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This class, Vector Calculus, is really the vector calculus that you haven’t really gotten
to in Calculus III. We will be using the book:
H. M. Schey, Div, Grad, Curl, and All That: An Informal Text on Vector Calculus (Fourth
Edition)

We start with a very quick review of the concepts from Calculus III that we will need
and that are not covered in Schey—a crash course if you will. We’ll cover nowhere near
everything that you may have seen in Calculus III in this quick overview, just the very
basics. We will also go over a couple of things that you may not have seen in Calculus III,
but that we will need for this class. You should look back at your Calculus III textbook. If
you no longer have that or need another source, there is a wonderful free textbook:
Gregory Hartman, APEX Calculus, http://www.apexcalculus.com. You can download a
PDF online, or buy a very cheap printed copy. Especially Volume 3, that is, chapters 9–14.

1 Vectors
In basic calculus, one deals with ℝ, the real numbers, a one-dimensional space, or the line.
In vector calculus, we consider the two dimensional cartesian space ℝ2, the plane; three
dimensional space ℝ3; and in general the 𝑛-dimensional cartesian space ℝ𝑛 . A point in
ℝ2,ℝ3, or ℝ𝑛 is simply a tuple, a 3-tuple, or an 𝑛-tuple (respectively) of real numbers. For
example, the following are points in ℝ2

(1,−2), (0, 1), (−1, 10), etc.

The following are points in ℝ3

(1,−2, 3), (0, 0, 1), (−1,−1, 10), etc.

Of course, ℝ𝑛 can be ℝ2 or ℝ3, and even ℝ = ℝ1, as 𝑛 can always be 1, 2, or 3. The
coordinates used in calculus are often 𝑥 for ℝ, (𝑥, 𝑦) for ℝ2, and (𝑥, 𝑦, 𝑧) for ℝ3. In ℝ𝑛

in general, we run out of letters, and so we use something like subscripts (𝑥1, 𝑥2, . . . , 𝑥𝑛).
Other letters than 𝑥 are also used. We mostly focus on ℝ3 (and ℝ2 to some extent) in this
course.
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Now that we have points, another object is a vector. A vector is an object that describes
a direction and a magnitude (its size or length). It is simply an arrow in space, although it
does not really care as to where the arrow starts, it only cares about its direction and its
magnitude.

To give vectors names, people often use ⃗⃗
𝑣 or v, although mathematicians often just

write 𝑣 and simply remember that 𝑣 is a vector. On the board, I write ⃗⃗
𝑣 although the book

uses v (it is difficult to write bold on the board ). The book also uses v̂ for unit vectors,
that is, vectors of magnitude one. We will write �̂�.

The best way to think about it is thinking of a moving particle in space. A point
describes the position of a particle, while a vector describes velocity, that is, the direction
the object is traveling, and its speed. Forces and displacements are also described by
vectors. A vector can say how to go from point 𝐴 to point 𝐵 (start at 𝐴 in this direction
and go this far to get to 𝐵). We write such a vector as

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝐴𝐵.

The space ℝ𝑛 has one special point 𝑂 = (0, 0, . . . , 0), the origin. We can describe a
vector ⃗⃗

𝑣 via a point 𝐴 in space if the vector describes the displacement from 𝑂 to 𝐴, so⃗⃗
𝑣 =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑂𝐴. We say ⃗⃗

𝑣 is the position vector of the point 𝐴. This means that a vector can
be described by 3 numbers just like a point. We don’t necessarily want to use the same
notation as for points. To distinguish the concepts, a common notation for vectors is

⟨𝑎, 𝑏, 𝑐⟩,

which is the position vector of the point (𝑎, 𝑏, 𝑐) in ℝ3. Even though both points and
vectors are represented by 3 numbers in ℝ3, we distinguish them. As far as computations
are concerned, they are often just 3 numbers, but they are different things. Just like say
temperature, time, or speed are very different things, they are each described by a single
number. And we don’t want to confuse speed, time, and temperature.

The analogue of the origin is the zero vector
⃗⃗
0, for example,

⃗⃗
0 = ⟨0, 0, 0⟩

in ℝ3. It is the single vector that does not have a well-defined direction and has a zero
magnitude. If you go distance zero, then it doesn’t matter in which direction you traveled.

There are a certain special vectors called the standard basis vectors. In ℝ2 and ℝ3 they
have special names. In ℝ2:

𝚤 = ⟨1, 0⟩, 𝚥 = ⟨0, 1⟩.
In ℝ3:

𝚤 = ⟨1, 0, 0⟩, 𝚥 = ⟨0, 1, 0⟩, 𝑘 = ⟨0, 0, 1⟩.
We use hats instead of arrows above the ĳk, because these vectors are unit vectors, that is
vectors of magnitude 1.

A convenient way to write vectors is using the standard basis. That is, in ℝ2, write

⟨𝑎, 𝑏⟩ = 𝑎𝚤 + 𝑏 𝚥, e.g. ⟨3, 4⟩ = 3𝚤 + 4𝚥.

In ℝ3, write

⟨𝑎, 𝑏, 𝑐⟩ = 𝑎𝚤 + 𝑏 𝚥 + 𝑐𝑘, e.g. ⟨3, 4,−2⟩ = 3𝚤 + 4𝚥 − 2𝑘.
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We also allow arithmetic with vectors. First, scalar multiplication. Real numbers are
called scalars when vectors are around, because they are used to “scale” the vectors. If 𝛼
is a scalar and ⃗⃗

𝑣 is a vector, then the product 𝛼 ⃗⃗
𝑣 is the vector with the same direction as ⃗⃗

𝑣

(as long as 𝛼 ≥ 0) and magnitude multiplied by 𝛼. If 𝛼 < 0, then the direction is reversed
and the magnitude is multiplied by |𝛼 |. It turns out that

𝛼(𝑎𝚤 + 𝑏 𝚥 + 𝑐𝑘) = 𝛼𝑎𝚤 + 𝛼𝑏 𝚥 + 𝛼𝑐𝑘, e.g. 2(3𝚤 + 4𝚥 − 2𝑘) = 6𝚤 + 8𝚥 − 4𝑘.

We can also add vectors. Vector addition is defined by using the displacement interpre-
tation of vectors. If ⃗⃗

𝑣 and ⃗⃗ ⃗⃗
𝑤 are vectors, then ⃗⃗

𝑣 + ⃗⃗ ⃗⃗
𝑤 is the vector where we travel along ⃗⃗

𝑣

first and then along ⃗⃗ ⃗⃗
𝑤. It turns out that

(𝑎𝚤 + 𝑏 𝚥 + 𝑐𝑘) + (𝑑𝚤 + 𝑒 𝚥 + 𝑓 𝑘) = (𝑎 + 𝑑)𝚤 + (𝑏 + 𝑒)𝚥 + (𝑐 + 𝑓 )𝑘.

E.g.
(𝚤 + 2𝚥 + 3𝑘) + (5𝚤 + 𝚥 − 3𝑘) = 6𝚤 + 2𝚥 + 0𝑘 = 6𝚤 + 2𝚥.

We write the magnitude of ⃗⃗
𝑣 as | ⃗⃗𝑣 |. The following formulas compute the magnitude

of a vector. In ℝ2:
|𝑎𝚤 + 𝑏 𝚥 | =

√
𝑎2 + 𝑏2,

and in ℝ3:
|𝑎𝚤 + 𝑏 𝚥 + 𝑐𝑘 | =

√
𝑎2 + 𝑏2 + 𝑐2.

Sometimes when given a vector ⃗⃗
𝑟, its magnitude is written simply as 𝑟, rather than | ⃗⃗𝑟 |.

You may have seen ∥®𝑣∥ for magnitude. It is the same thing. We will use single bars in this
course to match the book.

The direction of ⃗⃗𝑣 written �̂� is then the vector

�̂� =
1
| ⃗⃗𝑣 |

⃗⃗
𝑣 =

⃗⃗
𝑣

| ⃗⃗𝑣 | .

Although we’ll try to state explicitly that �̂� is the direction of ⃗⃗
𝑣. Notice again that we put

a hat instead of an arrow on unit vectors. We use �̂� for a unit vector, even if there was no⃗⃗
𝑣 to begin with. We did this with 𝚤, 𝚥, and 𝑘.

All of these notions are generalized to ℝ𝑛 in the obvious manner. Higher number of
dimensions do occur naturally. For example, if 𝑡 is time, then time-space can have the
coordinates (𝑥, 𝑦, 𝑧, 𝑡), that is ℝ4. Similarly, the space of all configurations of two particles
in 3-space is really ℝ6, that is (𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2), where (𝑥1, 𝑦1, 𝑧1), is the position of the
first particle and (𝑥2, 𝑦2, 𝑧2) is the position of the second. Similarly to the space of possible
position–velocity configurations (phase space) of a single particle has 6 dimensions (3
dimensions for position and 3 for velocity). And if we are modeling liquid by pretending
it is a 1000 particles (liquid, after all, is a whole bunch of particles), then the phase space
has dimension 6000.
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2 Products of vectors
We saw one product, that is, the product of a scalar and a vector:

𝛼
⃗⃗
𝑣 .

Another type of product is the so-called dot product

(𝑎𝚤 + 𝑏 𝚥 + 𝑐𝑘) · (𝑑𝚤 + 𝑒 𝚥 + 𝑓 𝑘) = 𝑎𝑑 + 𝑏𝑒 + 𝑐 𝑓 .

E.g.
(3𝚤 + 𝚥 − 2𝑘) · (−2𝚤 + 5𝚥 + 𝑘) = −6 + 5 − 2 = −3.

This product is easy to generalize to any number of dimensions in the obvious way. Notice
that the result of this product is a scalar and not a vector. For this reason it is sometimes
called the scalar product. The dot product can compute the magnitude of a vector:

| ⃗⃗𝑣 |2 =
⃗⃗
𝑣 · ⃗⃗𝑣 .

Geometrically in ℝ2 or ℝ3, this product is
⃗⃗
𝑣 · ⃗⃗ ⃗⃗𝑤 = | ⃗⃗𝑣 | | ⃗⃗ ⃗⃗𝑤 | cos𝜃,

where 𝜃 is the angle between ⃗⃗
𝑣 and ⃗⃗ ⃗⃗

𝑤. So the dot product can be used to compute the
angle. It doesn’t matter if you think of the angle between ⃗⃗

𝑣 and ⃗⃗ ⃗⃗
𝑤 or vice-versa, as we are

taking the cosine here: There are two ways you could define the angle depending which
direction you start in, but because of the cosine you get the same dot product. Two vectors
are orthogonal (at right angle, perpendicular) if their dot product is zero.

The dot product is bilinear (if something is called a product, usually people want it to
be bilinear):

(𝛼 ⃗⃗
𝑣 +𝛽 ⃗⃗ ⃗⃗

𝑤) · ⃗⃗𝑢 = 𝛼( ⃗⃗𝑣 · ⃗⃗𝑢) + 𝛽( ⃗⃗ ⃗⃗𝑤 · ⃗⃗𝑢)
and ⃗⃗

𝑢 ·(𝛼 ⃗⃗
𝑣 +𝛽 ⃗⃗ ⃗⃗

𝑤) = 𝛼( ⃗⃗𝑢 · ⃗⃗𝑣) + 𝛽( ⃗⃗𝑢 · ⃗⃗ ⃗⃗𝑤).
It is also commutative (not all products are commutative):

⃗⃗
𝑣 · ⃗⃗ ⃗⃗𝑤 =

⃗⃗ ⃗⃗
𝑤 · ⃗⃗𝑣 .

Another type of product, which really only exists in ℝ3, is the cross product, sometimes
called the vector product. This product results in a vector. Geometrically

⃗⃗
𝑣 × ⃗⃗ ⃗⃗

𝑤 = | ⃗⃗𝑣 | | ⃗⃗ ⃗⃗𝑤 |(sin𝜃)�̂�.

Where 𝜃 is the angle going from ⃗⃗
𝑣 to ⃗⃗ ⃗⃗

𝑤 in the plane spanned by them (now the order
matters), and �̂� is the normal vector to that plane oriented according to the right hand
rule. The orientation can be figured out from the formula

𝚤 × 𝚥 = 𝑘.

That is, 𝑘 is the normal vector to the 𝑥𝑦-plane using the right hand rule.
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There are a bunch of ways to compute the cross product, though perhaps the easiest
to remember is using algebra. First, the cross product is bilinear:

(𝛼 ⃗⃗
𝑣 +𝛽 ⃗⃗ ⃗⃗

𝑤) × ⃗⃗
𝑢 = 𝛼( ⃗⃗𝑣 × ⃗⃗

𝑢) + 𝛽( ⃗⃗ ⃗⃗𝑤 × ⃗⃗
𝑢)

and ⃗⃗
𝑢 ×(𝛼 ⃗⃗

𝑣 +𝛽 ⃗⃗ ⃗⃗
𝑤) = 𝛼( ⃗⃗𝑢 × ⃗⃗

𝑣) + 𝛽( ⃗⃗𝑢 × ⃗⃗ ⃗⃗
𝑤).

It is anti-commutative: ⃗⃗
𝑣 × ⃗⃗ ⃗⃗

𝑤 = − ⃗⃗ ⃗⃗
𝑤 × ⃗⃗

𝑣 .

Anticommutativity implies ⃗⃗
𝑣 × ⃗⃗

𝑣 =
⃗⃗
0 .

To compute the product, we can use the identities

𝚤 × 𝚥 = 𝑘, 𝚥 × 𝑘 = 𝚤, 𝑘 × 𝚤 = 𝚥.

All three identities list 𝚤, 𝚥, 𝑘 in the same order. If you go in the opposite order you get a
minus sign:

𝚥 × 𝚤 = −𝑘, 𝑘 × 𝚥 = −𝚤, 𝚤 × 𝑘 = −𝚥.
Example:

(3𝚤 + 𝑘) × (𝚥 + 2𝑘) = 3𝚤 × 𝚥 + (3 · 2)𝚤 × 𝑘 + 𝑘 × 𝚥 + 2𝑘 × 𝑘 = 3𝑘 + 6(−𝚥) + (−𝚤) + 2
⃗⃗
0 = −𝚤 − 6𝚥 + 3𝑘.

A very important property of the cross product is that it is orthogonal to both of the
vectors. In terms of the dot product:

⃗⃗
𝑣 ·( ⃗⃗𝑣 × ⃗⃗ ⃗⃗

𝑤) = 0, ⃗⃗ ⃗⃗
𝑤 ·( ⃗⃗𝑣 × ⃗⃗ ⃗⃗

𝑤) = 0.

It is a useful easy to compute way to find the orthogonal vector to a plane. For example,
as we computed above (3𝚤 + 𝑘) × (𝚥 + 2𝑘) = −𝚤 − 6𝚥 + 3𝑘, so −𝚤 − 6𝚥 + 3𝑘 is orthogonal (at
right angle) to 3𝚤 + 𝑘 and also to 𝚥 + 2𝑘.

A common trick to compute the cross product is the determinant formula:

(𝑎𝚤 + 𝑏 𝚥 + 𝑐𝑘) × (𝑑𝚤 + 𝑒 𝚥 + 𝑓 𝑘) = det

𝚤 𝚥 𝑘

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

 = (𝑏 𝑓 − 𝑐𝑒)𝚤 − (𝑎 𝑓 − 𝑐𝑑)𝚥 + (𝑎𝑒 − 𝑏𝑑)𝑘.

(Do not forget the minus sign on the 𝚥.)
Perhaps the correct way to define cross product, and also a way to figure out many

of its properties from the properties of the dot product and the determinant is the triple
product. Let ⃗⃗𝑢 = 𝑢1𝚤 + 𝑢2 𝚥 + 𝑢3𝑘, ⃗⃗𝑣 = 𝑣1𝚤 + 𝑐2 𝚥 + 𝑣3𝑘, and ⃗⃗ ⃗⃗

𝑤 = 𝑤1𝚤 + 𝑤2 𝚥 + 𝑤3𝑘. Then

⃗⃗
𝑢 ·( ⃗⃗𝑣 × ⃗⃗ ⃗⃗

𝑤) = det

𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
𝑤1 𝑤2 𝑤3

 .
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3 Functions and partial derivatives
A function is simply an assignment of inputs to some output. A real-valued1 function of
3 real variables can be written as

𝑤 = 𝑓 (𝑥, 𝑦, 𝑧).
That is, given numbers 𝑥, 𝑦, and 𝑧, the function 𝑓 returns the number 𝑓 (𝑥, 𝑦, 𝑧). For
example, the temperature in a room where 𝑥, 𝑦, 𝑧 are some coordinates on the room, then
the temperature 𝑇(𝑥, 𝑦, 𝑧) is a function. Sometimes this is called a “scalar function” or a
“scalar field.”

If we keep 𝑦 and 𝑧 fixed, then the assignment that takes 𝑥 to 𝑓 (𝑥, 𝑦, 𝑧) is a function of
one variable. Its derivative is the so-called partial derivative with respect to 𝑥, written 𝜕 𝑓

𝜕𝑥 .
That is,

𝜕 𝑓

𝜕𝑥
(𝑥, 𝑦, 𝑧) = lim

ℎ→0

𝑓 (𝑥 + ℎ, 𝑦, 𝑧) − 𝑓 (𝑥, 𝑦, 𝑧)
ℎ

.

Similarly we define 𝜕 𝑓
𝜕𝑦 , 𝜕 𝑓

𝜕𝑧 and so on. These partial derivatives are again functions of
ℝ3. We will not use the notation 𝑓𝑥 in this course for the partial derivative as it may get
confusing; we reserve the subscript for another concept.

To compute partials, we simply consider all other variables constant. For example, if
𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧 + 𝑥𝑦 + 𝑧, then

𝜕 𝑓

𝜕𝑥
(𝑥, 𝑦, 𝑧) = 2𝑥𝑦𝑧 + 𝑦,

𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦, 𝑧) = 𝑥2𝑧 + 𝑥, and

𝜕 𝑓

𝜕𝑧
(𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + 1.

As these are functions, we may take the derivative again. Let us show a couple of examples,

𝜕2 𝑓

𝜕𝑥𝜕𝑦
(𝑥, 𝑦, 𝑧) = 2𝑥𝑧 + 1, and

𝜕2 𝑓

𝜕𝑥2 (𝑥, 𝑦, 𝑧) = 2𝑦𝑧.

The generalization to 𝑛 variables is similar. E.g., if 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥2
1𝑥2𝑥3 + 𝑥2𝑥4,

then
𝜕 𝑓

𝜕𝑥1
(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 2𝑥1𝑥2𝑥3, or

𝜕 𝑓

𝜕𝑥2
(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥2

1𝑥3 + 𝑥4.

4 Multiple integrals
In the plane, the area of a small rectangle with sides Δ𝑥 and Δ𝑦 is Δ𝐴 = Δ𝑥Δ𝑦. If we build
a box of height 𝑐 above this small rectangle, the volume of the box is 𝑐Δ𝑥Δ𝑦 = 𝑐Δ𝐴.

Let 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] be a rectangle in ℝ2, and suppose 𝑓 is a function of two variables
defined for values in 𝑅. That is, 𝑅 is all the points (𝑥, 𝑦) such that 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑐 ≤ 𝑦 ≤ 𝑑,
and for every (𝑥, 𝑦) in 𝑅 we have a value 𝑓 (𝑥, 𝑦). We divide 𝑅 into a bunch of rectangles
of area Δ𝐴 = Δ𝑥Δ𝑦. In each of these rectangles we pick a point (𝑥 𝑗 , 𝑦𝑗) and then

𝑓 (𝑥 𝑗 , 𝑦𝑗)Δ𝐴

1By real we just mean the real numbers, as opposed to complex numbers, which we will not worry about.
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is a reasonable approximation for the volume under the graph of 𝑓 above the little rectan-
gle. We sum all these approximations∑

𝑗

𝑓 (𝑥 𝑗 , 𝑦𝑗)Δ𝐴,

which is a reasonable approximation for the volume under the graph of 𝑓 above the
rectangle 𝑅. The double integral of 𝑓 over 𝑅 is the limit of this expression as Δ𝑥 and Δ𝑦

go to zero, and therefore as Δ𝐴 goes to zero:∬
𝑅

𝑓 (𝑥, 𝑦) 𝑑𝐴 = lim
Δ𝑥→0
Δ𝑦→0

∑
𝑗

𝑓 (𝑥 𝑗 , 𝑦𝑗)Δ𝐴,

For a reasonable function (e.g. continuous), this limit exists. The sum can be done column-
wise or row-wise, in which case we have a double sum, and taking the limits, we find
that ∬

𝑅

𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

Notice the units of this quantity. It is the units of 𝑓 times the units of 𝑥 times the units of 𝑦.
So for example if all three are meters, then the unit of 𝑑𝐴 is 𝑚2 and the unit of 𝑓 (𝑥, 𝑦) 𝑑𝐴
and therefore of

∬
𝑅
𝑓 (𝑥, 𝑦) 𝑑𝐴 is 𝑚3 or volume.

For example, ∬
𝑅

𝑑𝐴 = 𝐴(𝑅) = (𝑏 − 𝑎)(𝑑 − 𝑐).

Here 𝐴(𝑅) is the area of 𝑅. Another example: Let 𝑅 = [0, 1] × [0, 1]∬
𝑅

𝑥𝑦 𝑑𝐴 =

∫ 1

0

∫ 1

0
𝑥𝑦 𝑑𝑥 𝑑𝑦 =

∫ 1

0

1
2 𝑦 𝑑𝑦 =

1
4 .

Similarly in ℝ3, a little box of sides Δ𝑥, Δ𝑦, and Δ𝑧 is of volume Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧. Let
𝐵 = [𝑎, 𝑏] × [𝑐, 𝑑] × [𝑒 , 𝑓 ] be a box. We follow the same procedure above to find for a
function 𝑓 (𝑥, 𝑦, 𝑧) defined on the box 𝐵,∭

𝐵

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑉 =

∫ 𝑓

𝑒

∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧.

All the other orderings of 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 also work. Notice the units. If all dimensions are
in meters, then

∭
𝐵
𝑓 (𝑥, 𝑦) 𝑑𝑉 is in units 𝑚4, or 4-dimensional volume.

Sometimes we might just write ∭
𝐵

𝑓 𝑑𝑉

for simplicity.
We could generalize this further. Given 𝑓 (𝑥1, . . . , 𝑥𝑛) on ℝ𝑛 , we start with the 𝑛

dimensional volume element 𝑑𝑉𝑛 or just 𝑑𝑉 , we integrate 𝑓 , and obtain 𝑛 + 1 dimensional
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volume “under the graph.” Mathematicians sometimes do not make distinction for 𝑛 = 1
and 𝑛 = 2, and simply call everything “volume.” So 1-dimensional volume is length,
2-dimensional volume is area, etc. Mathematicians also often do not use

∬
and

∭
, and

so on, and simply use
∫

, as we all know in what dimension we are integrating based on
the nature of the element 𝑑𝑉 or 𝑑𝐴 or the dimension of the set we are integrating over.

An integral over a region that is not a rectangle is achieved by setting the function to
zero outside this region and then integrating over a large rectangle. It can also be achieved
by using iterated integrals and changing the limits as appropriate. For example, given a
triangle 𝑇 with vertices at (0, 0), (2, 0), and (2, 1), let us compute the integral of 𝑥2𝑦 over
𝑇. Describe 𝑇 as either 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 𝑥

2 , or as 0 ≤ 𝑦 ≤ 1, 2𝑦 ≤ 𝑥 ≤ 2. Compute∬
𝑇

𝑥2𝑦 𝑑𝐴 =

∫ 2

0

∫ 𝑥/2

0
𝑥2𝑦 𝑑𝑦 𝑑𝑥 =

∫ 2

0
𝑥2 (𝑥/2)2

2 𝑑𝑥 =

∫ 2

0

𝑥4

8 𝑑𝑥 =
25

8 · 5 =
4
5 ,

or ∬
𝑇

𝑥2𝑦 𝑑𝐴 =

∫ 1

0

∫ 2

2𝑦
𝑥2𝑦 𝑑𝑥 𝑑𝑦 =

∫ 1

0

(
23𝑦

3 −
(2𝑦)3𝑦

3

)
𝑑𝑦 =

∫ 1

0

8𝑦 − 8𝑦4

3 𝑑𝑦 =
4
5 .

Not surprisingly, we got the same answer, of course, since it is the same region.
The integral is additive, that is, if 𝐵 is the disjoint union of 𝐵1 and 𝐵2, then∬

𝐵

𝑓 𝑑𝐴 =

∬
𝐵1

𝑓 𝑑𝐴 +
∬

𝐵2

𝑓 𝑑𝐴.

The integral is also linear, that is, if 𝛼, 𝛽 are real numbers and 𝑓 and 𝑔 are functions, then∬
𝐵

(𝛼 𝑓 + 𝛽𝑔) 𝑑𝐴 = 𝛼

∬
𝐵

𝑓 𝑑𝐴 + 𝛽

∬
𝐵

𝑔 𝑑𝐴.

Understanding the development of the integral as a sum is important in applications for
recognizing quantities computed by integration. Only after we recognize that something is
an integral can we write the integral as an iterated one and compute it with the techniques
of calculus. In fact, because calculus is so powerful, sometimes the approximation goes
the other way. Instead of the sum being an approximation for the integral, the integral
can be computed to approximate a sum. In some sense, this is always the case, as our
world is really composed of tiny bits rather than continuous unbroken things. But adding
up a finite but large number of bits tends to be far harder to do than “adding up infinitely
many,” that is, integrating. A recurring theme in mathematics is that by making a problem
more complicated (in just the right way), we turn an impossible-to-solve problem into a
tractable, solvable problem.
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