}, z_{2}, \ldots, z_{1}^{2}, z_{1} z_{2}, \ldots\right)$ is the vector of all monomials and C is a (formal) Hermitian matrix (called the matrix of coefficients).

Matrix of coefficients

Assuming r is defined near 0 we can write

$$
r(z, \bar{z})=\langle C \mathcal{Z}, \mathcal{Z}\rangle
$$

where $\mathcal{Z}=\left(1, z_{1}, z_{2}, \ldots, z_{1}^{2}, z_{1} z_{2}, \ldots\right)$ is the vector of all monomials and C is a (formal) Hermitian matrix (called the matrix of coefficients). After possibly rescaling r, C is a Hermitian trace-class operator on ℓ^{2} of rank $A+B$, and A positive and B negative eigenvalues.

Matrix of coefficients

Assuming r is defined near 0 we can write

$$
r(z, \bar{z})=\langle C \mathcal{Z}, \mathcal{Z}\rangle
$$

where $\mathcal{Z}=\left(1, z_{1}, z_{2}, \ldots, z_{1}^{2}, z_{1} z_{2}, \ldots\right)$ is the vector of all monomials and C is a (formal) Hermitian matrix (called the matrix of coefficients).
After possibly rescaling r, C is a Hermitian trace-class operator on ℓ^{2} of rank $A+B$, and A positive and B negative eigenvalues.
We obtain f and g in $r=\|f\|^{2}-\|g\|^{2}$ by diagonalizing C.

Hermitian forms: example (finite dimensional)
$5 z_{1} z_{2} \bar{z}_{1} \bar{z}_{2}-3 z_{2}^{2} \bar{z}_{2}^{2}+2 z_{1}^{2}+2 \bar{z}_{1}^{2}+z_{1} \bar{z}_{1}=$

$$
\left.\left.\begin{array}{rl}
=\left[\begin{array}{lllll}
1 & \bar{z}_{1} & \bar{z}_{2} & \bar{z}_{1}^{2} & \bar{z}_{1} \bar{z}_{2}
\end{array} \bar{z}_{2}^{2}\right.
\end{array}\right]\left[\begin{array}{cccccc}
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{c}
1 \\
z_{1} \\
z_{2} \\
z_{1}^{2} \\
z_{1} z_{2} \\
z_{2}^{2}
\end{array}\right]\right)
$$

Key ingredient

Let $G_{m, n}$ be the affine Grassmanian (affine complex m-planes in \mathbb{C}^{n})

Theorem (Grundmeier, L., Vivas, '11)

Let $n \geq 2$ and let $1 \leq m \leq n-1$. Let $r: \Omega \subset \mathbb{C}^{n} \rightarrow \mathbb{R}$ be a nonzero real-analytic function (Ω connected and "small enough"). If

$$
\left.\max _{L \in G_{m, n}} \operatorname{rank} r\right|_{L}<\infty
$$

Then rank $r<\infty$.
Moreover, $\exists R_{m, n}: \mathbb{N} \rightarrow \mathbb{N}$ such that for all such r

$$
\operatorname{rank} r \leq R_{m, n}\left(\left.\max _{L \in G_{m, n}} \operatorname{rank} r\right|_{L}\right)
$$

Actually not quite enough

The hypothesis "for all $L \in G_{m, n}$ " is not good enough.

Actually not quite enough

The hypothesis "for all $L \in G_{m, n}$ " is not good enough.
Let $\mathcal{L} \subset G_{m, n}$ be a generic subset (not contained in any complex subvariety of $G_{m, n}$).

We show that if r is positive semi-definite $(B=0)$, then

$$
\operatorname{rank} r \leq R_{m, n}\left(\left.\max _{L \in \mathcal{L}} \operatorname{rank} r\right|_{L}\right)
$$

When looking only at \mathcal{L} then r must be positive semi-definite for any bound to hold.

Interesting consequence

Suppose $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{N}$ is holomorphic and fix $m<n$.
If for each affine m-plane L intersecting U the set $f(U \cap L)$ lies in an affine M-plane in \mathbb{C}^{N}, then $f(U)$ lies in an affine $R_{m, n}(M)$-plane.

Interesting consequence

Suppose $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{N}$ is holomorphic and fix $m<n$.
If for each affine m-plane L intersecting U the set $f(U \cap L)$ lies in an affine M-plane in \mathbb{C}^{N}, then $f(U)$ lies in an affine $R_{m, n}(M)$-plane.

Here also a generic set of L will do as well.

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes.

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to $Q(A, B)$ where $A+B$ is the minimal target dimension.

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes.
Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to $Q(A, B)$ where $A+B$ is the minimal target dimension. Look at

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

f maps to \mathbb{C}^{A} and g maps to \mathbb{C}^{B}.

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes.
Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to $Q(A, B)$ where $A+B$ is the minimal target dimension. Look at

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

f maps to \mathbb{C}^{A} and g maps to \mathbb{C}^{B}.
As $r=1$ on $U \subset Q(a, b)$, then for every L in \mathcal{L} that also intersects U

$$
1=\left.r\right|_{L}=\left\|\left.f\right|_{L}\right\|^{2}-\left\|\left.g\right|_{L}\right\|^{2}
$$

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes.
Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to $Q(A, B)$ where $A+B$ is the minimal target dimension. Look at

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

f maps to \mathbb{C}^{A} and g maps to \mathbb{C}^{B}.
As $r=1$ on $U \subset Q(a, b)$, then for every L in \mathcal{L} that also intersects U

$$
1=\left.r\right|_{L}=\left\|\left.f\right|_{L}\right\|^{2}-\left\|\left.g\right|_{L}\right\|^{2}
$$

In other words, $\left\|\left.f\right|_{L}\right\|^{2}=\left\|\left.g\right|_{L}\right\|^{2}+1$. The rank of $\left\|\left.g\right|_{L}\right\|^{2}$ is bounded by B and hence rank of $\left\|\left.f\right|_{L}\right\|^{2}$ is bounded by $B+1$.

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to $Q(A, B)$ where $A+B$ is the minimal target dimension. Look at

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

f maps to \mathbb{C}^{A} and g maps to \mathbb{C}^{B}.
As $r=1$ on $U \subset Q(a, b)$, then for every L in \mathcal{L} that also intersects U

$$
1=\left.r\right|_{L}=\left\|\left.f\right|_{L}\right\|^{2}-\left\|\left.g\right|_{L}\right\|^{2}
$$

In other words, $\left\|\left.f\right|_{L}\right\|^{2}=\left\|\left.g\right|_{L}\right\|^{2}+1$. The rank of $\left\|\left.g\right|_{L}\right\|^{2}$ is bounded by B and hence rank of $\left\|\left.f\right|_{L}\right\|^{2}$ is bounded by $B+1$. As $\|f\|^{2}$ is positive semi-definite, the rank of $\|f\|^{2}$ (which is A) is bounded by some function of B. Which is exactly what we wanted.

Idea of proof of the rigidity theorem

If $a>b \geq 1$, then $Q(a, b)$ contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to $Q(A, B)$ where $A+B$ is the minimal target dimension. Look at

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

f maps to \mathbb{C}^{A} and g maps to \mathbb{C}^{B}.
As $r=1$ on $U \subset Q(a, b)$, then for every L in \mathcal{L} that also intersects U

$$
1=\left.r\right|_{L}=\left\|\left.f\right|_{L}\right\|^{2}-\left\|\left.g\right|_{L}\right\|^{2}
$$

In other words, $\left\|\left.f\right|_{L}\right\|^{2}=\left\|\left.g\right|_{L}\right\|^{2}+1$. The rank of $\left\|\left.g\right|_{L}\right\|^{2}$ is bounded by B and hence rank of $\left\|\left.f\right|_{L}\right\|^{2}$ is bounded by $B+1$. As $\|f\|^{2}$ is positive semi-definite, the rank of $\|f\|^{2}$ (which is A) is bounded by some function of B. Which is exactly what we wanted. QED!

Proof of stability

Define $Q(a, b)$ by

$$
s(z, \bar{z})=\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}=1
$$

Suppose $r=1$ on $Q(a, b)$, where

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

i.e. $f \oplus g$ takes $Q(a, b)$ to $Q(A, B)$.

Proof of stability

Define $Q(a, b)$ by

$$
s(z, \bar{z})=\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}=1
$$

Suppose $r=1$ on $Q(a, b)$, where

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

i.e. $f \oplus g$ takes $Q(a, b)$ to $Q(A, B)$.

Then for an arbitrary holomorphic function φ

$$
r_{1}=\|f\|^{2}-\|g\|^{2}+|\varphi|^{2}(s-1)
$$

generically adds a positive and $b+1$ negative eigenvalues.

Proof of stability

Define $Q(a, b)$ by

$$
s(z, \bar{z})=\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}=1
$$

Suppose $r=1$ on $Q(a, b)$, where

$$
r(z, \bar{z})=\|f(z)\|^{2}-\|g(z)\|^{2}
$$

i.e. $f \oplus g$ takes $Q(a, b)$ to $Q(A, B)$.

Then for an arbitrary holomorphic function φ

$$
r_{1}=\|f\|^{2}-\|g\|^{2}+|\varphi|^{2}(s-1)
$$

generically adds a positive and $b+1$ negative eigenvalues.

$$
r_{2}=\|f\|^{2}-\|g\|^{2}+|\varphi|^{2}(1-s)
$$

generically adds $b+1$ positive and a negative eigenvalues,

Continued...

Let $f=\left(f^{\prime}, f_{A}\right)$.

$$
r_{3}=\left\|f^{\prime}\right\|^{2}+\left|f_{A}\right|^{2} s-\|g\|^{2}
$$

generically adds $a-1$ positive and b negative eigenvalues.

$$
r_{4}=\left\|f^{\prime}\right\|^{2}+\frac{\left|f_{A}\right|^{2}}{2}+\frac{\left|f_{A}\right|^{2} s}{2}-\|g\|^{2}
$$

generically adds a positive and b negative eigenvalues.

Continued...

Let $f=\left(f^{\prime}, f_{A}\right)$.

$$
r_{3}=\left\|f^{\prime}\right\|^{2}+\left|f_{A}\right|^{2} s-\|g\|^{2}
$$

generically adds $a-1$ positive and b negative eigenvalues.

$$
r_{4}=\left\|f^{\prime}\right\|^{2}+\frac{\left|f_{A}\right|^{2}}{2}+\frac{\left|f_{A}\right|^{2} s}{2}-\|g\|^{2}
$$

generically adds a positive and b negative eigenvalues.
By variations on the above obtain maps to:
$Q(A+a, B+b+1), Q(A+a, B+b), Q(A+a-1, B+b+1)$,
$Q(A+a-1, B+b)$.
And also to:
$Q(A+b+1, B+a), Q(A+b+1, B+a-1), Q(A+b, B+a)$, $Q(A+b, B+a-1)$

Proof by picture

In the following pictures the B axis (vertical) is shifted by one for symmetry.

We show the construction of maps $Q(4,1) \rightarrow Q(A, B-1)$.

Proof by picture

20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Proof by picture

20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Proof by picture

20000000000000000000000 $19 \circ \circ$	
$\bigcirc 0000000000000000000$	
$\bigcirc 0000000000000000000$	
400000000000000000000	
$\bigcirc 0000000000000000000$	
$\bigcirc 0000000000000000000$	
$\bigcirc 00000000000000000000$	
$\bigcirc 00000000000000000000$	
0000	
$\bigcirc 000000000000000000$	
$\bigcirc \bigcirc \bigcirc 0000000000000000$	
0000000000000000000	
2000000000000000000000	

Proof by picture

20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Proof by picture

$\bigcirc 0000000000000000000$	
$\bigcirc 0000000000000000000$	
$\bigcirc 0000000000000000000$	
$\bigcirc 0000000000000000000$	
00000000000000000000	
000000000000000000000	
$\bigcirc \bigcirc \bigcirc 0000000000000000$	
00000	
$\bigcirc \bigcirc \bigcirc 00000000000000000$	
$\bigcirc \bigcirc 000000000000000000$	
$\bigcirc \bigcirc \bigcirc 0000000000000000$	

Proof by picture

Proof by picture

Proof by picture

Proof by picture

Infinitely many dimensions

There exist strictly pseudoconvex real-analytic compact hypersurfaces that cannot be embedded via a real-analytic map into a sphere of any finite dimension (Forstnerič '86).
Every such hypersurface embeds (via a real-analytic map) into a sphere in ℓ^{2} (Lempert '90).

Infinitely many dimensions

There exist strictly pseudoconvex real-analytic compact hypersurfaces that cannot be embedded via a real-analytic map into a sphere of any finite dimension (Forstnerič '86).
Every such hypersurface embeds (via a real-analytic map) into a sphere in ℓ^{2} (Lempert '90).

What about non-pseudoconvex Levi-nondegenerate hypersurfaces?

Infinitely many dimensions

There exist strictly pseudoconvex real-analytic compact hypersurfaces that cannot be embedded via a real-analytic map into a sphere of any finite dimension (Forstnerič '86).

Every such hypersurface embeds (via a real-analytic map) into a sphere in ℓ^{2} (Lempert '90).

What about non-pseudoconvex Levi-nondegenerate hypersurfaces?

$$
\begin{aligned}
& Q(\infty, b):=\left\{z \in \ell^{2}:-\sum_{j=1}^{b}\left|z_{j}\right|^{2}+\sum_{j=b+1}^{\infty}\left|z_{j}\right|^{2}=1\right\} \\
& Q(\infty, \infty):=\left\{z \in \ell^{2}: \sum_{j=1}^{\infty}\left(\left|z_{2 j-1}\right|^{2}-\left|z_{2 j}\right|^{2}\right)=1\right\}
\end{aligned}
$$

Note $Q(\infty, 0)$ is the unit sphere in ℓ^{2}.

Infinitely many dimensions

For every real-analytic hypersurface there exists a CR map into some $Q(A, B)$ if we allow A and B to be infinite (using holomorphic decomposition, D'Angelo '93).

Infinitely many dimensions

For every real-analytic hypersurface there exists a CR map into some $Q(A, B)$ if we allow A and B to be infinite (using holomorphic decomposition, D'Angelo '93).

Corollary (Grundmeier, L., Vivas, '11)

Let $\infty>a>b \geq 1$. Let $U \subset Q(a, b)$ be a connected open set and $f: U \rightarrow Q(\infty, B)$, where $B \in \mathbb{N}_{0} \cup\{\infty\}$, be a real-analytic $C R$ mapping such that $f(U)$ is not contained in any complex hyperplane of ℓ^{2}. Then $B=\infty$.

Indefinite Levi-form

$$
r(z, \bar{z})=e^{\left|z_{1}+1\right|^{2}+\left|z_{2}\right|^{2}}-e-\left|z_{3}\right|^{2}
$$

has signature pair $(\infty, 2)$ and

$$
r(z, \bar{z})=2 e \operatorname{Re} z_{1}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}+\text { higher order terms. }
$$

So $M=\{r=0\}$ has indefinite Levi-form at the origin.

Indefinite Levi-form

$$
r(z, \bar{z})=e^{\left|z_{1}+1\right|^{2}+\left|z_{2}\right|^{2}}-e-\left|z_{3}\right|^{2}
$$

has signature pair $(\infty, 2)$ and

$$
r(z, \bar{z})=2 e \operatorname{Re} z_{1}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}+\text { higher order terms. }
$$

So $M=\{r=0\}$ has indefinite Levi-form at the origin.
We obtain

$$
f: M \rightarrow Q(\infty, 1)
$$

whose image is not contained in a hyperplane.

