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Two dimensions
We start with two dimensions. Let 𝑓 (𝑥, 𝑦) be a function of two variables, and let us find
the Taylor expansion around (𝑥0, 𝑦0). Write the vector

⃗⃗⃗
ℎ = ⟨𝑥 − 𝑥0, 𝑦 − 𝑦0⟩. We consider

⃗⃗⃗
ℎ

as a column vector when matrices are involved. We write
⃗⃗⃗
ℎ 𝑡 for the transpose, that is, the

corresponding row vector. The Taylor expansion of a function of two variables around
(𝑥0, 𝑦0) can then be written as

𝑓 (𝑥, 𝑦) = 𝑓 (𝑥0, 𝑦0) + ∇ 𝑓
��
(𝑥0 ,𝑦0) ·

⃗⃗⃗
ℎ + 1

2
⃗⃗⃗
ℎ 𝑡𝐻 𝑓

��
(𝑥0 ,𝑦0)

⃗⃗⃗
ℎ + · · ·

= 𝑓 (𝑥0, 𝑦0) +
𝜕 𝑓

𝜕𝑥

����
(𝑥0 ,𝑦0)

(𝑥 − 𝑥0) +
𝜕 𝑓

𝜕𝑦

����
(𝑥0 ,𝑦0)

(𝑦 − 𝑦0)︸                                          ︷︷                                          ︸
∇ 𝑓

��
(𝑥0 ,𝑦0)

·
⃗⃗⃗
ℎ

+

+ 1
2
𝜕2 𝑓

𝜕𝑥2

����
(𝑥0 ,𝑦0)

(𝑥 − 𝑥0)2 +
𝜕2 𝑓

𝜕𝑥𝜕𝑦

����
(𝑥0 ,𝑦0)

(𝑥 − 𝑥0)(𝑦 − 𝑦0) +
1
2
𝜕2 𝑓

𝜕𝑦2

����
(𝑥0 ,𝑦0)

(𝑦 − 𝑦0)2︸                                                                                             ︷︷                                                                                             ︸
1
2

⃗⃗⃗
ℎ 𝑡𝐻 𝑓

��
(𝑥0 ,𝑦0)

⃗⃗⃗
ℎ

+ · · ·

The 𝐻 𝑓 is the so-called Hessian matrix

𝐻 𝑓 =


𝜕2 𝑓

𝜕𝑥2
𝜕2 𝑓
𝜕𝑥𝜕𝑦

𝜕2 𝑓
𝜕𝑦𝜕𝑥

𝜕2 𝑓

𝜕𝑦2

 .
The quadratic form in the computation is the part

⃗⃗⃗
ℎ 𝑡𝐻 𝑓

��
(𝑥0 ,𝑦0)

⃗⃗⃗
ℎ =

[
(𝑥 − 𝑥0) (𝑦 − 𝑦0)

] 
𝜕2 𝑓

𝜕2𝑥

��
(𝑥0 ,𝑦0)

𝜕2 𝑓
𝜕𝑥𝜕𝑦

��
(𝑥0 ,𝑦0)

𝜕2 𝑓
𝜕𝑥𝜕𝑦

��
(𝑥0 ,𝑦0)

𝜕2 𝑓

𝜕2𝑦

��
(𝑥0 ,𝑦0)


[
(𝑥 − 𝑥0)
(𝑦 − 𝑦0)

]
.
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Example: To see why this is so, it is useful to look at a polynomial example. The second
order approximation ought to be the best quadratic polynomial that approximates the
function. Thus, if we look at a quadratic polynomial, its Taylor expansion up second order
should be the same polynomial since it itself should be its best quadratic approximation.
So consider 𝑓 (𝑥, 𝑦) = 1 + 2𝑥 + 3𝑦 + 4𝑥2 + 5𝑥𝑦 + 6𝑦2. Compute

𝜕 𝑓

𝜕𝑥
= 2 + 4 · 2𝑥 + 5𝑦,

𝜕2 𝑓

𝜕𝑥2 = 4 · 2,
𝜕2 𝑓

𝜕𝑥𝜕𝑦
= 5,

𝜕 𝑓

𝜕𝑦
= 3 + 5𝑥 + 6 · 2𝑦,

𝜕2 𝑓

𝜕𝑦2 = 6 · 2.

If we wish to expand this function at (0, 0), we compute

𝑓 (0, 0) = 1,
𝜕 𝑓

𝜕𝑥

���
(0,0)

= 2,
𝜕2 𝑓

𝜕𝑥2

���
(0,0)

= 8,
𝜕2 𝑓

𝜕𝑥𝜕𝑦

���
(0,0)

= 5,

𝜕 𝑓

𝜕𝑦

���
(0,0)

= 3,
𝜕2 𝑓

𝜕𝑦2

���
(0,0)

= 12.

So
𝑓 (𝑥, 𝑦) = 1 + 2𝑥 + 3𝑦 + 1

28𝑥2 + 5𝑥𝑦 + 1
212𝑦2,

and lo and behold we got the same polynomial. Since we have the derivatives computed,
we can expand around other points. For example, expand around the point (2, 1). First,

𝑓 (2, 1) = 40,
𝜕 𝑓

𝜕𝑥

���
(2,1)

= 23,
𝜕2 𝑓

𝜕𝑥2

���
(1,1)

= 8,
𝜕2 𝑓

𝜕𝑥𝜕𝑦

���
(2,1)

= 5,

𝜕 𝑓

𝜕𝑦

���
(2,1)

= 25,
𝜕2 𝑓

𝜕𝑦2

���
(2,1)

= 12.

So

𝑓 (𝑥, 𝑦) = 40 + 23(𝑥 − 2) + 25(𝑦 − 1) + 1
28(𝑥 − 2)2 + 5(𝑥 − 2)(𝑦 − 1) + 1

212(𝑦 − 1)2.

The first-order approximation gave us the gradient and thus the steepness of the graph
of 𝑓 . The second-order approximation tells us how the graph curves. One particular
application is in optimization, that is, to find minima and maxima of functions, or to
simply understand how a function behaves near a critical point.

First, what is a critical point? It is a point where the gradient is zero. These are the
candidates for maxima and minima, since at the top of the hill or a bottom of a valley, we
find that the tangent plane is horizontal, that is, the gradient ∇ 𝑓 =

⃗⃗
0 is zero, or in other

words, 𝜕 𝑓
𝜕𝑥 = 0 and 𝜕 𝑓

𝜕𝑦 = 0.
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For simplicity, suppose that 𝑥0 = 𝑦0 = 0, and 𝑓 (0, 0) = 0. Further, suppose that (0, 0) is a
critical point, that is, ∇ 𝑓 |(0,0) = 0. Then,

𝑓 (𝑥, 𝑦) = 1
2
⃗⃗⃗
ℎ 𝑡𝐻 𝑓

��
(0,0)

⃗⃗⃗
ℎ + · · · ,

where the dots are higher order terms in the Taylor expansion. So near the origin, 𝑓

behaves like a quadratic form. Suppose that 𝐻 𝑓 is nondegenerate, that is, it has no zero
eigenvalues; in other words, it is invertible.

What is an eigenvalue of a matrix 𝐴? It is a value 𝜆 for which there exists a nonzero vector⃗⃗
𝑣, called an eigenvector, such that

𝐴
⃗⃗
𝑣 = 𝜆

⃗⃗
𝑣 .

Recall that to compute the eigenvalues, you find the roots of det(𝐴 − 𝜆𝐼) = 0, which is a
degree 𝑛 polynomial if 𝐴 is 𝑛 × 𝑛. So finding the eigenvalues is quite difficult if 𝑛 is large
(it is very easy if 𝑛 = 2 by using the quadratic formula). Finding an eigenvector is easy
once you know the eigenvalue: You simply find a nonzero solution to (𝐴−𝜆𝐼) ⃗⃗𝑣 =

⃗⃗
0. That

is just gaussian elimination. Having the eigenvalues and eigenvectors tells us everything
about the matrix, but as we said, it is in general a hard problem. Some questions (but not
all) about 𝐴 (and hence 𝐻 𝑓 ) we can answer without knowing the eigenvalues.

Suppose that 𝜆 is an eigenvalue of 𝐻 𝑓

��
(0,0) and ⃗⃗

𝑣 is a corresponding eigenvector. As any
multiple of ⃗⃗𝑣 is also an eigenvector, let us take ⃗⃗

𝑣 to be a unit vector, so that ⃗⃗𝑣 · ⃗⃗𝑣 =
⃗⃗
𝑣 𝑡 ⃗⃗𝑣 = 1.

Then parametrize the line through the origin in the direction of ⃗⃗𝑣. That is,
⃗⃗
𝑟(𝑡) = 𝑡

⃗⃗
𝑣 .

Let us consider the values of 𝑓 along the line given by ⃗⃗
𝑟(𝑡). That is we look at

𝑓 ( ⃗⃗𝑟(𝑡)) = 𝑓 (𝑡 ⃗⃗𝑣) = 1
2(𝑡

⃗⃗
𝑣)𝑡𝐻 𝑓

��
(0,0)(𝑡

⃗⃗
𝑣) + · · · = 𝑡2

2
⃗⃗
𝑣 𝑡𝐻 𝑓

��
(0,0)

⃗⃗
𝑣 + · · ·

=
𝑡2

2
⃗⃗
𝑣 𝑡𝜆

⃗⃗
𝑣 + · · · = 𝜆

2 𝑡
2 ⃗⃗
𝑣 𝑡 ⃗⃗𝑣 + · · ·

=
𝜆
2 𝑡

2 + · · ·

So along the line given by ⃗⃗
𝑣, the function 𝑓 behaves like the quadratic 𝜆

2 𝑡
2 at least near the

critical point.

If 𝜆 > 0 (that is 𝜆
2 > 0), then 𝑓 ( ⃗⃗𝑟(𝑡)) has a local minimum, and if 𝜆 < 0, then 𝑓 ( ⃗⃗𝑟(𝑡)) has a

local maximum. Aha! So at least along a direction of an eigenvector we can classify the
behavior. The Hessian is a symmetric matrix, as 𝜕2 𝑓

𝜕𝑥𝜕𝑦 =
𝜕2 𝑓
𝜕𝑦𝜕𝑥 , so 𝐻𝑡

𝑓
= 𝐻 𝑓 . A symmetric

matrix always has real eigenvalues (no complex numbers), and as many eigenvalues as the
matrix has rows (or columns). Furthermore, the eigenvectors of a symmetric matrix are
orthogonal (at right angles); If ⃗⃗𝑣 and ⃗⃗ ⃗⃗

𝑤 are different eigenvectors, then ⃗⃗ ⃗⃗
𝑤 · ⃗⃗𝑣 =

⃗⃗
𝑣 𝑡 ⃗⃗ ⃗⃗𝑤 = 0.
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Suppose that 𝜆, ⃗⃗
𝑣 is an eigenvalue / eigenvector pair and 𝛾, ⃗⃗ ⃗⃗

𝑤 is another eigenvalue /
eigenvector pair. Again taking unit eigenvectors, eigenvalues. Writing any point ⃗⃗𝑟 in terms
of two eigenvectors ⃗⃗

𝑟 = 𝑡
⃗⃗
𝑣 +𝑠 ⃗⃗ ⃗⃗𝑤, we find

𝑓 ( ⃗⃗𝑟) = 1
2(𝑡

⃗⃗
𝑣 +𝑠 ⃗⃗ ⃗⃗𝑤)𝑡𝐻 𝑓

��
(0,0)(𝑡

⃗⃗
𝑣 +𝑠 ⃗⃗ ⃗⃗𝑤) + · · ·

=
𝑡2

2
⃗⃗
𝑣 𝑡𝐻 𝑓

��
(0,0)

⃗⃗
𝑣 + 𝑠2

2
⃗⃗ ⃗⃗
𝑤 𝑡𝐻 𝑓

��
(0,0)

⃗⃗ ⃗⃗
𝑤 + 𝑡𝑠

2
⃗⃗
𝑣 𝑡𝐻 𝑓

��
(0,0)

⃗⃗ ⃗⃗
𝑤 + 𝑡𝑠

2
⃗⃗ ⃗⃗
𝑤 𝑡𝐻 𝑓

��
(0,0)

⃗⃗
𝑣 + · · ·

=
𝑡2

2
⃗⃗
𝑣 𝑡𝜆

⃗⃗
𝑣 + 𝑠2

2
⃗⃗ ⃗⃗
𝑤 𝑡𝛾

⃗⃗ ⃗⃗
𝑤 + 𝑡𝑠

2
⃗⃗
𝑣 𝑡𝛾

⃗⃗ ⃗⃗
𝑤 + 𝑡𝑠

2
⃗⃗ ⃗⃗
𝑤 𝑡𝜆

⃗⃗
𝑣 + · · ·

=
𝜆
2 𝑡

2 ⃗⃗
𝑣 𝑡 ⃗⃗𝑣 +𝛾

2 𝑠2 ⃗⃗ ⃗⃗
𝑤 𝑡 ⃗⃗ ⃗⃗𝑤 +𝜆 𝑡𝑠2

⃗⃗
𝑣 𝑡 ⃗⃗ ⃗⃗𝑤 +𝛾 𝑡𝑠2

⃗⃗ ⃗⃗
𝑤 𝑡 ⃗⃗𝑣 + · · ·

=
𝜆
2 𝑡

2 + 𝛾

2 𝑠2 + · · ·

For a 2 × 2 matrix, as in our example, the behavior in all other directions is a combination
of the two. In terms of 𝑡 and 𝑠, the function is 𝜆

2 𝑡
2 + 𝛾

2 𝑠
2 + · · · . It is really enough to

understand the matrix in the direction of the eigenvectors.

There are three possible cases in the plane as the Hessian is 2×2: Two positive eigenvalues,
two negative eigenvalues, or a positive and a negative. Let us examine the representative
examples.

Two positive eigenvalues:

The model case is when the matrix looks like:

1
2𝐻 𝑓 =

[
1 0
0 1

]
.

We write half the matrix for simplicity. The function is 𝑥2 + 𝑦2, and its graph looks like:
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Two negative eigenvalues:

The model case is when the matrix looks like:
1
2𝐻 𝑓 =

[
−1 0
0 −1

]
.

The function is −𝑥2 − 𝑦2, and its graph looks like:
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One positive and one negative eigenvalue:

The model case is when the matrix looks like:
1
2𝐻 𝑓 =

[
1 0
0 −1

]
.

The function is 𝑥2 − 𝑦2, and its graph looks like:
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If we wish to figure out if a critical point is a minimum or a maximum, (or a saddle), we
look at the Hessian. If it is nondegenerate, we figure out the sign of the eigenvalues.
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Computing eigenvalues is difficult, but there is a simple way to tell the signs. Notice

det
( [

1 0
0 1

] )
= 1, det

( [
−1 0
0 −1

] )
= 1, det

( [
1 0
0 −1

] )
= −1.

The determinant of a matrix is a product of the eigenvalues. Therefore, if eigenvalues are
of opposite signs, the determinant of a 2 × 2 matrix is negative. Be careful, the reasoning
is different in 3 × 3, or larger, matrices.

It turns out that if you have two eigenvalues of the same sign, you can decide on the sign
of the eigenvalues of a 2 × 2 symmetric matrix by just checking the upper left (or lower
right) number in the matrix. If it is positive, then the matrix had two positive eigenvalues.
To see this, notice that if you set 𝑦 = 0, then 𝑓 (𝑥, 0) is a function of 𝑥 alone, and its second
derivative is the upper left number of the matrix. If it is positive, then the graph of the
function must “curve up”, that is, it must be a minimum. Therefore, there must be at least
one positive eigenvalue.

Example: Consider
𝑓 (𝑥, 𝑦) = 3𝑥2 + 7𝑥𝑦 + 5𝑦2.

The origin is a critical point. We just need to decide, is it a min/max or a saddle. The
Hessian is

𝐻 𝑓

��
(0,0) =

[
6 7
7 10

]
, and so det(𝐻 𝑓

��
(0,0)) = det

( [
6 7
7 10

] )
= 6 × 10 − 7 × 7 = 11.

The product of the eigenvalues is positive, so they are of the same sign. The critical point
at the origin is either a local minimum or a maximum. As the upper left component is 6,
it must be that the surface curves upwards, both eigenvalues are positive and the origin is
a minimum for 𝑓 . The eigenvalues are approximately 0.72 and 15.28, but notice that we
didn’t have to compute that. That it is a minimum is perhaps hard to tell from the graph.
We can mostly see the sharp sloping upwards due to the eigenvalue 15.28, but the sloping
upwards from the center along the “valley floor” due to the 0.72 is harder to discern.
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Example: Let us modify our example just a tiny bit. Consider

𝑔(𝑥, 𝑦) = 3𝑥2 + 8𝑥𝑦 + 5𝑦2.

Again the origin is a critical point. The Hessian is

𝐻𝑔

��
(0,0) =

[
6 8
8 10

]
, so det(𝐻𝑔

��
(0,0)) = det

( [
6 8
8 10

] )
= 6 × 10 − 8 × 8 = −4.

So the eigenvalues must be of opposite signs, and the surface must be a saddle point.
In fact, they are approximately −0.25 and 16.25. The surface turns mostly upwards, but
in a certain direction, the one corresponding to the eigenvalue −0.25, it turns slightly
downwards. From drawing a graph it might not be totally easy to immediately see that it
is a saddle. Look at how similar it is to the previous graph.
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Degenerate Hessian
For a degenerate Hessian, we can sometimes read off some information, but just not
everything. Sometimes we do not get any information at all. Consider

𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦4.

It is not difficult to convince yourself that this function is always positive, except at the
origin, when it is zero. So the origin is a minimum.
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However if you compute the Hessian you find

𝐻 𝑓

��
(0,0) =

[
2 0
0 0

]
, so det(𝐻 𝑓

��
(0,0)) = 0.

The eigenvalues are 2 and 0. The matrix is degenerate (it must have a zero eigenvalue,
since the determinant is zero). So we can’t quite tell from the second derivative.

To see why we can’t tell, try
𝑔(𝑥, 𝑦) = 𝑥2 − 𝑦4.

The graph of this is a saddle (just notice that 𝑔(𝑥, 0) = 𝑥2 and 𝑔(0, 𝑦) = −𝑦4).
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Let’s compute the Hessian:

𝐻𝑔

��
(0,0) =

[
2 0
0 0

]
, so det(𝐻𝑔

��
(0,0)) = 0.

The Hessian is the same as for 𝑓 above, so clearly we cannot decide if it is a saddle or a
minimum from 𝐻𝑔 and 𝐻 𝑓 . One thing that we can read off is that the critical point of
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either 𝑔 or 𝑓 is definitely not a maximum. Along the direction of the positive eigenvalue
2, that is, in the 𝑥 direction, we know that the function has a minimum. So there is no way
the function has a maximum.

So if a function has a minimum, then all eigenvalues are positive or zero. If the function
has a maximum, then all the functions are negative or zero. But just because a function
has only positive or zero eigenvalues does not mean the function has a minimum.

Peano’s example
When the Hessian is degenerate, one has to be careful with trying to just check for extrema
(min or max) on lines. Consider

𝑓 (𝑥, 𝑦) = (𝑦 − 𝑥2)(2𝑥2 − 𝑦).
This function is zero on the sets where 𝑦 = 𝑥2 and 𝑦 = 2𝑥2, the two parabolas in the
following picture. It is negative outside the space between these two lines and positive
between the two lines.
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Suppose we restrict the function to any line. For example, we pick an angle 𝜃 and
consider the line through the origin at the angle 𝜃 to the positive 𝑥-axis. This line is given
by ⃗⃗

𝑟(𝑡) =
〈
𝑡 cos(𝜃), 𝑡 sin(𝜃)

〉
. Then the restriction of 𝑓 to this line is

𝑓
( ⃗⃗
𝑟(𝑡)

)
= 𝑓

(
𝑡 cos(𝜃), 𝑡 sin(𝜃)

)
.

For any 𝜃, 𝑓
( ⃗⃗
𝑟(𝑡)

)
has a strict maximum at 𝑡 = 0. By a strict maximum, we mean that the

function is actually strictly less than zero for 𝑡 near zero. In fact, except for when 𝜃 = 0 or
𝜃 = 𝜋, we find

𝑑2

𝑑𝑡2

[
𝑓
( ⃗⃗
𝑟(𝑡)

) ]
< 0

so it is a maximum (a strict one). When 𝜃 = 0 , this corresponds to 𝑦 = 0, and so

𝑓
( ⃗⃗
𝑟(𝑡)

)
= −2𝑡4,

which clearly has a strict maximum.
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But 𝑓 is a saddle! It is just a “bent saddle.”
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Clearly the function cannot have a min or a max since 𝑓 (0, 0) = 0, but you also have points
where 𝑓 is positive or where 𝑓 is negative arbitrarily near the origin.

A computation shows that

𝐻 𝑓

��
(0,0) =

[
0 0
0 −2

]
, so det(𝐻 𝑓 ) = 0.

So we wouldn’t be any smarter from looking at the Hessian.

The moral of the story is that if the Hessian has zero eigenvalues, you might have to
get creative to figure out what kind of critical point you have. There is no simple 𝑛th
derivative test, as there is for one variable functions.

On the other hand, if the Hessian is nondegenerate, that is, it has no zero eigenvalues, then
we did answer the question by looking at lines, since that is what looking at eigenvalues
does.

More variables
Let’s consider 3 variables, with 𝑛 variables being exactly the same idea. If 𝑓 (𝑥, 𝑦, 𝑧) is a
function of three variables, then the Hessian is the matrix

𝐻 𝑓 =


𝜕2 𝑓

𝜕𝑥2
𝜕2 𝑓
𝜕𝑥𝜕𝑦

𝜕2 𝑓
𝜕𝑥𝜕𝑧

𝜕2 𝑓
𝜕𝑦𝜕𝑥

𝜕2 𝑓

𝜕𝑦2
𝜕2 𝑓
𝜕𝑦𝜕𝑧

𝜕2 𝑓
𝜕𝑧𝜕𝑥

𝜕2 𝑓
𝜕𝑧𝜕𝑦

𝜕2 𝑓

𝜕𝑧2

 .
Again, a critical point is a minimum if 𝐻 𝑓 has 3 positive eigenvalues, it is a maximum if it
has 3 negative eigenvalues, and it is a saddle point if it has at least one positive and one
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negative eigenvalue. And if it has a zero eigenvalue, then we cannot tell how the function
looks near the origin just from looking at the Hessian.

Example: Let
𝑓 (𝑥, 𝑦, 𝑧) = 3𝑥2 + 𝑥𝑧 + 2𝑧𝑦 − 𝑧2.

The origin is the unique critical point. The Hessain matrix at the origin is

𝐻 𝑓

��
(0,0,0) =


6 0 1
0 0 2
1 2 −2

 so det(𝐻 𝑓

��
(0,0,0)) = −24 < 0.

The determinant (the product of eigenvalues) is negative, so at least one eigenvalue is
negative. This cannot possibly be a minimum. But we cannot yet decide if it is a max or
a saddle. However, we know we will be able to tell since it is nondegenerate. We just
have to try harder. If we restrict to the 𝑥 variable, setting 𝑦 = 𝑧 = 0, then we just get the
function 3𝑥2, whose second derivative is 6. That is the 6 in the top left corner. Just as for
the 2 variable case, we can decide that one of the eigenvalues must be positive since one of
the diagonal entries is positive. Since we already know that we have at least one negative
eigenvalue. The critical point must be a saddle.

Alternatively, we didn’t even have to compute the determinant. Looking at the diagonal
entries, these are always those we obtain by setting two of the variables to zero, we have
one positive, the 6, and one negative, the −2. So we can immediately tell that the matrix
has at least one positive and at least one negative eigenvalue.

Either running through the linear algebra or plugging into a computer or a calculator, you
find that the eigenvalues are approximately −3.31, 6.13, 1.18. So one negative and two
positive.

Another example: Let

𝑓 (𝑥, 𝑦, 𝑧) = −9𝑥2 + 6𝑥𝑦 − 2𝑦2 − 2𝑥𝑧 − 2𝑧2.

The origin is a critical point. The Hessian matrix is

𝐻 𝑓

��
(0,0,0) =


−18 6 0

6 −4 −2
0 −2 −4

 so det(𝐻 𝑓

��
(0,0,0)) = −72 < 0.

Again, negative, so at least one (or possibly all three) eigenvalues are negative. In this
case, one finds that the eigenvalues are approximately −20.25,−0.70,−5.05. So all three
are negative. and the critical point is a minimum.

There is again a quick way of figuring out all three eigenvalues are negative without
computing them. If we simply move in the 𝑥𝑦 space, setting 𝑧 = 0, then the function
should still be a minimum of two variables. In other words, the the first 2 × 2 principal
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submatrix,
[ −18 6

6 −4
]
, should have only negative eigenvalues. Its determinant should be

positive.

OK, so we have the following test. If the top left entry is negative, the first 2 × 2 principal
submatrix has positive determinant, and the full matrix has negative determinant, then
the eigenvalues are all negative. In this case

−18 < 0, det
( [
−18 6

6 −4

] )
= 36 > 0, det ©«


−18 6 0

6 −4 −2
0 −2 −4

ª®¬ = −72 < 0.

Basically, you have to do some linear algebra to figure out the signs of the eigenvalues, but
you don’t need to actually compute them.

Note that it is not enough to just check the diagonal entries. The fact that all three are
negative just says that there is at least one negative eigenvalue. For example,

−1 1 1
1 −1 1
1 1 −1


has eigenvalues 1,−2,−2 (the −2 is repeated), so there are two negative eigenvalues, but
also a positive one, despite all diagonal entries being negative.

So a general to figure out the signs of the eigenvalues for a 3 by 3 (and this generalizes to
𝑛 by 𝑛) symmetric matrix is the technique we just used above. A symmetric matrix

𝑎 𝑏 𝑐

𝑏 𝑑 𝑒

𝑐 𝑒 𝑓


has three positive eigenvalues if

𝑎 > 0, det
( [
𝑎 𝑏

𝑏 𝑐

] )
> 0, and det ©«


𝑎 𝑏 𝑐

𝑏 𝑑 𝑒

𝑐 𝑒 𝑓

ª®¬ > 0.

It has three negative eigenvalues if

𝑎 < 0, det
( [
𝑎 𝑏

𝑏 𝑐

] )
> 0, and det ©«


𝑎 𝑏 𝑐

𝑏 𝑑 𝑒

𝑐 𝑒 𝑓

ª®¬ < 0.

Computing determinants is a lot easier and a lot faster than computing the actual eigenval-
ues. If you do not get any zeros, but the signs do not correspond to one of the above, then
you have some combination of positive and negative eigenvalues and the critical point is
a saddle.
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Diagonalization and change of variables
Let us return to two variables. Let us find the change of variables that makes any function
into one of the three examples. We have almost done it before, but let’s actually find the
change of variables. So if we are allowed an (affine) linear change of coordinates, then at a
critical point, up to a constant, any function of two variables with a nondegenerate Hessian
really starts with 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + · · · , 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦2 + · · · , or 𝑓 (𝑥, 𝑦) = −𝑥2 − 𝑦2 + · · · .
That should surely make some computations simpler.

We have
𝑓 (𝑥, 𝑦) = 𝑓 (𝑥0, 𝑦0) + ∇ 𝑓

��
(𝑥0 ,𝑦0) ·

⃗⃗⃗
ℎ + 1

2
⃗⃗⃗
ℎ 𝑡𝐻 𝑓

��
(𝑥0 ,𝑦0)

⃗⃗⃗
ℎ + · · ·

The first thing to do is to make some new coordinates where (𝑥0, 𝑦0) is (0, 0). So let
𝑢 = 𝑥 − 𝑥0 and 𝑣 = 𝑦 − 𝑦0. As 𝑥 = 𝑢 + 𝑥0 and 𝑦 = 𝑣 + 𝑦0, write

𝑔(𝑢, 𝑣) = 𝑓 (𝑢 + 𝑥0, 𝑣 + 𝑦0).

The chain rule says that any derivative of 𝑔 is the same as the derivative of 𝑓 , just evaluated
at the other point. So

𝜕𝑔

𝜕𝑢

���
(0,0)

=
𝜕 𝑓

𝜕𝑥

���
(𝑥0 ,𝑦0)

,
𝜕𝑔

𝜕𝑣

���
(0,0)

=
𝜕 𝑓

𝜕𝑦

���
(𝑥0 ,𝑦0)

,

𝜕2𝑔

𝜕𝑢2

���
(0,0)

=
𝜕2 𝑓

𝜕𝑥2

���
(𝑥0 ,𝑦0)

,
𝜕2𝑔

𝜕𝑢𝜕𝑣

���
(0,0)

=
𝜕2 𝑓

𝜕𝑥𝜕𝑦

���
(𝑥0 ,𝑦0)

, etc.

The function 𝑔 near the origin is expanded as

𝑔(𝑢, 𝑣) = 𝑔(0, 0) + ∇𝑔
��
(0,0) ·

⃗⃗⃗
ℎ + 1

2
⃗⃗⃗
ℎ 𝑡𝐻𝑔

��
(0,0)

⃗⃗⃗
ℎ + · · ·

= 𝑓 (𝑥0, 𝑦0) + ∇ 𝑓
��
(𝑥0 ,𝑦0) ·

⃗⃗⃗
ℎ + 1

2
⃗⃗⃗
ℎ 𝑡𝐻 𝑓

��
(𝑥0 ,𝑦0)

⃗⃗⃗
ℎ + · · ·

where
⃗⃗⃗
ℎ = ⟨𝑢, 𝑣⟩ = ⟨𝑥 − 𝑥0, 𝑦 − 𝑦0⟩. That is the expansion of 𝑓 (𝑥, 𝑦) around (𝑥0, 𝑦0).

OK, we got any point to be the origin. Let’s see how we can diagonalize 𝐻𝑔 . Given any
symmetric matrix 𝐴 it is possible to find a matrix 𝑆, such that

𝐴 = 𝑆𝑡𝐷𝑆

where 𝐷 is a diagonal matrix with just 1s, −1s, and 0s on the diagonal. To find the matrix
𝑆 we take a matrix of unit eigenenvectors and multiply by a diagonal matrix whose entries
are the square roots of the absolute values of the eigenvalues. Let’s not worry too much
about why this 𝑆 works, but it is exactly what we did before, we’re writing every point as a
sum of the eigenvectors, and we are also rescaling to get rid of the sizes of the eigenvalues.

The above is the so-called Sylvester’s Law of Inertia. The number of 1s is the number of
positive eigenvalues of 𝐴, the number of −1s is the number of negative eigenvalues of 𝐴,
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and the number of 0s is the number of zero eigenvalues of 𝐴. Assuming there are no zero
eigenvalues, then for a 2 by 2 matrix, the matrix 𝐷 is

[ 1 0
0 1

]
,
[ −1 0

0 −1
]
, or

[ 1 0
0 −1

]
.

So find an 𝑆 such that
𝐻𝑔

��
(0,0) = 𝑆𝑡𝐷𝑆.

The change of coordinates is 𝑆
⃗⃗⃗
ℎ =

⃗⃗
𝑘 for some

⃗⃗
𝑘. Then

⃗⃗⃗
ℎ 𝑡𝐻𝑔

��
(0,0)

⃗⃗⃗
ℎ =

⃗⃗⃗
ℎ 𝑡𝑆𝑡𝐷𝑆

⃗⃗⃗
ℎ = (𝑆

⃗⃗⃗
ℎ)𝑡𝐷𝑆

⃗⃗⃗
ℎ =

⃗⃗
𝑘 𝑡𝐷

⃗⃗
𝑘 .

Aha! Let the variables be 𝑠 and 𝑡, and let
⃗⃗
𝑘 = ⟨𝑠, 𝑡⟩ be given by[

𝑠

𝑡

]
=

⃗⃗
𝑘 = 𝑆

⃗⃗⃗
ℎ = 𝑆

[
𝑢

𝑣

]
,

or [
𝑢

𝑣

]
= 𝑆−1

[
𝑠

𝑡

]
= 𝑆−1

⃗⃗
𝑘 .

Let
𝜑(𝑠, 𝑡) = 𝜑(

⃗⃗
𝑘) = 𝑔(𝑆−1

⃗⃗
𝑘).

The expansion of 𝜑 around the origin is

𝜑(𝑠, 𝑡) = 𝜑(0, 0) + ∇𝜑
��
(0,0) ·

⃗⃗
𝑘 + 1

2
⃗⃗
𝑘 𝑡𝐻𝜑

��
(0,0)

⃗⃗
𝑘 + · · ·

= 𝜑(𝑠, 𝑡) = 𝑓 (𝑥0, 𝑥0) + ∇ 𝑓
��
(𝑥0 ,𝑥0) · (𝑆

−1
⃗⃗
𝑘) + 1

2
⃗⃗
𝑘 𝑡𝐷

⃗⃗
𝑘 + · · ·

If ∇ 𝑓
��
(𝑥0 ,𝑦0) =

⃗⃗
0, or in other words if ∇𝜑

��
(0,0) =

⃗⃗
0, then, as 𝐷 is one of the three forms,

𝜑(𝑠, 𝑡) = 𝑓 (𝑥0, 𝑦0) +
1
2(𝑠

2 + 𝑡2) + · · · , 𝜑(𝑠, 𝑡) = 𝑓 (𝑥0, 𝑦0) +
1
2(𝑠

2 − 𝑡2) + · · · ,

or 𝜑(𝑠, 𝑡) = 𝑓 (𝑥0, 𝑦0) +
1
2(−𝑠

2 − 𝑡2) + · · ·

We made the Hessian be the matrix with 1s and −1s on the diagonal. If we wanted to
get rid of the 1

2 , we’d have to make it the matrix with 2s and −2s on the diagonal. We
could consider 2𝜑(𝑠, 𝑡) instead. We could also easily get rid of the constant 𝑓 (𝑥0, 𝑦0) by
just subtracting it from 𝜑 and consider 2(𝜑(𝑠, 𝑡) − 𝑓 (𝑥0, 𝑦0)). Then we have 𝑠2 + 𝑡2 + · · · ,
𝑠2 − 𝑡2 + · · · , or −𝑠2 − 𝑡2 + · · · .

Example: Consider
𝑓 (𝑥, 𝑦) = 3𝑥 + 𝑥2 + 𝑥𝑦 + 𝑦2.

The critical point of 𝑓 is where the derivative vanishes. We leave it as an exercise to show
that there is one critical point and that is where at (−2, 1). We write 𝑔(𝑢, 𝑣) = 𝑓 (𝑢−2, 𝑣+1).
The Hessian is the matrix

𝐻 𝑓

��
(𝑥0 ,𝑦0) = 𝐻𝑔

��
(0,0) =

[
2 1
1 2

]
.
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The eigenvalues are 3 and 1, and the unit eigenvectors are

1√
2

[
1
1

]
,

1√
2

[
1
−1

]
.

The matrix 𝑆 according to the prescription above is

𝑆 =

[√
3 0

0 1

] [ 1√
2

1√
2

1√
2

−1√
2

]
=

[√
3
2

√
3
2

1√
2

−1√
2

]
.

And the matrix 𝐷 is just

𝐷 =

[
1 0
0 1

]
.

Then

𝑆−1 =

[ 1√
6

1√
2

1√
6

−1√
2

]
.

So

𝑠 =

√
3
2𝑢+

√
3
2𝑣 =

√
3
2(𝑥−𝑥0)+

√
3
2(𝑦−𝑦0), 𝑡 =

1√
2
𝑢+ −1√

2
𝑣 =

1√
2
(𝑥−𝑥0)+

−1√
2
(𝑦−𝑦0),

or
𝑥 − 𝑥0 = 𝑥 + 2 = 𝑢 =

1√
6
𝑠 + 1√

2
𝑡 , 𝑦 − 𝑦0 = 𝑥 − 1 = 𝑣 =

1√
6
𝑠 + −1√

2
𝑡.

Solve for 𝑥 and 𝑦, and plug into 𝑓 and check that this change of variables really does give
you

𝜑(𝑠, 𝑡) = −3 + 1
2(𝑠

2 + 𝑡2) = 3𝑥 + 𝑥2 + 𝑥𝑦 + 𝑦2.

The −3 is the value 𝑓 (𝑥0, 𝑦0) = 𝑓 (−2, 1). There are no higher order terms, as 𝑓 had no
higher order terms.
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