Normal forms for proper maps of balls and associated groups

Jiří Lebl (joint with Dusty Grundmeier)

Department of Mathematics, Oklahoma State University

Question: Classify all rational proper maps $f \colon \mathbb{B}_n \to \mathbb{B}_N$

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product.*

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product.*

Theorem (Alexander, Pinchuk circa '77 (complicated history...)) If $f: \mathbb{B}_n \to \mathbb{B}_n$ ($n \ge 2$) is a proper holomorphic map, then $f \in Aut(\mathbb{B}_n)$.

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product.*

Theorem (Alexander, Pinchuk circa '77 (complicated history...)) If $f: \mathbb{B}_n \to \mathbb{B}_n$ ($n \ge 2$) is a proper holomorphic map, then $f \in Aut(\mathbb{B}_n)$.

 $N < n \implies$ no proper maps at all.

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product.*

Theorem (Alexander, Pinchuk circa '77 (complicated history...)) *If f*: $\mathbb{B}_n \to \mathbb{B}_n$ ($n \ge 2$) *is a proper holomorphic map, then f* \in Aut(\mathbb{B}_n).

 $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product.*

Theorem (Alexander, Pinchuk circa '77 (complicated history...))

If $f: \mathbb{B}_n \to \mathbb{B}_n$ ($n \ge 2$) *is a proper holomorphic map, then* $f \in Aut(\mathbb{B}_n)$ *.*

 $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$. If a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_N$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N.

Remark: deg $f = \text{deg } \frac{p}{g} = \max\{\text{deg } p_1, \dots, \text{deg } p_N, g\}$ (in lowest terms).

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product.*

Theorem (Alexander, Pinchuk circa '77 (complicated history...))

If $f: \mathbb{B}_n \to \mathbb{B}_n$ ($n \ge 2$) *is a proper holomorphic map, then* $f \in Aut(\mathbb{B}_n)$ *.*

 $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$. If a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_N$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N.

Remark: deg $f = \text{deg } \frac{p}{g} = \max\{\text{deg } p_1, \dots, \text{deg } p_N, g\}$ (in lowest terms).

Theorem (Cima-Suffridge '90)

If $f = \frac{p}{g} : \mathbb{B}_n \to \mathbb{B}_N$ is rational proper map written in lowest terms, then $g \neq 0$ on $\overline{\mathbb{B}_n}$.

f & *F* are spherically equivalent if $F = \tau \circ f \circ \psi$, where $\psi \in Aut(\mathbb{B}_n), \tau \in Aut(\mathbb{B}_N)$.

$$\begin{array}{l} (z_1,z_2) \mapsto (z_1,\,z_2,\,0) \\ (z_1,z_2) \mapsto (z_1,\,z_1z_2,\,z_2^2) \\ (z_1,z_2) \mapsto (z_1^2,\,\sqrt{2}\,z_1z_2,\,z_2^2) \\ (z_1,z_2) \mapsto (z_1^3,\,\sqrt{3}\,z_1z_2,\,z_2^3) \end{array}$$

(linear embedding) (Whitney map) (deg 2 homogeneous map) (Faran map)

 $\begin{array}{ll} (z_1, z_2) \mapsto (z_1, \, z_2, \, 0) & (\text{linear embedding}) \\ (z_1, z_2) \mapsto (z_1, \, z_1 z_2, \, z_2^2) & (\text{Whitney map}) \\ (z_1, z_2) \mapsto (z_1^2, \, \sqrt{2} \, z_1 z_2, \, z_2^2) & (\text{deg 2 homogeneous map}) \\ (z_1, z_2) \mapsto (z_1^3, \, \sqrt{3} \, z_1 z_2, \, z_2^3) & (\text{Faran map}) \end{array}$

Webster, Faran, Huang showed that if N < 2n - 1 ($n \ge 3$), then there is one equivalence class: $z \mapsto (z, 0)$.

$$\begin{array}{ll} (z_1, z_2) \mapsto (z_1, \, z_2, \, 0) & (\text{linear embedding}) \\ (z_1, z_2) \mapsto (z_1, \, z_1 z_2, \, z_2^2) & (\text{Whitney map}) \\ (z_1, z_2) \mapsto (z_1^2, \, \sqrt{2} \, z_1 z_2, \, z_2^2) & (\text{deg 2 homogeneous map}) \\ (z_1, z_2) \mapsto (z_1^3, \, \sqrt{3} \, z_1 z_2, \, z_2^3) & (\text{Faran map}) \end{array}$$

Webster, Faran, Huang showed that if N < 2n - 1 ($n \ge 3$), then there is one equivalence class: $z \mapsto (z, 0)$. If N = 2n - 1 and $n \ge 3$, there are two classes (Huang, Ji).

 $\begin{array}{ll} (z_1, z_2) \mapsto (z_1, \, z_2, \, 0) & (\text{linear embedding}) \\ (z_1, z_2) \mapsto (z_1, \, z_1 z_2, \, z_2^2) & (\text{Whitney map}) \\ (z_1, z_2) \mapsto (z_1^2, \, \sqrt{2} \, z_1 z_2, \, z_2^2) & (\text{deg 2 homogeneous map}) \\ (z_1, z_2) \mapsto (z_1^3, \, \sqrt{3} \, z_1 z_2, \, z_2^3) & (\text{Faran map}) \end{array}$

Webster, Faran, Huang showed that if N < 2n - 1 ($n \ge 3$), then there is one equivalence class: $z \mapsto (z, 0)$. If N = 2n - 1 and $n \ge 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general.

 $\begin{array}{ll} (z_1, z_2) \mapsto (z_1, \, z_2, \, 0) & (\text{linear embedding}) \\ (z_1, z_2) \mapsto (z_1, \, z_1 z_2, \, z_2^2) & (\text{Whitney map}) \\ (z_1, z_2) \mapsto (z_1^2, \, \sqrt{2} \, z_1 z_2, \, z_2^2) & (\text{deg 2 homogeneous map}) \\ (z_1, z_2) \mapsto (z_1^3, \, \sqrt{3} \, z_1 z_2, \, z_2^3) & (\text{Faran map}) \end{array}$

Webster, Faran, Huang showed that if N < 2n - 1 ($n \ge 3$), then there is one equivalence class: $z \mapsto (z, 0)$. If N = 2n - 1 and $n \ge 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general. **Remark:** Aut(\mathbb{B}_n) and Aut(\mathbb{B}_N) are harder to work with than U(n) and U(N).

 $\begin{array}{ll} (z_1, z_2) \mapsto (z_1, \, z_2, \, 0) & (\text{linear embedding}) \\ (z_1, z_2) \mapsto (z_1, \, z_1 z_2, \, z_2^2) & (\text{Whitney map}) \\ (z_1, z_2) \mapsto (z_1^2, \, \sqrt{2} \, z_1 z_2, \, z_2^2) & (\text{deg 2 homogeneous map}) \\ (z_1, z_2) \mapsto (z_1^3, \, \sqrt{3} \, z_1 z_2, \, z_2^3) & (\text{Faran map}) \end{array}$

Webster, Faran, Huang showed that if N < 2n - 1 ($n \ge 3$), then there is one equivalence class: $z \mapsto (z, 0)$. If N = 2n - 1 and $n \ge 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general. **Remark:** Aut(\mathbb{B}_n) and Aut(\mathbb{B}_N) are harder to work with than U(n) and U(N). We want for something akin to:

Theorem (D'Angelo)

If $P : \mathbb{B}_n \to \mathbb{B}_N$ and $Q : \mathbb{B}_n \to \mathbb{B}_N$ are spherically equivalent polynomial proper maps and P(0) = G(0) = 0, then P(z) = UQ(Vz) where U and V are unitary.

$(z_1, z_2) \mapsto (z_1, z_2, 0)$	(linear embedding)
$(z_1, z_2) \mapsto (z_1, z_1 z_2, z_2^2)$	(Whitney map)
$(z_1, z_2) \mapsto (z_1^2, \sqrt{2} z_1 z_2, z_2^2)$	(deg 2 homogeneous map)
$(z_1, z_2) \mapsto (z_1^3, \sqrt{3} z_1 z_2, z_2^3)$	(Faran map)

Webster, Faran, Huang showed that if N < 2n - 1 ($n \ge 3$), then there is one equivalence class: $z \mapsto (z, 0)$. If N = 2n - 1 and $n \ge 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general. **Remark:** Aut(\mathbb{B}_n) and Aut(\mathbb{B}_N) are harder to work with than U(n) and U(N). We want for something akin to:

Theorem (D'Angelo)

If $P : \mathbb{B}_n \to \mathbb{B}_N$ and $Q : \mathbb{B}_n \to \mathbb{B}_N$ are spherically equivalent polynomial proper maps and P(0) = G(0) = 0, then P(z) = UQ(Vz) where U and V are unitary.

We'll see in a bit that normal form up to the $V \in U(n)$ is then linear algebra.

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d.

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d. Then there exist numbers $0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_n \le \frac{d-1}{2}$,

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d. Then there exist numbers $0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_n \le \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f \circ \psi = \frac{P}{G}$ (in lowest terms), where P(0) = 0, G is of degree at most d-1, and the homogeneous expansion of G is

$$G(z) = 1 + G_2(z) + G_3(z) + \dots + G_{d-1}(z),$$
 where $G_2(z) = \sum_{k=1}^n \sigma_k z_k^2.$

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d. Then there exist numbers $0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_n \le \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f \circ \psi = \frac{p}{G}$ (in lowest terms), where P(0) = 0, G is of degree at most d-1, and the homogeneous expansion of G is

$$G(z) = 1 + G_2(z) + G_3(z) + \dots + G_{d-1}(z),$$
 where $G_2(z) = \sum_{k=1}^n \sigma_k z_k^2.$

That is, G has no linear terms, and the quadratic part is diagonalized.

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d. Then there exist numbers $0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_n \le \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f \circ \psi = \frac{p}{G}$ (in lowest terms), where P(0) = 0, G is of degree at most d-1, and the homogeneous expansion of G is

$$G(z) = 1 + G_2(z) + G_3(z) + \dots + G_{d-1}(z),$$
 where $G_2(z) = \sum_{k=1}^n \sigma_k z_k^2.$

That is, G has no linear terms, and the quadratic part is diagonalized. The $\sigma_1, \ldots, \sigma_n$ are spherical invariants and f is in normal form up to composition with unitary maps.

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d. Then there exist numbers $0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_n \le \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f \circ \psi = \frac{p}{G}$ (in lowest terms), where P(0) = 0, G is of degree at most d-1, and the homogeneous expansion of G is

$$G(z) = 1 + G_2(z) + G_3(z) + \dots + G_{d-1}(z),$$
 where $G_2(z) = \sum_{k=1}^n \sigma_k z_k^2.$

That is, G has no linear terms, and the quadratic part is diagonalized. The $\sigma_1, \ldots, \sigma_n$ are spherical invariants and f is in normal form up to composition with unitary maps.

So if *F* and Φ are spherically equivalent and in the form above, $\sigma_1, \ldots, \sigma_n$ are the same and $\Phi = U \circ F \circ V$, where *U* and *V* are unitaries and $G_2 \circ V = G_2$.

Suppose $f: \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map of degree d. Then there exist numbers $0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_n \le \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f \circ \psi = \frac{p}{G}$ (in lowest terms), where P(0) = 0, G is of degree at most d-1, and the homogeneous expansion of G is

$$G(z) = 1 + G_2(z) + G_3(z) + \dots + G_{d-1}(z),$$
 where $G_2(z) = \sum_{k=1}^n \sigma_k z_k^2.$

That is, G has no linear terms, and the quadratic part is diagonalized. The $\sigma_1, \ldots, \sigma_n$ are spherical invariants and f is in normal form up to composition with unitary maps.

So if *F* and Φ are spherically equivalent and in the form above, $\sigma_1, \ldots, \sigma_n$ are the same and $\Phi = U \circ F \circ V$, where *U* and *V* are unitaries and $G_2 \circ V = G_2$.

If $0 < \sigma_1 < \cdots < \sigma_n$, then the only *V* that satisfy $G_2 \circ V = G_2$ are diagonal matrices with ±1 on the diagonal.

 $f = \frac{p}{g} \colon \mathbb{B}_n \to \mathbb{B}_N$ is proper if $f(S^{2n-1}) \subset S^{2N-1}$, or in other words, if $|g(z)|^2 - ||p(z)||^2 = 0$ whenever $1 - ||z||^2 = 0$ $f = \frac{p}{q}$: $\mathbb{B}_n \to \mathbb{B}_N$ is proper if $f(S^{2n-1}) \subset S^{2N-1}$, or in other words, if

$$|g(z)|^{2} - ||p(z)||^{2} = 0$$
 whenever $1 - ||z||^{2} = 0$

Lemma (L. '11)

Suppose $\frac{p}{g}$: $\mathbb{B}_n \to \mathbb{B}_N$ and $\frac{p}{G}$: $\mathbb{B}_n \to \mathbb{B}_N$ are proper rational maps written in lowest terms such that $|g(0)|^2 - ||p(0)||^2 = 1$ and $|G(0)|^2 - ||P(0)||^2 = 1$. Then there exists a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that

$$\tau \circ \frac{p}{g} = \frac{P}{G}$$
 if and only if $|g(z)|^2 - ||p(z)||^2 = |G(z)|^2 - ||P(z)||^2$.

In other words, classification up to the target automorphism is classification of $|g(z)|^2 - ||p(z)||^2$.

$$\Lambda(z,\bar{z}) = \Lambda_f(z,\bar{z}) = \frac{|g(z)|^2 - ||p(z)||^2}{\left(1 - ||z||^2\right)^d}.$$

$$\Lambda(z,\bar{z}) = \Lambda_f(z,\bar{z}) = \frac{|g(z)|^2 - ||p(z)||^2}{\left(1 - ||z||^2\right)^d}.$$

Theorem (L.)

Suppose $f = \frac{p}{g} : \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in lowest terms of degree d > 1. Then

(i) For $\tau \in \operatorname{Aut}(\mathbb{B}_N)$, $\Lambda_f = \Lambda_{\tau \circ f}$.

$$\Lambda(z,\bar{z}) = \Lambda_f(z,\bar{z}) = \frac{|g(z)|^2 - ||p(z)||^2}{\left(1 - ||z||^2\right)^d}$$

Theorem (L.)

Suppose $f = \frac{p}{g} : \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in lowest terms of degree d > 1. Then

- (i) For $\tau \in \operatorname{Aut}(\mathbb{B}_N)$, $\Lambda_f = \Lambda_{\tau \circ f}$.
- (ii) If $\psi \in \operatorname{Aut}(\mathbb{B}_n)$, then $\Lambda_f \circ \psi = C\Lambda_{f \circ \psi}$ for a constant *C*.

$$\Lambda(z,\bar{z}) = \Lambda_f(z,\bar{z}) = \frac{|g(z)|^2 - ||p(z)||^2}{\left(1 - ||z||^2\right)^d}$$

Theorem (L.)

Suppose $f = \frac{p}{g}$: $\mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in lowest terms of degree d > 1. Then

- (i) For $\tau \in \operatorname{Aut}(\mathbb{B}_N)$, $\Lambda_f = \Lambda_{\tau \circ f}$.
- (ii) If $\psi \in \operatorname{Aut}(\mathbb{B}_n)$, then $\Lambda_f \circ \psi = C\Lambda_{f \circ \psi}$ for a constant *C*.
- (iii) Λ is a strongly plurisubharmonic exhaustion function for \mathbb{B}_n : Λ is strongly plurisubharmonic and $\Lambda(z)$ goes to $+\infty$ as $z \to \partial \mathbb{B}_n$. In fact, Λ is strongly convex near $\partial \mathbb{B}_n$.

$$\Lambda(z,\bar{z}) = \Lambda_f(z,\bar{z}) = \frac{|g(z)|^2 - ||p(z)||^2}{\left(1 - ||z||^2\right)^d}$$

Theorem (L.)

Suppose $f = \frac{p}{g}$: $\mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in lowest terms of degree d > 1. Then

- (i) For $\tau \in \operatorname{Aut}(\mathbb{B}_N)$, $\Lambda_f = \Lambda_{\tau \circ f}$.
- (ii) If $\psi \in \operatorname{Aut}(\mathbb{B}_n)$, then $\Lambda_f \circ \psi = C\Lambda_{f \circ \psi}$ for a constant *C*.
- (iii) Λ is a strongly plurisubharmonic exhaustion function for \mathbb{B}_n : Λ is strongly plurisubharmonic and $\Lambda(z)$ goes to $+\infty$ as $z \to \partial \mathbb{B}_n$. In fact, Λ is strongly convex near $\partial \mathbb{B}_n$.
- (iv) Λ has a unique critical point (a minimum) in \mathbb{B}_n .

(i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in G_f$ if $f = f \circ \varphi$.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of Aut(\mathbb{B}_n) such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

D'Angelo–Xiao:

1) All the groups are closed and thus Lie subgroups.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

D'Angelo–Xiao:

- 1) All the groups are closed and thus Lie subgroups.
- 2) Any finite subgroup of $Aut(\mathbb{B}_n)$ is realizable as Γ_f .

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

D'Angelo–Xiao:

- 1) All the groups are closed and thus Lie subgroups.
- 2) Any finite subgroup of Aut(\mathbb{B}_n) is realizable as Γ_f .
- 3) *f* is monomial if and only if Γ_f contains the torus.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of Aut(\mathbb{B}_n) such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

D'Angelo-Xiao:

- 1) All the groups are closed and thus Lie subgroups.
- 2) Any finite subgroup of Aut(\mathbb{B}_n) is realizable as Γ_f .
- 3) *f* is monomial if and only if Γ_f contains the torus.
- 4) Γ_f is noncompact if and only if f is linear fractional ($f \in Aut(\mathbb{B}_n)$ if n = N).

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of Aut(\mathbb{B}_n) such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

D'Angelo–Xiao:

- 1) All the groups are closed and thus Lie subgroups.
- 2) Any finite subgroup of Aut(\mathbb{B}_n) is realizable as Γ_f .
- 3) *f* is monomial if and only if Γ_f contains the torus.
- 4) Γ_f is noncompact if and only if f is linear fractional ($f \in Aut(\mathbb{B}_n)$ if n = N).

Lichtblau showed that G_f must be finite, fixed-point-free, and cyclic.

- (i) A_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n) \oplus \operatorname{Aut}(\mathbb{B}_N)$ such that $(\varphi, \tau) \in A_f$ if $\tau \circ f = f \circ \varphi$.
- (ii) Γ_f is the subgroup of $\operatorname{Aut}(\mathbb{B}_n)$ such that $\varphi \in \Gamma_f$ if there is a $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that $\tau \circ f = f \circ \varphi$.
- (iii) G_f is the subgroup of Aut(\mathbb{B}_n) such that $\varphi \in G_f$ if $f = f \circ \varphi$.
- (iv) T_f is the subgroup of Aut(\mathbb{B}_N) such that $\varphi \in T_f$ if there is a $\varphi \in Aut(\mathbb{B}_n)$ such that $\tau \circ f = f \circ \varphi$.
- (v) H_f is the subgroup of Aut(\mathbb{B}_N) such that $\tau \in H_f$ if $\tau \circ f = f$.

D'Angelo–Xiao:

- 1) All the groups are closed and thus Lie subgroups.
- 2) Any finite subgroup of Aut(\mathbb{B}_n) is realizable as Γ_f .
- 3) *f* is monomial if and only if Γ_f contains the torus.
- 4) Γ_f is noncompact if and only if f is linear fractional ($f \in Aut(\mathbb{B}_n)$ if n = N).

Lichtblau showed that G_f must be finite, fixed-point-free, and cyclic.

If compact, all groups can be conjugated to a subgroup of the unitary.

Suppose
$$f = \frac{p}{g} \colon \mathbb{B}_n \to \mathbb{B}_N$$
 is a rational proper map in normal form, then
 $U \in \Gamma_f \subset U(n) \iff |g(Uz)|^2 - ||p(Uz)||^2 = |g(z)|^2 - ||p(z)||^2$

Definition: Let *f* be in normal form.

(i) D_f is the subgroup of U(n) such that $U \in D_f$ if $g \circ U = g$.

Definition: Let *f* be in normal form.

- (i) D_f is the subgroup of U(n) such that $U \in D_f$ if $g \circ U = g$.
- (ii) Σ_f is the subgroup of U(n) such that $U \in \Sigma_f$ if $g_2 \circ U = g_2$.

Definition: Let *f* be in normal form.

- (i) D_f is the subgroup of U(n) such that $U \in D_f$ if $g \circ U = g$.
- (ii) Σ_f is the subgroup of U(n) such that $U \in \Sigma_f$ if $g_2 \circ U = g_2$.
- (iii) $D_f^{(a,b)}$ is the subgroup of U(n) such that the bidegree (a, b) part of $|g(z)|^2 ||p(z)||^2$ is invariant under $D_f^{(a,b)}$. (Write * if taking all degrees).

Definition: Let *f* be in normal form.

(i) D_f is the subgroup of U(n) such that U ∈ D_f if g ∘ U = g.
(ii) Σ_f is the subgroup of U(n) such that U ∈ Σ_f if g₂ ∘ U = g₂.
(iii) D^(a,b)_f is the subgroup of U(n) such that the bidegree (a, b) part of |g(z)|² - ||p(z)||² is invariant under D^(a,b)_f. (Write * if taking all degrees).

Remark:
$$\Gamma_f = D_f^{(*,*)}$$
, $D_f = D_f^{(*,0)}$, and $\Sigma_f = D_f^{(2,0)}$.

Suppose $f : \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in normal form and f is not linear. Then

(i) $A_f \leq U(n) \oplus U(N)$ is a closed subgroup.

(ii) $G_f \leq \Gamma_f \leq D_f \leq \Sigma_f \leq U(n)$ and $\Gamma_f \leq D_f^{(a,b)}$ are all closed subgroups.

(iii) $H_f \leq U(N)$ and $T_f \leq U(N)$ are closed subgroups.

Suppose $f : \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in normal form and f is not linear. Then

(i) $A_f \leq U(n) \oplus U(N)$ is a closed subgroup.

(ii) $G_f \leq \Gamma_f \leq D_f \leq \Sigma_f \leq U(n)$ and $\Gamma_f \leq D_f^{(a,b)}$ are all closed subgroups.

(iii) $H_f \leq U(N)$ and $T_f \leq U(N)$ are closed subgroups.

Remark: If $0 < \sigma_1 < \ldots < \sigma_n$, then Σ_f is isomorphic to $\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$ and $\Gamma_f \leq \Sigma_f$.

Suppose $f : \mathbb{B}_n \to \mathbb{B}_N$ is a rational proper map in normal form and f is not linear. Then

(i) $A_f \leq U(n) \oplus U(N)$ is a closed subgroup.

(ii) $G_f \leq \Gamma_f \leq D_f \leq \Sigma_f \leq U(n)$ and $\Gamma_f \leq D_f^{(a,b)}$ are all closed subgroups.

(iii) $H_f \leq U(N)$ and $T_f \leq U(N)$ are closed subgroups.

Remark: If $0 < \sigma_1 < \ldots < \sigma_n$, then Σ_f is isomorphic to $\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$ and $\Gamma_f \leq \Sigma_f$.

In general, Γ_f can be computed by considering monomials that appear in $|g(z)|^2 - ||p(z)||^2$

 Γ_f is a group that is given by a real invariant polynomial: $\Gamma_f = \{U : p(Uz, \overline{Uz}) = p(z, \overline{z}) \text{ for all } z\}.$ Conversely, any group Γ given by a real invariant polynomial is Γ_f for some f, and this map can be chosen to be polynomial.

 Γ_f is a group that is given by a real invariant polynomial: $\Gamma_f = \{U : p(Uz, \overline{Uz}) = p(z, \overline{z}) \text{ for all } z\}.$ Conversely, any group Γ given by a real invariant polynomial is Γ_f for some f, and this map can be chosen to be polynomial.

If we put constraints on the degree or target dimension, then Γ_f is not arbitrary:

1) E.g., degree-2 map is equivalent to a monomial map, so Γ_f contains a torus. 2) E.g., $\mathbb{B}_2 \to \mathbb{B}_3$ maps are known and there are exactly 4 possibilities for Γ_f .