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Plan for the talk

The plan is for the following proportion of the audience awake:
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Plan for the talk (the content)

 Motivation from complex analysis.

 Degree estimates for polynomials constant on a line
(or plane, or hyperplane).

 Proofs.

 In dimension 2.

 A 2 player board game arising from the proof in 2
dimensions.

 In dimension 3.
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Sphere maps in Cn

z = (z1; z2; : : : ; zn) 2 Cn ;

Bn = unit ball in Cn = fz : kzk < 1g;
@Bn = unit sphere in Cn = fz : kzk = 1g:

Consider rational maps of z , such as this f : C2 ! C3

(except where the denominator is zero):

f (z1; z2) =

 
z1

z 2
2 + 1

;
z1z2

z 2
2 + 1

; z 2
2 + 1

!
:

That’s a map I just pulled out of thin air ...

Natural question
Classify rational mappings from Cn to CN such that

f (@Bn) � @BN
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A sample of what is known

If n = N = 1, then f is a finite Blaschke product. That is,

z 7! e i�
kY

j=1

z � aj

1� �aj z
:

If n > N , no map exists.

Theorem (Alexander / Pincuk ’77 (complicated history))
If n = N, n � 2, then f is an automorphism of Bn .

An automorphism of the ball is a linear fractional
transformation:

F (z ) = U
w � Lz

1� hz ;wi
for a fixed w 2 Bn � Cn , a unitary map U , and a linear map L.
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A sample of what is known II

Theorem (Forstnerič ’89)
Suppose a rational f takes @Bn to @BN . Then degree of f is
bounded by a constant D(n ;N ).

What’s the degree? Write

f (z ) =
�
f1(z ); f2(z ); : : : ; fN (z )

�
g(z )

deg f = maxfdeg f1;deg f2; : : : ;deg fN ;deg gg:

e.g. f (z1; z2) =

 
z1

z 2
2 + 1

;
z1z2

z 2
2 + 1

; z 2
2 + 1

!
=

�
z1; z1z2; (z 2

2 + 1)2
�

z 2
2 + 1

so deg f = 4.

A conjecture of D’Angelo is that

deg f �
(
2N � 3 if n = 2,
N�1
n�1 if n � 3.
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And we get to monomial maps

Theorem (Faran ’82)
A rational f takes @B2 to @B3. Then f is equivalent to

 (z ;w) 7! (z ;w ; 0)

 (z ;w) 7! (z ; zw ;w2)

 (z ;w) 7! (z 2;
p
2 zw ;w2)

 (z ;w) 7! (z 3;
p
3 zw ;w3)

The equivalence is up to automorphisms of B2 and B3.

So the degree bound conjecture holds when n = 2 and N = 3.

Furthermore, all of Faran’s maps are monomial maps
(each component is a single monomial).
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More ...

Theorem (Webster,Faran,Huang,etc.)
If f : @Bn ! @B2n�2 (n � 2) is a rational map of spheres.
Then f is equivalent to the linear embedding z 7! (z ; 0).

Theorem (Faran,Huang,etc.)
If f : @Bn ! @B2n�1 (n � 2) is a rational map of spheres.
Then f of degree at most 2.

Theorem (L., ’11)
If f : @Bn ! @BN (n � 2) is a rational degree 2 map of
spheres. Then f is equivalent via automorphisms to a
monomial map.
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Real geometric setup

Let f : @Bn ! @BN be a rational map of spheres. Then

kf (z )k2 = jf1(z )j2+ � � �+ jfN (z )j2 = 1 if jz1j2+ � � �+ jzn j2 = 1

Suppose f is monomial: every component fk is of the form
c z d1

1 z d2
2 � � � z dn

n . Then

jfk (z )j2 = jcj2 (jz1j2)d1(jz2j2)d2 � � � (jzn j2)dn :

Replace x1 = jz1j2, x2 = jz2j2, . . . . Then kf (z )k2 becomes a real
polynomial p(x1; : : : ; xn) with nonnegative coefficients such that

p(x1; : : : ; xn) = 1 if x1 + � � �+ xn = 1:

If all monomials in f are distinct, then N is the number of
monomials in p(x1; : : : ; xn).
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Basic problem in 2-dimensions

Let p(x ; y) be a polynomial of degree d such that

p(x ; y) = 1 whenever x + y = 1:

Suppose p has exactly N positive and no negative coefficients.

For example, p(x ; y) = x 3 + 3xy + y3. Here N = 3 and d = 3.

Theorem (D’Angelo, Kos, and Riehl ’03)

d � 2N � 3:

They also provided polynomials for which d = 2N � 3 for every
odd d . Thus the inequality is sharp.
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Basic problem in 3-dimensions

Let p(x ; y ; z ) be a polynomial of degree d such that

p(x ; y ; z ) = 1 whenever x + y + z = 1:

Suppose p has exactly N positive and no negative coefficients.

For example,
p(x ; y ; z ) = x 3 + 3xy + 3xz + y3 + 3xy2 + 3x 2y + x 3. Here
N = 7 and d = 3.

Theorem (L., Peters ’11)

d � N � 1
2

:

And again there exist polynomials where equality holds.
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n-dimensions

Let p(x1; : : : ; xn), n � 4, be a polynomial of degree d such that

p(x1; : : : ; xn) = 1 whenever x1 + � � �+ xn = 1:

Suppose p has exactly N positive and no negative coefficients.

Theorem (L., Peters, ’12)

d � N � 1
n � 1

:

And again there exist polynomials where equality holds. In this
case we can classify such polynomials.
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One dimension?

Example: x d = 1 whenever x = 1.

N = 1 and d is arbitrary.
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Constructing polynomials

Let us construct some 3-dimensional examples. Start with

x + y + z

x + y + z (x + y + z ) = x + y + xz + yz + z 2

x +y+xz +yz +z 2(x +y+z ) = x +y+xz +yz +xz 2+yz 2+z 3

Unfortunately (or fortunately?) this construction doesn’t get
everything.
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The proof

The proof for 3 dimensions requires understanding 2
dimensions first.

The proof in 2 dimensions uses a variant of the so-called
Newton diagram.

Newton diagrams appear in many results that relate properties
of a polynomial to the set of nonzero coefficients.

A very basic result from algebraic geometry is: if p(x ; y) = 1
when x + y = 1, then there exists a polynomial q(x ; y) such
that

p(x ; y)� 1 = q(x ; y)(x + y � 1):

That �1 in the (x + y � 1) causes makes the thing kind of
nonsymmetric so ...
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Let’s change the setup

Let us simplify the setup a bit to get rid of those pesky �1’s.
We will work with homogeneous polynomials in 3 variables.
That is P(X0;X1;X2) is homogeneous if

P(tX0; tX1; tX2) = tdP(X0;X1;X2):

I.e., every monomial of P is of degree d . For example,
X 3

0 +X 3
1 +X 3

2 � 3X0X1X2.

Let us start with

p(x ; y)� 1 = q(x ; y)(x + y � 1):

Homogenize with t : multiply each monomial by t as many
times as necessary to make it degree d . In formulas:

tdp(x=t; y=t)� td = td�1q(x=t; y=t)(x + y � t):

Now replace x with X1, y with X2 and t with �X0.
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Example

Start with

x 3 + 3xy + y3 � 1 = (y2 � xy + y + x 2 + x + 1)(x + y � 1)

x 3 + 3xyt + y3 � t3 = (y2 � xy + yt + x 2 + xt + t2)(x + y � t)

X 3
1 � 3X1X2X0 +X 3

2 +X 3
0 =

(X2
2 �X1X2 �X2X0 +X1

2 �X1X0 +X 2
0 )(X1 +X2 +X0)
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The new setup

We will drop the requirement of positive coefficients. Suppose

P(X0;X1;X2) = Q(X0;X1;X2) (X0 +X1 +X2)

Instead of positive coefficients, let us require that P is
indecomposable in the following sense. P cannot be written as
P = P1 + P2 where P1 and P2 are also divisible by
(X0 +X1 +X2) and where P1 and P2 are nonzero and have
distinct monomials.

Suppose that monomials of P have no common divisor.

If P is of degree d and has N nonzero coefficients and is
indecomposable, then we will show that

d � 2N � 5:
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Decomposable counterexample

If P is decomposable, then there is no degree bound. For
example:

P(X0;X1;X2) = X k
0 (X0 +X1 +X2) +X k

1 (X0 +X1 +X2)

= X k+1
0 +X k

0 X1 +X k
0 X2 +X k

1 X0 +X k+1
1 +X k

1 X2
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The Newton diagram

Take the Q . For example:

X 3
0 +X 3

1 +X 3
2 � 3X1X2X0 =

= (X 2
0 +X1

2 +X2
2 �X1X0 �X1X2 �X2X0)| {z }

Q

(X0 +X1 +X2)

Write the table marking the signs of the coefficients of Q for
each monomial. For example:

X 2
1 P

X1 N N
1 P N P

1 X2 X 2
2
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The Newton diagram - nodes

Let us draw the table as a picture and rotate.
P N P

N N

P

Let (a ; b; c) be integers. If in Q the monomials

X a�1
0 X b

1 X c
2 , X a

0 X b�1
1 X c

2 , X a
0 X b

1 X c�1
2

all have the same sign, then the monomial

X a
0 X b

1 X c
2

must appear in P with a nonzero
coefficient of the same sign.

We call such (a ; b; c) a node.

Note: Not every term in P comes from a node!
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The Newton diagram - nodes

Mark nodes with a triangle (each vertex
P N P

N N

P

points to one of the three monomials)

Allow some of the three monomials
of a node to have zero coefficient
(that is, they don’t appear in Q)

The number of nodes in the diagram,
gives a lower bound on the number of
nonzero coefficients of P .

The “size” (length of the side)
of the diagram is the degree of P .
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Filling a diagram

The diagram may not be a triangle (there might have been
zeros). It is “connected” if P is indecomposable. We can fill it
to a triangle without increasing the number of nodes.

NN

PPNP

N N P N

P P P

N N

P

NN

P

N N P N

P P P

N N

P
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Counting

Counting proceeds by induction. Start in the top row and
count the nodes above this row.

Now count how many times does the sign change on one row
(say c1), and how many times does the sign change on the row
below (say c2).

You get at least max
� c1�c2

2 ; 0
	
nodes between these rows.

P P N N P

N N P N

P P P

N N

P
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The game

Players put down dark and light stones on a triangle in turn,
then count the resulting nodes of their color.

To make the game more fair, we count nodes on a corner for 1=3
of a point and nodes on the side for 1=2 a point.

P P N N P

N N P N

P P P

N N

P

Here, white wins with 1=3 + 1=3 + 1=3 + 1=2 + 1 = 2:5 points to
black with 1=2 point (black played terribly).
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The game

We can prove that with that weighting with a triangle of size d ,
there are at least 1+ d�1

2 points to be distributed.

As long as one player doesn’t play all three corners, there has to
be a winner. In games for d = 1, d = 2, and d = 3 the first
player can always win. In larger games? I don’t know . . .

We will see this weighting make an appearance in the n = 3
proof.
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Newton diagram in dimension n = 3

P(X0;X1;X2;X3) =

Q(X0;X1;X2;X3) (X0+X1+X2+X3)

Look at the Newton diagram of
the quotient Q . Put a black ball
for negative coefficient and white ball
for positive coefficient.
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Nodes

As before, (a ; b; c; d) is a node if
X a�1

0 X b
1 X c

2 X d
3 ,

X a
0 X b�1

1 X c
2 X d

3 ,
X a

0 X b
1 X c�1

2 X d
3 ,

X a
0 X b

1 X c
2 X d�1

3

all have the same sign,

then
X a

0 X b
1 X c

2 X d
3

must appear in P .
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Faces

It turns out we only need
to count nodes on the faces.

Furthermore count each face
independently, counting
edge nodes for 1=2 and
corner nodes for 1=3.
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Face counting

A general version of the two-dimensional
P N P

N N

P

argument deals with the fractions.

The example diagram has
1+ 1=3 + 1=3 + 1=3 = 2 weighted nodes.
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Fill

First we “fill” holes
in the diagram.
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And cut

After filling we cut.

Cutting reduces
the degree.

Induction
does the rest.


