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The classical theorems we learned this semester can be conveniently stated in a way that
gives a vast generalization in one simple statement, and also allows one to more easily
remember/derive the statements of the theorems, and simplify computations. We will
only scratch the surface (no pun intended) here. What we are aiming at is the so-called
Generalized Stokes’ Theorem: ∫

Ω

𝑑𝜔 =

∫
𝜕Ω

𝜔.

If rowdy mathematicians wrote graffiti on bathroom walls, this is a good candidate for
what they would write. It says that the integral over an object of the derivative of something
is an integral of that something over the boundary. To make all the theorems fit within this
equation, we have to figure out what all the objects mean, what is a boundary, and what is
a derivative. An amazing thing is that the “𝑑” operator is the right derivative in the right
context. It is the gradient when it needs to be a gradient, it is a curl when it needs to be a
curl, it is a divergence when it needs to be the divergence, etc. The differential forms also
include all the information needed to compute the integrals, to deal with orientation, or
to change coordinates.

We will mostly worry about 3 dimensions and see how the ideas apply in 2 dimensions.
But the ideas apply in any number of dimensions with almost no change.

In 3 dimensions, there are 4 different kinds of what are called differential forms. There are
0-forms, 1-forms, 2-forms, 3-forms. You have seen 0-forms and 1-forms without knowing
about it. Differential forms are things that are “integrated” on the geometric object of the
corresponding dimension (point, path, surface, region). In 𝑛 dimensions there would be
𝑛 + 1 different kinds of differential forms, but let us stick to 3 dimensions for simplicity.

0-forms
In the context of differential forms, functions are called 0-forms. These 0-forms are “inte-
grated” on points, as points are the 0-dimensional objects. That is, functions are evaluated
at points. If 𝑃 is point, then let ∫

𝑃

𝑓 = 𝑓 (𝑃).
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For example, if 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 − 1 + 𝑧 and 𝑃 = (1, 2, 3), then∫
𝑃

𝑓 = 𝑓 (1, 2, 3) = 12 − 1 + 3 = 3.

Points can have orientation, that is, positive or negative. Above, we dealt with a positively
oriented 𝑃. If 𝑄 is negatively oriented, then∫

𝑄

𝑓 = − 𝑓 (𝑄).

If 𝑄 = (2, 1, 0) is negatively oriented, then∫
𝑄

𝑓 = − 𝑓 (2, 1, 0) = −(22 − 1 + 0) = −3.

We can also add and subtract points. So suppose that 𝑃 = (1, 2, 3) and 𝑅 = (0, 0, 2) are
both positively oriented, we write −𝑃 as the negatively oriented 𝑃, and then we could
write 𝑅 − 𝑃. Then∫

𝑅−𝑃
𝑓 = 𝑓 (𝑅) − 𝑓 (𝑃) = 𝑓 (0, 0, 2) − 𝑓 (1, 2, 3) = 1 − 3 = −2.

That looks a lot like the “integral” of the “boundary” of a segment of a curve that starts at
𝑃 and ends at 𝑅, and this is exactly where this notation will appear. You then have to be
careful not to do arithmetic on the components of 𝑅 − 𝑃, despite what it looks like. These
are points, not vectors, and when points add or subtract, it is in the sense above.

We haven’t really done anything except make up new notation so far, and it may seem like
we are making up nonsense, but the notation will be useful for stating the fundamental
theorem of calculus as the same theorem as Green’s, Stokes’, divergence, etc.

1-forms
One-forms are expressions such as

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦 + ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧.

For example,
𝑥2𝑦 𝑑𝑥 + 3𝑥𝑒𝑧 𝑑𝑦 + (𝑧 + 𝑦) 𝑑𝑧.

So a 1-form is a combination of 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧. We cannot just multiply the 𝑑𝑥, 𝑑𝑦, 𝑑𝑧,
although more on that later. These objects keep track of how we integrate. In some sense
they are the “derivatives” of the coordinate functions 𝑥, 𝑦, and 𝑧.

One-forms are things that are integrated on (oriented) paths, as paths are one-dimensional.
If 𝐶 is a path, then we define∫

𝐶

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦 + ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧 =

∫
𝐶

⟨ 𝑓 (𝑥, 𝑦, 𝑧), 𝑔(𝑥, 𝑦, 𝑧), ℎ(𝑥, 𝑦, 𝑧)⟩ · 𝑡 𝑑𝑠.
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And you have seen this expression before. We use the following formula for the actual
computation. Suppose the path 𝐶 is parametrized by 𝑡 for 𝑎 ≤ 𝑡 ≤ 𝑏. That is, 𝑥, 𝑦, 𝑧 are
functions of 𝑡. Then∫

𝐶

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦 + ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧

=

∫ 𝑏

𝑎

(
𝑓
(
𝑥, 𝑦, 𝑧

) 𝑑𝑥
𝑑𝑡

+ 𝑔
(
𝑥, 𝑦, 𝑧

) 𝑑𝑦
𝑑𝑡

+ ℎ
(
𝑥, 𝑦, 𝑧

) 𝑑𝑧
𝑑𝑡

)
𝑑𝑡. (1)

For example, suppose𝐶 is the straight line from (0, 0, 0) to (1, 2, 3)parametrized by 𝑥(𝑡) = 𝑡,
𝑦(𝑡) = 2𝑡, 𝑧(𝑡) = 3𝑡, for 0 ≤ 𝑡 ≤ 1. Then∫

𝐶

𝑥2𝑦 𝑑𝑥 + 3𝑥𝑒𝑧 𝑑𝑦 + (𝑧 + 𝑦) 𝑑𝑧 =

∫ 1

0

(
(𝑡)2(2𝑡)

)
(1) +

(
3𝑡𝑒3𝑡 )(2) + (

3𝑡 + 2𝑡
)
(3)

)
𝑑𝑡

=

[
𝑡4

2 + 6𝑡 − 2
3 𝑒3𝑡 + 15𝑡2

2

]1

𝑡=0
=

4
3 𝑒

3 + 26
3 .

We often give a name to the one-form. We say 𝜔 = 𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥+𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦+ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧.
Then ∫

𝐶

𝜔 =

∫
𝐶

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦 + ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧.

One way that one-forms arise is as derivatives of functions. Let 𝑓 be a function, then what
you called total derivative in multivariable calculus, is really the “𝑑 operator” on 0-forms
giving 1-forms. That is,

𝑑𝑓 =
𝜕 𝑓

𝜕𝑥
𝑑𝑥 + 𝜕 𝑓

𝜕𝑦
𝑑𝑦 + 𝜕 𝑓

𝜕𝑧
𝑑𝑧.

For example, if 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑒𝑦𝑧, then

𝑑𝑓 = 2𝑥𝑒𝑦𝑧 𝑑𝑥 + 𝑥2𝑒𝑦𝑧 𝑑𝑦 + 𝑥2𝑒𝑦 𝑑𝑧.

Not every vector field is a gradient vector field, and so similarly, not every 1-form is a
derivative of a function.

For example, 𝜔 = −𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 is not the total derivative of any function 𝑓 . If it were, then

𝜕2 𝑓

𝜕𝑦𝜕𝑥
=

𝜕(−𝑦)
𝜕𝑦

= −1, but
𝜕2 𝑓

𝜕𝑥𝜕𝑦
=

𝜕(𝑥)
𝜕𝑥

= 1,

and that is impossible.

Notice that the 𝑑𝑥 is the derivative of 𝑥. That is, if 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥, then

𝑑𝑓 =
𝜕 𝑓

𝜕𝑥
𝑑𝑥 + 𝜕 𝑓

𝜕𝑦
𝑑𝑦 + 𝜕 𝑓

𝜕𝑧
𝑑𝑧 = 1 𝑑𝑥 + 0 𝑑𝑦 + 0 𝑑𝑧 = 𝑑𝑥.
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Similarly for 𝑑𝑦 and 𝑑𝑧. So the notation keeps track of changes of variables and chain rule,
as we saw above. That is, 𝑑𝑥 becomes 𝑑𝑥

𝑑𝑡
𝑑𝑡 when we integrate with respect to 𝑡. Similarly,

if we parametrize a curve with respect to 𝑥, we do not need to change the 𝑑𝑥. Consider a
curve 𝐶 given by 𝑦 = 𝑥2, 𝑧 = 𝑥3 for 0 ≤ 𝑥 ≤ 1. Let us compute a simple integral over 𝐶:∫

𝐶

𝑥 𝑑𝑥 + 𝑦 𝑑𝑦 + 𝑧 𝑑𝑧 =

∫ 1

0
𝑥 𝑑𝑥 + 𝑦

𝑑𝑦

𝑑𝑥
𝑑𝑥 + 𝑧

𝑑𝑧

𝑑𝑥
𝑑𝑥 =

∫ 1

0

(
𝑥 + 𝑥2(2𝑥) + 𝑥3(3𝑥2)

)
𝑑𝑥 =

3
2 .

Boundaries of paths and the fundamental theorem
If 𝐶 is a path from point 𝑄 to point 𝑃, then we say that the boundary of 𝐶 is 𝑃 with
positive orientation and 𝑄 with negative orientation. This is written as 𝑃 − 𝑄. We write
the boundary as 𝜕𝐶 = 𝑃 −𝑄.

The upshot of all this is the easy statement of the fundamental theorem of calculus that
will look like all the other statements of the fundamental theorem. We can simply write
it as ∫

𝐶

𝑑𝑓 =

∫
𝜕𝐶

𝑓

Let’s interpret this equation. The left-hand side is∫
𝐶

𝑑𝑓 =

∫
𝐶

𝜕 𝑓

𝜕𝑥
𝑑𝑥 +

𝜕 𝑓

𝜕𝑦
𝑑𝑦 +

𝜕 𝑓

𝜕𝑧
𝑑𝑧.

While the right-hand side, assuming 𝐶 goes from 𝑄 to 𝑃, is∫
𝜕𝐶

𝑓 = 𝑓 (𝑃) − 𝑓 (𝑄).

If 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑒𝑦𝑧 as above, and 𝐶 is the path parametrized by 𝛾(𝑡) = (𝑡 , 3𝑡 , 𝑡 + 1) for
0 ≤ 𝑡 ≤ 1, so starting at (0, 0, 1) and ending at (1, 3, 2), then∫

𝐶

𝑑𝑓 =

∫
𝜕𝐶

𝑓 = 𝑓 (1, 3, 2) − 𝑓 (0, 0, 1) = 12𝑒32 − 02𝑒01 = 2𝑒3.

Another example of this use is to compute a path integral by computing the antiderivative.
For example, suppose 𝐶 is a straight line from (0, 0, 0) to (1, 2, 3), and we want to compute∫

𝐶

𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 + 2𝑧 𝑑𝑧.

If we can find an 𝑓 whose total derivative is the form above, then we are done. If 𝑓 exists
then 𝜕 𝑓

𝜕𝑥 = 𝑦, so 𝑓 = 𝑥𝑦 + 𝑔(𝑦, 𝑧) for some function 𝑔. Taking the derivative with respect
to 𝑦 gets us 𝜕 𝑓

𝜕𝑦 = 𝑥 + 𝜕𝑔
𝜕𝑦 , so 𝑔 is independent of 𝑦. Taking the derivative with respect to 𝑧

we find 2𝑧 =
𝜕 𝑓
𝜕𝑧 =

𝜕𝑔
𝜕𝑧 , so 𝑔 = 𝑧2 (plus a constant, but we just need one antiderivative). So

𝑓 = 𝑥𝑦 + 𝑧2. In other words:∫
𝐶

𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 + 2𝑧 𝑑𝑧 =

∫
𝐶

𝑑𝑓 =

∫
𝜕𝐶

𝑓 = 𝑓 (1, 2, 3) − 𝑓 (0, 0, 0) = 1 · 2 + 32 = 11.
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2-forms
OK, so far we’ve only justified notation you have seen before. Let us now move to the
surface integral (the flux integral) and how to frame it in terms of differential forms. For
2-forms we need to be a bit more careful with orientation, and we need to keep track of
it on the form side of things. For this purpose, we introduce a new object, the so-called
wedge or wedge product. It is a way to put together forms. The wedge product takes two
1-forms 𝜔 and 𝜂 and gets a 2-form 𝜔 ∧ 𝜂. Let us start with wedging together 𝑑𝑥, 𝑑𝑦, and
𝑑𝑧. We write

𝑑𝑥 ∧ 𝑑𝑦, 𝑑𝑦 ∧ 𝑑𝑧, 𝑑𝑧 ∧ 𝑑𝑥.

We define that

𝑑𝑥 ∧ 𝑑𝑦 = −𝑑𝑦 ∧ 𝑑𝑥, 𝑑𝑦 ∧ 𝑑𝑧 = −𝑑𝑧 ∧ 𝑑𝑦, 𝑑𝑧 ∧ 𝑑𝑥 = −𝑑𝑥 ∧ 𝑑𝑧.

Finally, a wedge of something with itself is just zero:

𝑑𝑥 ∧ 𝑑𝑥 = 0, 𝑑𝑦 ∧ 𝑑𝑦 = 0, 𝑑𝑧 ∧ 𝑑𝑧 = 0.

This is true for any 1-form: 𝜔 ∧ 𝜔 = 0.

An arbitrary 2-form is an expression of the form

𝜔 = 𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦.

If any other wedges appear, we can (if we really want to) use the rules above to convert
them to this form. For example,

𝑥2 𝑑𝑦 ∧ 𝑑𝑧 + 𝑦 𝑑𝑥 ∧ 𝑑𝑧 + 𝑧2 𝑑𝑥 ∧ 𝑑𝑥 = 𝑥2 𝑑𝑦 ∧ 𝑑𝑧 − 𝑦 𝑑𝑧 ∧ 𝑑𝑥.

We also impose some further algebra rules on this product. Anything we would call a
“product” had better be what we call bilinear: If 𝜔, 𝜂, and 𝛾 are one-forms, then

(𝜔 + 𝜂) ∧ 𝛾 = 𝜔 ∧ 𝛾 + 𝜂 ∧ 𝛾,

𝜔 ∧ (𝜂 + 𝛾) = 𝜔 ∧ 𝜂 + 𝜔 ∧ 𝛾.

If 𝑓 is a function, then
( 𝑓 𝜔) ∧ 𝜂 = 𝑓 (𝜔 ∧ 𝜂) = 𝜔 ∧ ( 𝑓 𝜂).

Let’s see these rules on an example:

(𝑥2𝑦 𝑑𝑥 + 𝑧2 𝑑𝑧) ∧ (𝑒𝑧 𝑑𝑦 + 8 𝑑𝑧) = 𝑥2𝑦 𝑑𝑥 ∧ (𝑒𝑧 𝑑𝑦 + 8 𝑑𝑧) + 𝑧2 𝑑𝑧 ∧ (𝑒𝑧 𝑑𝑦 + 8 𝑑𝑧)
= 𝑥2𝑦𝑒𝑧 𝑑𝑥 ∧ 𝑑𝑦 + 8𝑥2𝑦 𝑑𝑥 ∧ 𝑑𝑧 + 𝑧2𝑒𝑧 𝑑𝑧 ∧ 𝑑𝑦 + 8𝑧2 𝑑𝑧 ∧ 𝑑𝑧

= −𝑧2𝑒𝑧 𝑑𝑦 ∧ 𝑑𝑧 − 8𝑥2𝑦 𝑑𝑧 ∧ 𝑑𝑥 + 𝑥2𝑦𝑒𝑧 𝑑𝑥 ∧ 𝑑𝑦.
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In general,

( 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 + ℎ 𝑑𝑧) ∧ (𝑎 𝑑𝑥 + 𝑏 𝑑𝑦 + 𝑐 𝑑𝑧) = 𝑓 𝑎 𝑑𝑥 ∧ 𝑑𝑥 + 𝑓 𝑏 𝑑𝑥 ∧ 𝑑𝑦 + 𝑓 𝑐 𝑑𝑥 ∧ 𝑑𝑧

+ 𝑔𝑎 𝑑𝑦 ∧ 𝑑𝑥 + 𝑔𝑏 𝑑𝑦 ∧ 𝑑𝑦 + 𝑔𝑐 𝑑𝑦 ∧ 𝑑𝑧

+ ℎ𝑎 𝑑𝑧 ∧ 𝑑𝑥 + ℎ𝑏 𝑑𝑧 ∧ 𝑑𝑦 + ℎ𝑐 𝑑𝑧 ∧ 𝑑𝑧

= (𝑔𝑐 − ℎ𝑏) 𝑑𝑦 ∧ 𝑑𝑧 + (ℎ𝑎 − 𝑓 𝑐) 𝑑𝑧 ∧ 𝑑𝑥 + ( 𝑓 𝑏 − 𝑔𝑎) 𝑑𝑥 ∧ 𝑑𝑦.

You should recognize the formula for the cross product. That is, the result is a 2-form
whose coefficients are ⟨ 𝑓 , 𝑔, ℎ⟩ × ⟨𝑎, 𝑏, 𝑐⟩. The wedge product is always the right product
in the right context.

OK, now that we know what 2-forms are, what do we do with them. First, let’s see how
to differentiate 1-forms to get 2-forms, with the 𝑑 operator. We want the derivative to be
linear, so that in particular 𝑑(𝜔 + 𝜂) = 𝑑𝜔 + 𝑑𝜂. When we have an expression such as 𝑓 𝑑𝑥,
we define

𝑑( 𝑓 𝑑𝑥) = 𝑑𝑓 ∧ 𝑑𝑥.

Similarly for 𝑑𝑦 and 𝑑𝑧. Let’s compute the derivative of any 1-form:

𝑑( 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 + ℎ 𝑑𝑧) = 𝑑𝑓 ∧ 𝑑𝑥 + 𝑑𝑔 ∧ 𝑑𝑦 + 𝑑ℎ ∧ 𝑑𝑧

=

(
𝜕 𝑓

𝜕𝑥
𝑑𝑥 +

𝜕 𝑓

𝜕𝑦
𝑑𝑦 +

𝜕 𝑓

𝜕𝑧
𝑑𝑧

)
∧ 𝑑𝑥

+
(
𝜕𝑔

𝜕𝑥
𝑑𝑥 + 𝜕𝑔

𝜕𝑦
𝑑𝑦 + 𝜕𝑔

𝜕𝑧
𝑑𝑧

)
∧ 𝑑𝑦

+
(
𝜕ℎ

𝜕𝑥
𝑑𝑥 + 𝜕ℎ

𝜕𝑦
𝑑𝑦 + 𝜕ℎ

𝜕𝑧
𝑑𝑧

)
∧ 𝑑𝑧

=
𝜕 𝑓

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑥 + 𝜕 𝑓

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑥 + 𝜕 𝑓

𝜕𝑧
𝑑𝑧 ∧ 𝑑𝑥

+ 𝜕𝑔

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑦 + 𝜕𝑔

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑦 + 𝜕𝑔

𝜕𝑧
𝑑𝑧 ∧ 𝑑𝑦

+ 𝜕ℎ

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑧 + 𝜕ℎ

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑧 + 𝜕ℎ

𝜕𝑧
𝑑𝑧 ∧ 𝑑𝑧

=

(
𝜕ℎ

𝜕𝑦
−

𝜕𝑔

𝜕𝑧

)
𝑑𝑦 ∧ 𝑑𝑧 +

(
𝜕 𝑓

𝜕𝑧
− 𝜕ℎ

𝜕𝑥

)
𝑑𝑧 ∧ 𝑑𝑥 +

(
𝜕𝑔

𝜕𝑥
−

𝜕 𝑓

𝜕𝑦

)
𝑑𝑦 ∧ 𝑑𝑥.

You should recognize the formula for the curl. That is, if the functions 𝑓 , 𝑔, ℎ are coef-
ficients of a vector field, then the coefficients of the derivative of the one-form are the
coefficients of the curl of the vector field. Again the wedge product and 𝑑 gets us the right
thing in the right context. And to do computations with 𝑑 and the wedge is much easier
to do because one only needs to follow a couple of simple rules.

For example,

𝑑(𝑥 𝑑𝑥 + 𝑦2 𝑑𝑧) = 1 𝑑𝑥 ∧ 𝑑𝑥 + 0 𝑑𝑦 ∧ 𝑑𝑥 + 0 𝑑𝑧 ∧ 𝑑𝑧 + 0 𝑑𝑥 ∧ 𝑑𝑧 + 2𝑦 𝑑𝑦 ∧ 𝑑𝑧 + 0 𝑑𝑧 ∧ 𝑑𝑧

= 2𝑦 𝑑𝑦 ∧ 𝑑𝑧.
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Of course, we do not need to do this in excruciating detail; we know which derivatives
will end up zero, and which wedge products will end up zero. We need to only look at
those. So perhaps,

𝑑(𝑥𝑦 𝑑𝑥 + 𝑧2 𝑑𝑦 + 𝑦2 𝑑𝑧) = 𝑥 𝑑𝑦 ∧ 𝑑𝑥 + 2𝑧 𝑑𝑧 ∧ 𝑑𝑦 + 2𝑦 𝑑𝑦 ∧ 𝑑𝑧

= (2𝑦 − 2𝑧) 𝑑𝑦 ∧ 𝑑𝑧 − 𝑥 𝑑𝑥 ∧ 𝑑𝑦.

The formula ∇ × ∇ 𝑓 = ®0 appears in the fact that

𝑑(𝑑𝑓 ) = 0.

This is a general feature of the 𝑑 operator, and it is sometimes written as 𝑑2 = 0.

OK, now that we have the derivative, we also want to integrate 2-forms. 2-forms are
integrated over surfaces. Let 𝑆 be an oriented surface, where 𝑛̂ is the unit normal that
gives the orientation. Suppose 𝑆 is a graph of 𝑧 = 𝜑(𝑥, 𝑦) and 𝑛̂ is the upward unit normal.
We define ∫

𝑆

𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦 =

∬
𝑆

⟨ 𝑓 , 𝑔, ℎ⟩ · 𝑛̂ 𝑑𝑆.

We use only one integral sign for integrals of forms by convention, even though it is a
surface integral. The definition works for any surface integral, not just a graph, if you
figure out the correct orientation.

Again, we have only defined a new notation for something we knew how to compute
already, the flux integral. But using this notation, a way to compute surface integrals is
suggested by the change of variables formula from multivariable calculus. And in this
way we can compute the integral for any parametrized surface easily. Denote

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣) = det

([
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
𝜕𝑣

])
=

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
− 𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
.

This expression is the determinant of the derivative from the change of variables formula
for 2 dimensional integrals. This formula is called the Jacobian determinant. Let 𝑆 be
parametrized by (𝑢, 𝑣) ranging over a domain 𝐷, where the ordering 𝑢 and then 𝑣 gives
the orientation of 𝑆 via the right-hand rule. That is, if we curl the fingers on our right
hand, first in the 𝑢 direction, then in the 𝑣 direction, then our thumb would be the unit
normal giving the orientation. So 𝑥, 𝑦, and 𝑧 are functions of (𝑢, 𝑣). Then∫

𝑆

𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦 =

∬
𝐷

(
𝑓
𝜕(𝑦, 𝑧)
𝜕(𝑢, 𝑣) + 𝑔

𝜕(𝑧, 𝑥)
𝜕(𝑢, 𝑣) + ℎ

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

)
𝑑𝑢 𝑑𝑣.

Compare this to how we computed 1-form integrals above in equation (1), and it will feel
very familiar.

For example, let 𝜔 = 𝑥 𝑑𝑦∧ 𝑑𝑧+ 𝑦 𝑑𝑧∧ 𝑑𝑧+ 𝑧 𝑑𝑥∧ 𝑑𝑦 be the 2-form, and let 𝑆 be the surface
given by the graph 𝑧 = 𝑥2 + 𝑦2 where 𝑥 and 𝑦 lie in the unit square 0 ≤ 𝑥, 𝑦 ≤ 1. We have
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𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑢2 + 𝑣2. The domain 𝐷 is the unit square 0 ≤ 𝑢, 𝑣 ≤ 1. Then∫
𝑆

𝜔 =

∫
𝑆

𝑥 𝑑𝑦 ∧ 𝑑𝑧 + 𝑦 𝑑𝑧 ∧ 𝑑𝑥 + 𝑧 𝑑𝑥 ∧ 𝑑𝑦

=

∫ 1

0

∫ 1

0

(
𝑢(−2𝑢) + 𝑣(−2𝑣) + (𝑢2 + 𝑣2)

)
𝑑𝑢 𝑑𝑣

=

∫ 1

0

∫ 1

0
(−𝑢2 − 𝑣2) 𝑑𝑢 𝑑𝑣 =

−2
3 .

For another example, suppose 𝜂 = 𝑥𝑧 𝑑𝑦 ∧ 𝑑𝑧, and let the surface 𝑆 be the cylinder of
radius 1 around the 𝑧-axis for 0 ≤ 𝑧 ≤ 1 oriented with the normal outwards (away from
the 𝑧-axis). Let us compute

∫
𝑆
𝜂.

First we parametrize 𝑆. Let (𝑢, 𝑣) map to (cos 𝑢, sin 𝑢, 𝑣) for 0 ≤ 𝑢 ≤ 2𝜋 and 0 ≤ 𝑣 ≤ 1.
We check that the right-hand rule, curling our fingers around the 𝑢 direction followed by
the 𝑣 direction gets us the outward normal. If it didn’t, we could just swap 𝑢 and 𝑣.

So ∫
𝑆

𝑥𝑧 𝑑𝑦 ∧ 𝑑𝑧 =

∫ 1

0

∫ 2𝜋

0
(cos 𝑢︸︷︷︸

𝑥

) 𝑣︸︷︷︸
𝑧

(cos 𝑢)︸ ︷︷ ︸
𝜕(𝑦,𝑧)
𝜕(𝑢,𝑣)

𝑑𝑢 𝑑𝑣

=

∫ 1

0

∫ 2𝜋

0
(cos 𝑢)2𝑣 𝑑𝑢 𝑑𝑣 = 𝜋.

This is a good way to remember how to integrate parametrized surfaces. Another advan-
tage is that you do not have to always put everything into the normal form. Perhaps in the
last example you swap 𝑑𝑦 and 𝑑𝑧 (and so introduce a negative sign) and write the integral
as

∫
𝑆
−𝑥𝑧 𝑑𝑧 ∧ 𝑑𝑦. We can just compute the integral that way:∫

𝑆

−𝑥𝑧 𝑑𝑧 ∧ 𝑑𝑦 =

∫ 1

0

∫ 2𝜋

0
−(cos 𝑢︸︷︷︸

𝑥

) 𝑣︸︷︷︸
𝑧

(− cos 𝑢)︸    ︷︷    ︸
𝜕(𝑧,𝑦)
𝜕(𝑢,𝑣)

𝑑𝑢 𝑑𝑣

=

∫ 1

0

∫ 2𝜋

0
(cos 𝑢)2𝑣 𝑑𝑢 𝑑𝑣 = 𝜋.

We computed 𝜕(𝑧,𝑦)
𝜕(𝑢,𝑣) because we had 𝑑𝑧 ∧ 𝑑𝑦. Before we computed 𝜕(𝑦,𝑧)

𝜕(𝑢,𝑣) because we had
𝑑𝑦∧𝑑𝑧. That’s what we meant when we said the wedge product keeps track of orientation.
It keeps track of how you are supposed to integrate a 2-form, no matter how we write the
2-form.
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Stokes’ Theorem
The classical Stokes’ Theorem can now be stated. Let 𝑆 be an oriented surface and 𝜕𝑆
be the boundary curve of 𝑆 oriented according to the right-hand rule as we have for the
classical Stokes’ Theorem. Let 𝜔 be a 1-form. Then Stokes’ Theorem in terms of differential
forms is ∫

𝑆

𝑑𝜔 =

∫
𝜕𝑆

𝜔.

If 𝜔 = 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 + ℎ 𝑑𝑧, then 𝑑𝜔, as we saw above, is really the 2-form whose coefficients
are the components of ∇ × ⟨ 𝑓 , 𝑔, ℎ⟩. So the left-hand side is∫

𝑆

𝑑𝜔 =

∬
𝑆

∇ × ⟨ 𝑓 , 𝑔, ℎ⟩ · 𝑛̂ 𝑑𝑆.

The right-hand side is the integral∫
𝜕𝑆

𝜔 =

∫
𝜕𝑆
⟨ 𝑓 , 𝑔, ℎ⟩ · 𝑡 𝑑𝑠.

That is, we have the classical Stokes’. Notice how the expression∫
𝑆

𝑑𝜔 =

∫
𝜕𝑆

𝜔

is now the same for both the Stokes’ Theorem and the Fundamental Theorem of Calculus.
The only difference is that 𝑆 is now a surface and not a curve and 𝜔 is a 1-form and not a
0-form (function).

3-forms and the Divergence Theorem
If we take one more wedge, we find that the only forms that survive our rules, namely
that 𝑑𝑥 ∧ 𝑑𝑥 = 𝑑𝑦 ∧ 𝑑𝑦 = 𝑑𝑧 ∧ 𝑑𝑧 = 0, are the ones that look like

𝑓 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

Notice that

𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 = 𝑑𝑧 ∧ 𝑑𝑥 ∧ 𝑑𝑦 = 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝑥

= −𝑑𝑦 ∧ 𝑑𝑥 ∧ 𝑑𝑧 = −𝑑𝑥 ∧ 𝑑𝑧 ∧ 𝑑𝑦 = −𝑑𝑧 ∧ 𝑑𝑦 ∧ 𝑑𝑥.

Integrating 3-forms is easy. Write the 3-form as 𝑓 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 and then, given a region 𝑅

in 3-space, we have ∫
𝑅

𝑓 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =

∭
𝑅

𝑓 𝑑𝑉,

where 𝑑𝑉 is the volume measure. We also put orientation on𝑅, and the above is for positive
orientation. If orientation is not mentioned, we always mean the positive orientation. If 𝑅
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would be oriented negatively, then we define the integral to be the negative of the integral
for positive orientation. Let us not worry about it, and just do positively oriented regions
in 3-space.

Example: Let 𝑅 be the region defined by −1 < 𝑥 < 2, 2 < 𝑦 < 3, 0 < 𝑧 < 1. Then∫
𝑅

𝑥2𝑦𝑒𝑧 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =

∫ 2

−1

∫ 3

2

∫ 1

0
𝑥2𝑦𝑒𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 =

∫ 2

−1

∫ 3

2
𝑥2𝑦(𝑒 − 1) 𝑑𝑦 𝑑𝑥

=

∫ 2

−1
𝑥2

(
32

2 − 22

2

)
(𝑒 − 1) 𝑑𝑥 =

(
23

3 − (−1)3
3

) (
32

2 − 22

2

)
(𝑒 − 1).

Next, how do we differentiate 2-forms to get 3-forms? We apply essentially the same
formula as before:

𝑑( 𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦) = 𝑑𝑓 ∧ 𝑑𝑦 ∧ 𝑑𝑧 + 𝑑𝑔 ∧ 𝑑𝑧 ∧ 𝑑𝑥 + 𝑑ℎ ∧ 𝑑𝑥 ∧ 𝑑𝑦.

Let us carry this through. For example, let’s start with the first term:

𝑑𝑓 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =

(
𝜕 𝑓

𝜕𝑥
𝑑𝑥 +

𝜕 𝑓

𝜕𝑦
𝑑𝑦 +

𝜕 𝑓

𝜕𝑧
𝑑𝑧

)
∧ 𝑑𝑦 ∧ 𝑑𝑧

=
𝜕 𝑓

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 +

𝜕 𝑓

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑦 ∧ 𝑑𝑧 +

𝜕 𝑓

𝜕𝑧
𝑑𝑧 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =

𝜕 𝑓

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

In the second term, it is only the 𝜕𝑔
𝜕𝑦 term to survive, and in the third term it is only the 𝜕ℎ

𝜕𝑧
term.

All in all we find that for 𝜔 = 𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦,

𝑑𝜔 = 𝑑( 𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦) =
(
𝜕 𝑓

𝜕𝑥
+ 𝜕𝑔

𝜕𝑦
+ 𝜕ℎ

𝜕𝑧

)
𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

And again, notice the expression for the divergence pops up. We are then not surprised
that the Divergence Theorem∭

𝑅

∇ · ⟨ 𝑓 , 𝑔, ℎ⟩ 𝑑𝑉 =

∬
𝜕𝑅

⟨ 𝑓 , 𝑔, ℎ⟩ · 𝑛̂ 𝑑𝑆,

where 𝑅 is oriented positively and 𝑛̂ is the outward unit normal on the boundary 𝜕𝑅,
takes the form ∫

𝑅

𝑑𝜔 =

∫
𝜕𝑅

𝜔.

Generalized Stokes’ Theorem
The formula ∫

Ω

𝑑𝜔 =

∫
𝜕Ω

𝜔.
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is called the Generalized Stokes’ Theorem. Here 𝜔 is a (𝑘 − 1)-form and Ω is a 𝑘-dimensional
geometric object over which to integrate. In 3-space, 𝜔 is a 0-, 1-, or 2-form, and Ω is a
path (1-dimensional), a surface (2-dimensional), or a region (3-dimensional).

Another thing to notice is the following diagram:

0-forms
𝑑→ 1-forms

𝑑→ 2-forms
𝑑→ 3-forms

corresponds to the diagram

functions
∇→ vector fields

∇×→ vector fields
∇·→ functions.

We mentioned above that ∇ × ∇ 𝑓 = ®0 is the formula 𝑑(𝑑𝑓 ) = 0 for a function (0-form) 𝑓 .
Similarly, ∇ · ∇× ®𝐹 = 0 is the formula 𝑑(𝑑𝜔) = 0 for a 1-form 𝜔. It is always true that using
the 𝑑 operator on an output of a 𝑑 operator, that is a 𝑑-derivative of a 𝑑-derivative, is 0. In
other words,

𝑑(𝑑𝜔) = 0

for all differential forms 𝜔. It is sometimes shortened to 𝑑2 = 0.

Applying in the plane
In the plane, think of everything as if it were in three space but with no 𝑧 dependence,
so no 𝑑𝑧. So there are only 0-forms, 1-forms and 2-forms. The only 2-form that appears
is 𝑓 𝑑𝑥 ∧ 𝑑𝑦, since the other possible wedge product gets you 𝑑𝑦 ∧ 𝑑𝑥 = −𝑑𝑥 ∧ 𝑑𝑦. The
derivative of a one-form is

𝑑( 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦) = 𝑑𝑓 ∧ 𝑑𝑥 + 𝑑𝑔 ∧ 𝑑𝑦

=

(
𝜕 𝑓

𝜕𝑥
𝑑𝑥 +

𝜕 𝑓

𝜕𝑦
𝑑𝑦

)
∧ 𝑑𝑥 +

(
𝜕𝑔

𝜕𝑥
𝑑𝑥 +

𝜕𝑔

𝜕𝑦
𝑑𝑦

)
∧ 𝑑𝑦

=
𝜕 𝑓

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑥 +

𝜕𝑔

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑦

=

(
𝜕𝑔

𝜕𝑥
−

𝜕 𝑓

𝜕𝑦

)
𝑑𝑥 ∧ 𝑑𝑦.

If 𝑅 is a region in the plane and 𝜕𝑅 is its boundary, the Generalized Stokes’ Theorem says:∫
𝜕𝑅

𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 =

∫
𝑅

𝑑( 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦) =
∫
𝑅

(
𝜕𝑔

𝜕𝑥
−

𝜕 𝑓

𝜕𝑦

)
𝑑𝑥 ∧ 𝑑𝑦.

And you will recognize Green’s Theorem.
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Changing coordinates
Differential forms take care of changing coordinates easily. The trick is to know that 𝑑𝑥,
𝑑𝑦, 𝑑𝑧 are the derivatives of the 𝑥, 𝑦, and 𝑧 coordinate functions. Suppose we wish to
write down everything in terms of 𝑑𝑟, 𝑑𝜃, 𝑑𝑧 of cylindrical coordinates. Consider

𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin𝜃, 𝑧 = 𝑧.

Then

𝑑𝑥 = 𝑑(𝑟 cos𝜃) = cos𝜃 𝑑𝑟 − 𝑟 sin𝜃 𝑑𝜃,

𝑑𝑦 = 𝑑(𝑟 sin𝜃) = sin𝜃 𝑑𝑟 + 𝑟 cos𝜃 𝑑𝜃,

𝑑𝑧 = 𝑑(𝑧) = 𝑑𝑧.

Consider the one-form
𝜔 = (𝑥2 + 𝑦2) 𝑑𝑥 + 𝑧 𝑑𝑦 + 𝑑𝑧.

Let us change this one-form into cylindrical coordinates.

𝜔 = 𝑟2 𝑑𝑥 + 𝑧 𝑑𝑦 + 𝑑𝑧 = 𝑟2(cos𝜃 𝑑𝑟 − 𝑟 sin𝜃 𝑑𝜃) + 𝑧(sin𝜃 𝑑𝑟 + 𝑟 cos𝜃 𝑑𝜃) + 𝑑𝑧

= (𝑟2 cos𝜃 + 𝑧 sin𝜃) 𝑑𝑟 + (−𝑟3 sin𝜃 + 𝑧 cos𝜃) 𝑑𝜃 + 𝑑𝑧.

Now suppose we wish to find ∫
𝐶

𝜔,

where 𝐶 is the spiral given in cylindrical coordinates by 𝑟 = 1, 𝜃 = 𝑡, 𝑧 = 𝑡 for 0 ≤ 𝑡 ≤ 2𝜋.
So

𝑑𝑟 =
𝑑𝑟

𝑑𝑡
𝑑𝑡 = 0, 𝑑𝜃 =

𝑑𝜃
𝑑𝑡

𝑑𝑡 = 𝑑𝑡, 𝑑𝑧 =
𝑑𝑧

𝑑𝑡
𝑑𝑡 = 𝑑𝑧.

And so plugging it in we compute∫
𝐶

𝜔 =

∫
𝐶

(𝑟2 cos𝜃 + 𝑧 sin𝜃) 𝑑𝑟 + (−𝑟3 sin𝜃 + 𝑧 cos𝜃) 𝑑𝜃 + 𝑑𝑧

=

∫ 2𝜋

0
(− sin 𝑡 + 𝑡 cos 𝑡 + 1) 𝑑𝑡 = 2𝜋.

Changing variables for two-forms and three-forms is exactly the same idea since they are
constructed out of 𝑑𝑥, 𝑑𝑦, 𝑑𝑧.

For example, what about the area measure on the 𝑥𝑦-plane in cylindrical (so in polar). In
the plane the area measure 𝑑𝐴 is 𝑑𝑥 ∧ 𝑑𝑦, so

𝑑𝑥 ∧ 𝑑𝑦 = (cos𝜃 𝑑𝑟 − 𝑟 sin𝜃 𝑑𝜃) ∧ (sin𝜃 𝑑𝑟 + 𝑟 cos𝜃 𝑑𝜃)
= (cos𝜃)(𝑟 cos𝜃) 𝑑𝑟 ∧ 𝑑𝜃 + (−𝑟 sin𝜃)(sin𝜃) 𝑑𝜃 ∧ 𝑑𝑟

= (cos𝜃)(𝑟 cos𝜃) 𝑑𝑟 ∧ 𝑑𝜃 + (𝑟 sin𝜃)(sin𝜃) 𝑑𝑟 ∧ 𝑑𝜃

= 𝑟(cos2 𝜃 + sin2 𝜃) 𝑑𝑟 ∧ 𝑑𝜃 = 𝑟 𝑑𝑟 ∧ 𝑑𝜃.

12



We obtain the familiar 𝑟 𝑑𝑟 𝑑𝜃 from calculus.

We get the volume form 𝑑𝑉 too,

𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 = 𝑟 𝑑𝑟 ∧ 𝑑𝜃 ∧ 𝑑𝑧.
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