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Question: Classify all rational proper maps f : 𝔹n → 𝔹N

f
𝔹N

f (𝔹n)𝔹n

f (z) = p(z)
g(z) =

(
p1(z),...,pN(z)

)
g(z) , where p1 , . . . , pN , g are polynomials.

𝔹n =
{
z ∈ ℂn : ∥z∥2 = |z1 |2 + · · · + |zn |2 < 1

}
.
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Theorem (Fatou)
Every proper holomorphic map f : 𝔻 → 𝔻 is a finite Blaschke product.

Theorem (Alexander, Pinchuk circa ’77 (complicated history. . . ))
If f : 𝔹n → 𝔹n (n ≥ 2) is a proper holomorphic map, then f ∈ Aut(𝔹n).

N < n ⇒ no proper maps at all. N > n ⇒ lots of proper maps.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

Remark: deg f = deg p
g = max{deg p1 , . . . , deg pN , g} (in lowest terms).

Theorem (Cima–Suffridge ’90)
If f = p

g : 𝔹n → 𝔹N is rational proper map written in lowest terms, then g ≠ 0 on 𝔹n.
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f & F are spherically equivalent if F = 𝜏 ◦ f ◦𝜓, where 𝜓 ∈ Aut(𝔹n), 𝜏 ∈ Aut(𝔹N).

Faran (’82) showed that the 𝔹2 → 𝔹3 case has 4 equivalence classes:

(z1 , z2) ↦→ (z1 , z2 , 0) (linear embedding)
(z1 , z2) ↦→ (z1 , z1z2 , z2

2) (Whitney map)

(z1 , z2) ↦→ (z2
1 ,

√
2 z1z2 , z2

2) (deg 2 homogeneous map)

(z1 , z2) ↦→ (z3
1 ,

√
3 z1z2 , z3

2) (Faran map)

Webster, Faran, Huang showed that if N < 2n − 1 (n ≥ 3), then there is one
equivalence class: z ↦→ (z, 0). If N = 2n − 1 and n ≥ 3, there are two classes
(Huang, Ji). Many other such results, but infinitely many classes in general.
Remark: Aut(𝔹n) and Aut(𝔹N) are harder to work with than U(n) and U(N).
We want for something akin to:

Theorem (D’Angelo)
If P : 𝔹n → 𝔹N and Q : 𝔹n → 𝔹N are spherically equivalent polynomial proper maps
and P(0) = G(0) = 0, then P(z) = UQ(Vz) where U and V are unitary.

We’ll see in a bit that normal form up to the V ∈ U(n) is then linear algebra.
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Theorem (L.)
Suppose f : 𝔹n → 𝔹N is a rational proper map of degree d.

Then there exist numbers
0 ≤ 𝜎1 ≤ 𝜎2 ≤ · · · ≤ 𝜎n ≤ d−1

2 , and automorphisms 𝜓 ∈ Aut(𝔹n) and 𝜏 ∈ Aut(𝔹N)
such that 𝜏 ◦ f ◦ 𝜓 = P

G (in lowest terms), where P(0) = 0, G is of degree at most
d − 1, and the homogeneous expansion of G is

G(z) = 1 + G2(z) + G3(z) + · · · + Gd−1(z), where G2(z) =
n∑

k=1
𝜎kz2

k .

That is, G has no linear terms, and the quadratic part is diagonalized. The 𝜎1 , . . . , 𝜎n
are spherical invariants and f is in normal form up to composition with unitary maps.

So if F and Φ are spherically equivalent and in the form above, 𝜎1 , . . . , 𝜎n are
the same and Φ = U ◦ F ◦ V, where U and V are unitaries and G2 ◦ V = G2.

If 0 < 𝜎1 < · · · < 𝜎n, then the only V that satisfy G2 ◦ V = G2 are diagonal
matrices with ±1 on the diagonal.
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f = p
g : 𝔹n → 𝔹N is proper if f (S2n−1) ⊂ S2N−1, or in other words, if

|g(z)|2 − ∥p(z)∥2 = 0 whenever 1 − ∥z∥2 = 0

Lemma (L. ’11)
Suppose p

g : 𝔹n → 𝔹N and P
G : 𝔹n → 𝔹N are proper rational maps written in lowest

terms such that |g(0)|2 − ∥p(0)∥2 = 1 and |G(0)|2 − ∥P(0)∥2 = 1. Then there exists a
𝜏 ∈ Aut(𝔹N) such that

𝜏 ◦ p
g
=

P
G

if and only if |g(z)|2 − ∥p(z)∥2 = |G(z)|2 − ∥P(z)∥2.

In other words, classification up to the target automorphism is classification
of |g(z)|2 − ∥p(z)∥2.
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Define Λ : 𝔹n → ℝ,

Λ(z, z̄) = Λf (z, z̄) =
|g(z)|2 − ∥p(z)∥2(

1 − ∥z∥2)d .

Theorem (L.)
Suppose f = p

g : 𝔹n → 𝔹N is a rational proper map in lowest terms of degree d > 1.
Then
(i) For 𝜏 ∈ Aut(𝔹N), Λf = Λ𝜏◦f .

(ii) If 𝜓 ∈ Aut(𝔹n), then Λf ◦ 𝜓 = CΛf◦𝜓 for a constant C.
(iii) Λ is a strongly plurisubharmonic exhaustion function for 𝔹n: Λ is strongly

plurisubharmonic and Λ(z) goes to +∞ as z → 𝜕𝔹n. In fact, Λ is strongly
convex near 𝜕𝔹n.

(iv) Λ has a unique critical point (a minimum) in 𝔹n.
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Definition (D’Angelo–Xiao): Suppose f : 𝔹n → 𝔹N is a proper map.
(i) Af is the subgroup of Aut(𝔹n) ⊕ Aut(𝔹N) such that (𝜑, 𝜏) ∈ Af if

𝜏 ◦ f = f ◦ 𝜑.

(ii) Γf is the subgroup of Aut(𝔹n) such that 𝜑 ∈ Γf if there is a 𝜏 ∈ Aut(𝔹N)
such that 𝜏 ◦ f = f ◦ 𝜑.

(iii) Gf is the subgroup of Aut(𝔹n) such that 𝜑 ∈ Gf if f = f ◦ 𝜑.
(iv) Tf is the subgroup of Aut(𝔹N) such that 𝜑 ∈ Tf if there is a 𝜑 ∈ Aut(𝔹n)

such that 𝜏 ◦ f = f ◦ 𝜑.
(v) Hf is the subgroup of Aut(𝔹N) such that 𝜏 ∈ Hf if 𝜏 ◦ f = f .
D’Angelo–Xiao:
1) All the groups are closed and thus Lie subgroups.
2) Any finite subgroup of Aut(𝔹n) is realizable as Γf .
3) f is monomial if and only if Γf contains the torus.
4) Γf is noncompact if and only if f is linear fractional (f ∈ Aut(𝔹n) if n = N).

Lichtblau showed that Gf must be finite, fixed-point-free, and cyclic.

If compact, all groups can be conjugated to a subgroup of the unitary.
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Suppose f = p
g : 𝔹n → 𝔹N is a rational proper map in normal form, then

U ∈ Γf ⊂ U(n) ⇔ |g(Uz)|2 − ∥p(Uz)∥2 = |g(z)|2 − ∥p(z)∥2

Definition: Let f be in normal form.
(i) Df is the subgroup of U(n) such that U ∈ Df if g ◦ U = g.

(ii) Σf is the subgroup of U(n) such that U ∈ Σf if g2 ◦ U = g2.

(iii) D(a,b)
f is the subgroup of U(n) such that the bidegree (a, b) part of

|g(z)|2 − ∥p(z)∥2 is invariant under D(a,b)
f . (Write ∗ if taking all degrees).

Remark: Γf = D(∗,∗)
f , Df = D(∗,0)

f , and Σf = D(2,0)
f .
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Theorem (L., Grundmeier)
Suppose f : 𝔹n → 𝔹N is a rational proper map in normal form and f is not linear.
Then
(i) Af ≤ U(n) ⊕ U(N) is a closed subgroup.

(ii) Gf ≤ Γf ≤ Df ≤ Σf ≤ U(n) and Γf ≤ D(a,b)
f are all closed subgroups.

(iii) Hf ≤ U(N) and Tf ≤ U(N) are closed subgroups.

Remark: If 0 < 𝜎1 < . . . < 𝜎n, then Σf is isomorphic to ℤ2 ⊕ · · · ⊕ ℤ2 and
Γf ≤ Σf .

In general, Γf can be computed by considering monomials that appear in
|g(z)|2 − ∥p(z)∥2
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Theorem (L., Grundmeier)
Γf is a group that is given by a real invariant polynomial:
Γf = {U : p(Uz,Uz) = p(z, z̄) for all z}.
Conversely, any group Γ given by a real invariant polynomial is Γf for some f , and
this map can be chosen to be polynomial.

If we put constraints on the degree or target dimension, then Γf is not
arbitrary:
1) E.g., degree-2 map is equivalent to a monomial map, so Γf contains a torus.
2) E.g., 𝔹2 → 𝔹3 maps are known and there are exactly 4 possibilities for Γf .
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