Normal forms for proper maps of balls and associated groups

Jiří Lebl
(joint with Dusty Grundmeier)
Department of Mathematics, Oklahoma State University

Question: Classify all rational proper maps $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$

$$
\begin{aligned}
& f(z)=\frac{p(z)}{g(z)}=\frac{\left(p_{1}(z), \ldots, p_{N}(z)\right)}{g(z)} \text {, where } p_{1}, \ldots, p_{N}, g \text { are polynomials. } \\
& \mathbb{B}_{n}=\left\{z \in \mathbb{C}^{n}:\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}<1\right\} .
\end{aligned}
$$

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ is a finite Blaschke product.

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ is a finite Blaschke product.
Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))
If $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}(n \geq 2)$ is a proper holomorphic map, then $f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$.

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ is a finite Blaschke product.
Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))
If $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}(n \geq 2)$ is a proper holomorphic map, then $f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$.
$N<n \quad \Rightarrow \quad$ no proper maps at all.

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ is a finite Blaschke product.
Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))
If $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}(n \geq 2)$ is a proper holomorphic map, then $f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$.
$N<n \quad \Rightarrow \quad$ no proper maps at all. $N>n \quad \Rightarrow \quad$ lots of proper maps.

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ is a finite Blaschke product.
Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))
If $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}(n \geq 2)$ is a proper holomorphic map, then $f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$.
$N<n \quad \Rightarrow \quad$ no proper maps at all. $\quad N>n \quad \Rightarrow \quad$ lots of proper maps.
Theorem (Forstnerič '89)
Suppose $2 \leq n \leq N$. If a proper holomorphic $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N.

Remark: $\operatorname{deg} f=\operatorname{deg} \frac{p}{g}=\max \left\{\operatorname{deg} p_{1}, \ldots, \operatorname{deg} p_{N}, g\right\}$ (in lowest terms).

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ is a finite Blaschke product.
Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))
If $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}(n \geq 2)$ is a proper holomorphic map, then $f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$.
$N<n \quad \Rightarrow \quad$ no proper maps at all. $\quad N>n \quad \Rightarrow \quad$ lots of proper maps.
Theorem (Forstnerič '89)
Suppose $2 \leq n \leq N$. If a proper holomorphic $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N.

Remark: $\operatorname{deg} f=\operatorname{deg} \frac{p}{g}=\max \left\{\operatorname{deg} p_{1}, \ldots, \operatorname{deg} p_{N}, g\right\}$ (in lowest terms).

Theorem (Cima-Suffridge '90)

$$
\text { Iff }=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N} \text { is rational proper map written in lowest terms, then } g \neq 0 \text { on } \overline{\mathbb{B}_{n}} .
$$

$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$.
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}, 0\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right)
\end{aligned}
$$

(linear embedding)
(Whitney map)
(deg 2 homogeneous map)
(Faran map)
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{array}{rlrl}
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}, z_{2}, 0\right) & & \text { (linear embedding) } \\
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) & & \text { (Whitney map) } \\
\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) & & \text { (deg 2 homogeneous map) } \\
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right) & & \text { (Faran map) }
\end{array}
$$

Webster, Faran, Huang showed that if $N<2 n-1(n \geq 3)$, then there is one equivalence class: $z \mapsto(z, 0)$.
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}, 0\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right)
\end{aligned}
$$

(linear embedding)
(Whitney map)
(deg 2 homogeneous map)
(Faran map)
Webster, Faran, Huang showed that if $N<2 n-1(n \geq 3)$, then there is one equivalence class: $z \mapsto(z, 0)$. If $N=2 n-1$ and $n \geq 3$, there are two classes (Huang, Ji).
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}, 0\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right)
\end{aligned}
$$

(linear embedding)
(Whitney map)
(deg 2 homogeneous map)
(Faran map)
Webster, Faran, Huang showed that if $N<2 n-1(n \geq 3)$, then there is one equivalence class: $z \mapsto(z, 0)$. If $N=2 n-1$ and $n \geq 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general.
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}, 0\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right)
\end{aligned}
$$

(linear embedding)
(Whitney map)
(deg 2 homogeneous map)
(Faran map)
Webster, Faran, Huang showed that if $N<2 n-1(n \geq 3)$, then there is one equivalence class: $z \mapsto(z, 0)$. If $N=2 n-1$ and $n \geq 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general.
Remark: $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ are harder to work with than $U(n)$ and $U(N)$.
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}, 0\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right)
\end{aligned}
$$

(linear embedding)
(Whitney map)
(deg 2 homogeneous map)
(Faran map)
Webster, Faran, Huang showed that if $N<2 n-1(n \geq 3)$, then there is one equivalence class: $z \mapsto(z, 0)$. If $N=2 n-1$ and $n \geq 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general.
Remark: $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ are harder to work with than $U(n)$ and $U(N)$.
We want for something akin to:

Theorem (D'Angelo)

If $P: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ and $Q: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ are spherically equivalent polynomial proper maps and $P(0)=G(0)=0$, then $P(z)=U Q(V z)$ where U and V are unitary.
$f \& F$ are spherically equivalent if $F=\tau \circ f \circ \psi$, where $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right), \tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Faran ('82) showed that the $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ case has 4 equivalence classes:

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}, 0\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(z_{1}^{3}, \sqrt{3} z_{1} z_{2}, z_{2}^{3}\right)
\end{aligned}
$$

(linear embedding)
(Whitney map)
(deg 2 homogeneous map)
(Faran map)
Webster, Faran, Huang showed that if $N<2 n-1(n \geq 3)$, then there is one equivalence class: $z \mapsto(z, 0)$. If $N=2 n-1$ and $n \geq 3$, there are two classes (Huang, Ji). Many other such results, but infinitely many classes in general.
Remark: $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ are harder to work with than $U(n)$ and $U(N)$.
We want for something akin to:

Theorem (D'Angelo)

If $P: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ and $Q: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ are spherically equivalent polynomial proper maps and $P(0)=G(0)=0$, then $P(z)=U Q(V z)$ where U and V are unitary.

We'll see in a bit that normal form up to the $V \in U(n)$ is then linear algebra.

Theorem (L.)
Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d.

Theorem (L.)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d. Then there exist numbers $0 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n} \leq \frac{d-1}{2}$,

Theorem (L.)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d. Then there exist numbers $0 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n} \leq \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f \circ \psi=\frac{P}{G}$ (in lowest terms), where $P(0)=0, G$ is of degree at most $d-1$, and the homogeneous expansion of G is

$$
G(z)=1+G_{2}(z)+G_{3}(z)+\cdots+G_{d-1}(z), \quad \text { where } \quad G_{2}(z)=\sum_{k=1}^{n} \sigma_{k} z_{k}^{2}
$$

Theorem (L.)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d. Then there exist numbers $0 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n} \leq \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f \circ \psi=\frac{P}{G}$ (in lowest terms), where $P(0)=0, G$ is of degree at most $d-1$, and the homogeneous expansion of G is

$$
G(z)=1+G_{2}(z)+G_{3}(z)+\cdots+G_{d-1}(z), \quad \text { where } \quad G_{2}(z)=\sum_{k=1}^{n} \sigma_{k} z_{k}^{2}
$$

That is, G has no linear terms, and the quadratic part is diagonalized.

Theorem (L.)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d. Then there exist numbers $0 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n} \leq \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f \circ \psi=\frac{P}{G}$ (in lowest terms), where $P(0)=0, G$ is of degree at most $d-1$, and the homogeneous expansion of G is

$$
G(z)=1+G_{2}(z)+G_{3}(z)+\cdots+G_{d-1}(z), \quad \text { where } \quad G_{2}(z)=\sum_{k=1}^{n} \sigma_{k} z_{k}^{2}
$$

That is, G has no linear terms, and the quadratic part is diagonalized. The $\sigma_{1}, \ldots, \sigma_{n}$ are spherical invariants and f is in normal form up to composition with unitary maps.

Theorem (L.)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d. Then there exist numbers $0 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n} \leq \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f \circ \psi=\frac{P}{G}$ (in lowest terms), where $P(0)=0, G$ is of degree at most $d-1$, and the homogeneous expansion of G is

$$
G(z)=1+G_{2}(z)+G_{3}(z)+\cdots+G_{d-1}(z), \quad \text { where } \quad G_{2}(z)=\sum_{k=1}^{n} \sigma_{k} z_{k}^{2}
$$

That is, G has no linear terms, and the quadratic part is diagonalized. The $\sigma_{1}, \ldots, \sigma_{n}$ are spherical invariants and f is in normal form up to composition with unitary maps.

So if F and Φ are spherically equivalent and in the form above, $\sigma_{1}, \ldots, \sigma_{n}$ are the same and $\Phi=U \circ F \circ V$, where U and V are unitaries and $G_{2} \circ V=G_{2}$.

Theorem (L.)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map of degree d. Then there exist numbers $0 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n} \leq \frac{d-1}{2}$, and automorphisms $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f \circ \psi=\frac{P}{G}$ (in lowest terms), where $P(0)=0, G$ is of degree at most $d-1$, and the homogeneous expansion of G is

$$
G(z)=1+G_{2}(z)+G_{3}(z)+\cdots+G_{d-1}(z), \quad \text { where } \quad G_{2}(z)=\sum_{k=1}^{n} \sigma_{k} z_{k}^{2}
$$

That is, G has no linear terms, and the quadratic part is diagonalized. The $\sigma_{1}, \ldots, \sigma_{n}$ are spherical invariants and f is in normal form up to composition with unitary maps.

So if F and Φ are spherically equivalent and in the form above, $\sigma_{1}, \ldots, \sigma_{n}$ are the same and $\Phi=U \circ F \circ V$, where U and V are unitaries and $G_{2} \circ V=G_{2}$.

If $0<\sigma_{1}<\cdots<\sigma_{n}$, then the only V that satisfy $G_{2} \circ V=G_{2}$ are diagonal matrices with ± 1 on the diagonal.
$f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is proper if $f\left(S^{2 n-1}\right) \subset S^{2 N-1}$, or in other words, if

$$
|g(z)|^{2}-\|p(z)\|^{2}=0 \quad \text { whenever } \quad 1-\|z\|^{2}=0
$$

$f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is proper if $f\left(S^{2 n-1}\right) \subset S^{2 N-1}$, or in other words, if

$$
|g(z)|^{2}-\|p(z)\|^{2}=0 \quad \text { whenever } \quad 1-\|z\|^{2}=0
$$

Lemma (L. '11)

Suppose $\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ and $\frac{p}{G}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ are proper rational maps written in lowest terms such that $|g(0)|^{2}-\|p(0)\|^{2}=1$ and $|G(0)|^{2}-\|P(0)\|^{2}=1$. Then there exists a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that

$$
\tau \circ \frac{p}{g}=\frac{P}{G} \quad \text { if and only if } \quad|g(z)|^{2}-\|p(z)\|^{2}=|G(z)|^{2}-\|P(z)\|^{2} .
$$

In other words, classification up to the target automorphism is classification of $|g(z)|^{2}-\|p(z)\|^{2}$.

Define $\Lambda: \mathbb{B}_{n} \rightarrow \mathbb{R}$,

$$
\Lambda(z, \bar{z})=\Lambda_{f}(z, \bar{z})=\frac{|g(z)|^{2}-\|p(z)\|^{2}}{\left(1-\|z\|^{2}\right)^{d}} .
$$

Define $\Lambda: \mathbb{B}_{n} \rightarrow \mathbb{R}$,

$$
\Lambda(z, \bar{z})=\Lambda_{f}(z, \bar{z})=\frac{|g(z)|^{2}-\|p(z)\|^{2}}{\left(1-\|z\|^{2}\right)^{d}} .
$$

Theorem (L.)

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in lowest terms of degree $d>1$. Then
(i) For $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right), \Lambda_{f}=\Lambda_{\tau o f}$.

Define $\Lambda: \mathbb{B}_{n} \rightarrow \mathbb{R}$,

$$
\Lambda(z, \bar{z})=\Lambda_{f}(z, \bar{z})=\frac{|g(z)|^{2}-\|p(z)\|^{2}}{\left(1-\|z\|^{2}\right)^{d}} .
$$

Theorem (L.)

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in lowest terms of degree $d>1$. Then
(i) For $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right), \Lambda_{f}=\Lambda_{\tau o f}$.
(ii) If $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$, then $\Lambda_{f} \circ \psi=C \Lambda_{f \circ \psi}$ for a constant C.

Define $\Lambda: \mathbb{B}_{n} \rightarrow \mathbb{R}$,

$$
\Lambda(z, \bar{z})=\Lambda_{f}(z, \bar{z})=\frac{|g(z)|^{2}-\|p(z)\|^{2}}{\left(1-\|z\|^{2}\right)^{d}}
$$

Theorem (L.)

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in lowest terms of degree $d>1$. Then
(i) For $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right), \Lambda_{f}=\Lambda_{\tau \circ f}$.
(ii) If $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$, then $\Lambda_{f} \circ \psi=C \Lambda_{f \circ \psi}$ for a constant C.
(iii) Λ is a strongly plurisubharmonic exhaustion function for $\mathbb{B}_{n}: \Lambda$ is strongly plurisubharmonic and $\Lambda(z)$ goes to $+\infty$ as $z \rightarrow \partial \mathbb{B}_{n}$. In fact, Λ is strongly convex near $\partial \mathbb{B}_{n}$.

Define $\Lambda: \mathbb{B}_{n} \rightarrow \mathbb{R}$,

$$
\Lambda(z, \bar{z})=\Lambda_{f}(z, \bar{z})=\frac{|g(z)|^{2}-\|p(z)\|^{2}}{\left(1-\|z\|^{2}\right)^{d}}
$$

Theorem (L.)

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in lowest terms of degree $d>1$. Then
(i) For $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right), \Lambda_{f}=\Lambda_{\tau \circ f}$.
(ii) If $\psi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$, then $\Lambda_{f} \circ \psi=C \Lambda_{f \circ \psi}$ for a constant C.
(iii) Λ is a strongly plurisubharmonic exhaustion function for $\mathbb{B}_{n}: \Lambda$ is strongly plurisubharmonic and $\Lambda(z)$ goes to $+\infty$ as $z \rightarrow \partial \mathbb{B}_{n}$. In fact, Λ is strongly convex near $\partial \mathbb{B}_{n}$.
(iv) Λ has a unique critical point (a minimum) in \mathbb{B}_{n}.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.

(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

D'Angelo-Xiao:

1) All the groups are closed and thus Lie subgroups.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

D'Angelo-Xiao:

1) All the groups are closed and thus Lie subgroups.
2) Any finite subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ is realizable as Γ_{f}.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

D'Angelo-Xiao:

1) All the groups are closed and thus Lie subgroups.
2) Any finite subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ is realizable as Γ_{f}.
3) f is monomial if and only if Γ_{f} contains the torus.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

D'Angelo-Xiao:

1) All the groups are closed and thus Lie subgroups.
2) Any finite subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ is realizable as Γ_{f}.
3) f is monomial if and only if Γ_{f} contains the torus.
4) Γ_{f} is noncompact if and only if f is linear fractional $\left(f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)\right.$ if $\left.n=N\right)$.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

D'Angelo-Xiao:

1) All the groups are closed and thus Lie subgroups.
2) Any finite subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ is realizable as Γ_{f}.
3) f is monomial if and only if Γ_{f} contains the torus.
4) Γ_{f} is noncompact if and only if f is linear fractional $\left(f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)\right.$ if $\left.n=N\right)$.

Lichtblau showed that G_{f} must be finite, fixed-point-free, and cyclic.

Definition (D'Angelo-Xiao): Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a proper map.
(i) A_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right) \oplus \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $(\varphi, \tau) \in A_{f}$ if $\tau \circ f=f \circ \varphi$.
(ii) Γ_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in \Gamma_{f}$ if there is a $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \circ f=f \circ \varphi$.
(iii) G_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\varphi \in G_{f}$ if $f=f \circ \varphi$.
(iv) T_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\varphi \in T_{f}$ if there is a $\varphi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ such that $\tau \circ f=f \circ \varphi$.
(v) H_{f} is the subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that $\tau \in H_{f}$ if $\tau \circ f=f$.

D'Angelo-Xiao:

1) All the groups are closed and thus Lie subgroups.
2) Any finite subgroup of $\operatorname{Aut}\left(\mathbb{B}_{n}\right)$ is realizable as Γ_{f}.
3) f is monomial if and only if Γ_{f} contains the torus.
4) Γ_{f} is noncompact if and only if f is linear fractional $\left(f \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)\right.$ if $\left.n=N\right)$.

Lichtblau showed that G_{f} must be finite, fixed-point-free, and cyclic.
If compact, all groups can be conjugated to a subgroup of the unitary.

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form, then

$$
U \in \Gamma_{f} \subset U(n) \quad \Leftrightarrow \quad|g(U z)|^{2}-\|p(U z)\|^{2}=|g(z)|^{2}-\|p(z)\|^{2}
$$

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form, then

$$
U \in \Gamma_{f} \subset U(n) \quad \Leftrightarrow \quad|g(U z)|^{2}-\|p(U z)\|^{2}=|g(z)|^{2}-\|p(z)\|^{2}
$$

Definition: Let f be in normal form.
(i) D_{f} is the subgroup of $U(n)$ such that $U \in D_{f}$ if $g \circ U=g$.

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form, then

$$
U \in \Gamma_{f} \subset U(n) \quad \Leftrightarrow \quad|g(U z)|^{2}-\|p(U z)\|^{2}=|g(z)|^{2}-\|p(z)\|^{2}
$$

Definition: Let f be in normal form.
(i) D_{f} is the subgroup of $U(n)$ such that $U \in D_{f}$ if $g \circ U=g$.
(ii) Σ_{f} is the subgroup of $U(n)$ such that $U \in \Sigma_{f}$ if $g_{2} \circ U=g_{2}$.

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form, then

$$
U \in \Gamma_{f} \subset U(n) \quad \Leftrightarrow \quad|g(U z)|^{2}-\|p(U z)\|^{2}=|g(z)|^{2}-\|p(z)\|^{2}
$$

Definition: Let f be in normal form.
(i) D_{f} is the subgroup of $U(n)$ such that $U \in D_{f}$ if $g \circ U=g$.
(ii) Σ_{f} is the subgroup of $U(n)$ such that $U \in \Sigma_{f}$ if $g_{2} \circ U=g_{2}$.
(iii) $D_{f}^{(a, b)}$ is the subgroup of $U(n)$ such that the bidegree (a, b) part of $|g(z)|^{2}-\|p(z)\|^{2}$ is invariant under $D_{f}^{(a, b)}$. (Write $*$ if taking all degrees).

Suppose $f=\frac{p}{g}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form, then

$$
U \in \Gamma_{f} \subset U(n) \quad \Leftrightarrow \quad|g(U z)|^{2}-\|p(U z)\|^{2}=|g(z)|^{2}-\|p(z)\|^{2}
$$

Definition: Let f be in normal form.
(i) D_{f} is the subgroup of $U(n)$ such that $U \in D_{f}$ if $g \circ U=g$.
(ii) Σ_{f} is the subgroup of $U(n)$ such that $U \in \Sigma_{f}$ if $g_{2} \circ U=g_{2}$.
(iii) $D_{f}^{(a, b)}$ is the subgroup of $U(n)$ such that the bidegree (a, b) part of $|g(z)|^{2}-\|p(z)\|^{2}$ is invariant under $D_{f}^{(a, b)}$. (Write $*$ if taking all degrees).

Remark: $\Gamma_{f}=D_{f}^{(*, *)}, D_{f}=D_{f}^{(*, 0)}$, and $\Sigma_{f}=D_{f}^{(2,0)}$.

Theorem (L., Grundmeier)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form and f is not linear. Then
(i) $A_{f} \leq U(n) \oplus U(N)$ is a closed subgroup.
(ii) $G_{f} \leq \Gamma_{f} \leq D_{f} \leq \Sigma_{f} \leq U(n)$ and $\Gamma_{f} \leq D_{f}^{(a, b)}$ are all closed subgroups.
(iii) $H_{f} \leq U(N)$ and $T_{f} \leq U(N)$ are closed subgroups.

Theorem (L., Grundmeier)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form and f is not linear. Then
(i) $A_{f} \leq U(n) \oplus U(N)$ is a closed subgroup.
(ii) $G_{f} \leq \Gamma_{f} \leq D_{f} \leq \Sigma_{f} \leq U(n)$ and $\Gamma_{f} \leq D_{f}^{(a, b)}$ are all closed subgroups.
(iii) $H_{f} \leq U(N)$ and $T_{f} \leq U(N)$ are closed subgroups.

Remark: If $0<\sigma_{1}<\ldots<\sigma_{n}$, then Σ_{f} is isomorphic to $\mathbb{Z}_{2} \oplus \cdots \oplus \mathbb{Z}_{2}$ and $\Gamma_{f} \leq \Sigma_{f}$.

Theorem (L., Grundmeier)

Suppose $f: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ is a rational proper map in normal form and f is not linear. Then
(i) $A_{f} \leq U(n) \oplus U(N)$ is a closed subgroup.
(ii) $G_{f} \leq \Gamma_{f} \leq D_{f} \leq \Sigma_{f} \leq U(n)$ and $\Gamma_{f} \leq D_{f}^{(a, b)}$ are all closed subgroups.
(iii) $H_{f} \leq U(N)$ and $T_{f} \leq U(N)$ are closed subgroups.

Remark: If $0<\sigma_{1}<\ldots<\sigma_{n}$, then Σ_{f} is isomorphic to $\mathbb{Z}_{2} \oplus \cdots \oplus \mathbb{Z}_{2}$ and $\Gamma_{f} \leq \Sigma_{f}$.

In general, Γ_{f} can be computed by considering monomials that appear in $|g(z)|^{2}-\|p(z)\|^{2}$

Theorem (L., Grundmeier)

Γ_{f} is a group that is given by a real invariant polynomial:
$\Gamma_{f}=\{U: p(U z, \overline{U z})=p(z, \bar{z})$ for all $z\}$.
Conversely, any group Γ given by a real invariant polynomial is Γ_{f} for some f, and this map can be chosen to be polynomial.

Theorem (L., Grundmeier)

Γ_{f} is a group that is given by a real invariant polynomial:
$\Gamma_{f}=\{U: p(U z, \overline{U z})=p(z, \bar{z})$ for all $z\}$.
Conversely, any group Γ given by a real invariant polynomial is Γ_{f} for some f, and this map can be chosen to be polynomial.

If we put constraints on the degree or target dimension, then Γ_{f} is not arbitrary:

1) E.g., degree-2 map is equivalent to a monomial map, so Γ_{f} contains a torus.
2) E.g., $\mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ maps are known and there are exactly 4 possibilities for Γ_{f}.
