Singular Levi-flat hypersurfaces (5)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Maybe the main bit in the division question from last time:

Maybe the main bit in the division question from last time:
Claim: Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is at least C^{∞} an $f(0)=0$. Then $f(x)=x g(x)$ where $g:(-1,1) \rightarrow \mathbb{R}$ is a C^{∞} function.

Maybe the main bit in the division question from last time:
Claim: Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is at least C^{∞} an $f(0)=0$. Then $f(x)=x g(x)$ where $g:(-1,1) \rightarrow \mathbb{R}$ is a C^{∞} function.
Proof: $f(x)=\int_{0}^{x} f^{\prime}(t) d t$

Maybe the main bit in the division question from last time:
Claim: Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is at least C^{∞} an $f(0)=0$. Then $f(x)=x g(x)$ where $g:(-1,1) \rightarrow \mathbb{R}$ is a C^{∞} function.

Proof: $f(x)=\int_{0}^{x} f^{\prime}(t) d t=\int_{0}^{1} f^{\prime}(s x) x d s$

Maybe the main bit in the division question from last time:
Claim: Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is at least C^{∞} an $f(0)=0$. Then $f(x)=x g(x)$ where $g:(-1,1) \rightarrow \mathbb{R}$ is a C^{∞} function.
Proof: $f(x)=\int_{0}^{x} f^{\prime}(t) d t=\int_{0}^{1} f^{\prime}(s x) x d s=x \int_{0}^{1} f^{\prime}(s x) d s$

Maybe the main bit in the division question from last time:
Claim: Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is at least C^{∞} an $f(0)=0$. Then $f(x)=x g(x)$ where $g:(-1,1) \rightarrow \mathbb{R}$ is a C^{∞} function.
Proof: $f(x)=\int_{0}^{x} f^{\prime}(t) d t=\int_{0}^{1} f^{\prime}(s x) x d s=x \int_{0}^{1} f^{\prime}(s x) d s$
Small review:
A real (resp. complex) subvariety X of an open set $U \subset \mathbb{R}^{n}\left(\right.$ resp. $\left.\mathbb{C}^{n}\right)$ is a set locally given by vanishing of a set of real-analytic (resp. holomorphic) functions
$X_{\text {reg }} \subset X$ is the set of regular points (where X is an analytic manifold), $X_{\text {sing }}=X \backslash X_{\text {reg }}$.
$\operatorname{dim}(X, p)$ is the minimum of the maximal dimension of a regular point in a neighborhood of p.
$\operatorname{dim} X$ is the maximum dimension over all $p \in X$.

Maybe the main bit in the division question from last time:
Claim: Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is at least C^{∞} an $f(0)=0$.
Then $f(x)=x g(x)$ where $g:(-1,1) \rightarrow \mathbb{R}$ is a C^{∞} function.
Proof: $f(x)=\int_{0}^{x} f^{\prime}(t) d t=\int_{0}^{1} f^{\prime}(s x) x d s=x \int_{0}^{1} f^{\prime}(s x) d s$
Small review:
A real (resp. complex) subvariety X of an open set $U \subset \mathbb{R}^{n}\left(\right.$ resp. $\left.\mathbb{C}^{n}\right)$ is a set locally given by vanishing of a set of real-analytic (resp. holomorphic) functions
$X_{\text {reg }} \subset X$ is the set of regular points (where X is an analytic manifold), $X_{\text {sing }}=X \backslash X_{\text {reg }}$.
$\operatorname{dim}(X, p)$ is the minimum of the maximal dimension of a regular point in a neighborhood of p.
$\operatorname{dim} X$ is the maximum dimension over all $p \in X$.
Question: Did anybody get the "one defining function" exercise?

A subvariety $X \subset U$ is said to be irreducible if it is not a union of two proper subvarieties.

A subvariety $X \subset U$ is said to be irreducible if it is not a union of two proper subvarieties.
Example: $x^{2}-y^{2}=0$ is not irreducible.

A subvariety $X \subset U$ is said to be irreducible if it is not a union of two proper subvarieties.
Example: $x^{2}-y^{2}=0$ is not irreducible.

A subvariety is locally irreducible at p if it is irreducible in an arbitrary neighborhood of p.

A subvariety $X \subset U$ is said to be irreducible if it is not a union of two proper subvarieties.
Example: $x^{2}-y^{2}=0$ is not irreducible.

A subvariety is locally irreducible at p if it is irreducible in an arbitrary neighborhood of p.
Example: $(x+1) x^{2}-y^{2}=0$ is irreducible, but not locally irreducible at $(0,0)$.

A subvariety $X \subset U$ is said to be irreducible if it is not a union of two proper subvarieties.
Example: $x^{2}-y^{2}=0$ is not irreducible.

A subvariety is locally irreducible at p if it is irreducible in an arbitrary neighborhood of p.
Example: $(x+1) x^{2}-y^{2}=0$ is irreducible, but not locally irreducible at $(0,0)$.

Exercise: Prove that if $X_{\text {reg }}$ is connected, then X is irreducible.

A subvariety $X \subset U$ is said to be irreducible if it is not a union of two proper subvarieties.
Example: $x^{2}-y^{2}=0$ is not irreducible.

A subvariety is locally irreducible at p if it is irreducible in an arbitrary neighborhood of p.
Example: $(x+1) x^{2}-y^{2}=0$ is irreducible, but not locally irreducible at $(0,0)$.

Exercise: Prove that if $X_{\text {reg }}$ is connected, then X is irreducible.

Remark: For complex subvarieties, $X_{\text {reg }}$ being connected is equivalent to being irreducible. Not so for real subvarieties (example above).

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.
E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.
E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose X is a real or complex subvariety, we say $\rho_{1}, \ldots, \rho_{k}$ are defining functions of X at p if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on X near p.

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.
E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose X is a real or complex subvariety, we say $\rho_{1}, \ldots, \rho_{k}$ are defining functions of X at p if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on X near p. (We could treat ρ as a mapping $\rho: U \rightarrow \mathbb{R}^{k}$)

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.
E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose X is a real or complex subvariety, we say $\rho_{1}, \ldots, \rho_{k}$ are defining functions of X at p if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on X near p. (We could treat ρ as a mapping $\rho: U \rightarrow \mathbb{R}^{k}$)

Example: If $X=\{(0,0)\} \subset \mathbb{R}^{2}$, then x, y are defining functions: Every function vanishing on X can be written as $x a(x, y)+y b(x, y)$.

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.
E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose X is a real or complex subvariety, we say $\rho_{1}, \ldots, \rho_{k}$ are defining functions of X at p if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on X near p. (We could treat ρ as a mapping $\rho: U \rightarrow \mathbb{R}^{k}$)

Example: If $X=\{(0,0)\} \subset \mathbb{R}^{2}$, then x, y are defining functions: Every function vanishing on X can be written as $x a(x, y)+y b(x, y)$.
But $x^{2}+y^{2}$ is not a defining function for X. Not every function vanishing at the origin is divisible by $x^{2}+y^{2}$, e.g., x is not.

By a germ of a set or a function at a point p, we mean the equivalence class of such objects equal on some neighborhood of p.
E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose X is a real or complex subvariety, we say $\rho_{1}, \ldots, \rho_{k}$ are defining functions of X at p if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on X near p. (We could treat ρ as a mapping $\rho: U \rightarrow \mathbb{R}^{k}$)

Example: If $X=\{(0,0)\} \subset \mathbb{R}^{2}$, then x, y are defining functions: Every function vanishing on X can be written as $x a(x, y)+y b(x, y)$.
But $x^{2}+y^{2}$ is not a defining function for X. Not every function vanishing at the origin is divisible by $x^{2}+y^{2}$, e.g., x is not.

Exercise: Prove that $x^{2}-y^{3}$ is a defining function for the cusp at every point.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.
Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.
Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.
It depends on X as to how "thin" the neighborhood in \mathbb{C}^{n} is.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.
Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.
It depends on X as to how "thin" the neighborhood in \mathbb{C}^{n} is.
Example: If $\epsilon>0$, then $y=e^{-1 /\left(x^{2}+\epsilon^{2}\right)}$ gives a subvariety of \mathbb{R}^{2}, but it cannot be complexified to all of \mathbb{C}^{2}.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.
Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.
It depends on X as to how "thin" the neighborhood in \mathbb{C}^{n} is.
Example: If $\epsilon>0$, then $y=e^{-1 /\left(x^{2}+\epsilon^{2}\right)}$ gives a subvariety of \mathbb{R}^{2}, but it cannot be complexified to all of \mathbb{C}^{2}.
So a real X is the "trace" of X in \mathbb{R}^{n}.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.
Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.
It depends on X as to how "thin" the neighborhood in \mathbb{C}^{n} is.
Example: If $\epsilon>0$, then $y=e^{-1 /\left(x^{2}+\epsilon^{2}\right)}$ gives a subvariety of \mathbb{R}^{2}, but it cannot be complexified to all of \mathbb{C}^{2}.
So a real X is the "trace" of X in \mathbb{R}^{n}. While X has all sorts of nice properties, X can be quite bad.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.
Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.
It depends on X as to how "thin" the neighborhood in \mathbb{C}^{n} is.
Example: If $\epsilon>0$, then $y=e^{-1 /\left(x^{2}+\epsilon^{2}\right)}$ gives a subvariety of \mathbb{R}^{2}, but it cannot be complexified to all of \mathbb{C}^{2}.

So a real X is the "trace" of X in \mathbb{R}^{n}. While X has all sorts of nice properties, X can be quite bad.
Remark: If the real subvariety is really a subvariety of $\mathbb{C}^{n}=\mathbb{R}^{2 n}$, then we can think of \mathbb{C}^{n} as the "diagonal" in $\mathbb{C}^{n} \times \mathbb{C}^{n}=\mathbb{C}^{2 n}$ and complexify to $\mathbb{C}^{2 n}$ by treating z and \bar{z} as independent variables.

A real-analytic subvariety X of (real) dimension k in $U \subset \mathbb{R}^{n}$ can be "complexified" to a subvariety X of (complex) dimension k of some neighborhood of U in \mathbb{C}^{n} by taking the defining functions and treating the variables as complex.

Example: $x^{2}-y^{3}=0$ in \mathbb{R}^{2} can be complexified to $z^{2}-w^{3}=0$ in \mathbb{C}^{2}.
It depends on X as to how "thin" the neighborhood in \mathbb{C}^{n} is.
Example: If $\epsilon>0$, then $y=e^{-1 /\left(x^{2}+\epsilon^{2}\right)}$ gives a subvariety of \mathbb{R}^{2}, but it cannot be complexified to all of \mathbb{C}^{2}.

So a real X is the "trace" of X in \mathbb{R}^{n}. While X has all sorts of nice properties, X can be quite bad.
Remark: If the real subvariety is really a subvariety of $\mathbb{C}^{n}=\mathbb{R}^{2 n}$, then we can think of \mathbb{C}^{n} as the "diagonal" in $\mathbb{C}^{n} \times \mathbb{C}^{n}=\mathbb{C}^{2 n}$ and complexify to $\mathbb{C}^{2 n}$ by treating z and \bar{z} as independent variables.

The issues surrounding complexification are extremely subtle. Mainly, the complexification at one point may not be used at another point (an example coming up).

Example: (Whitney umbrella) $z x^{2}=y^{2}$ in \mathbb{R}^{3}.

Example: (Whitney umbrella) $z x^{2}=y^{2}$ in \mathbb{R}^{3}.

Irreducible.

Example: (Whitney umbrella) $z x^{2}=y^{2}$ in \mathbb{R}^{3}.

Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.

Example: (Whitney umbrella)
$z x^{2}=y^{2}$ in \mathbb{R}^{3}.
Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.
The complexification on the

"handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

Example: (Whitney umbrella)
$z x^{2}=y^{2}$ in \mathbb{R}^{3}.
Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.
The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.
$z x^{2}-y^{2}$ is a defining function at all points except on the "handle".

Example: (Whitney umbrella)
$z x^{2}=y^{2}$ in \mathbb{R}^{3}.
Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.
The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.
$z x^{2}-y^{2}$ is a defining function at all points except on the "handle".
No one set of defining functions that work at all points:
The Whitney umbrella is not so-called coherent.

Example: (Whitney umbrella)
$z x^{2}=y^{2}$ in \mathbb{R}^{3}.
Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.
The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.
$z x^{2}-y^{2}$ is a defining function at all points except on the "handle".
No one set of defining functions that work at all points:
The Whitney umbrella is not so-called coherent.
Complex subvarieties do not have such issues and are coherent:

Example: (Whitney umbrella)
$z x^{2}=y^{2}$ in \mathbb{R}^{3}.
Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.
The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.
$z x^{2}-y^{2}$ is a defining function at all points except on the "handle".
No one set of defining functions that work at all points:
The Whitney umbrella is not so-called coherent.
Complex subvarieties do not have such issues and are coherent: Near every point we can find a set of defining functions that also work at all nearby points.

Example: (Whitney umbrella)
$z x^{2}=y^{2}$ in \mathbb{R}^{3}.
Irreducible.
$X_{\text {sing }}$ is the set given by
$x=0, y=0$, and $z \geq 0$.
The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.
$z x^{2}-y^{2}$ is a defining function at all points except on the "handle".
No one set of defining functions that work at all points:
The Whitney umbrella is not so-called coherent.
Complex subvarieties do not have such issues and are coherent: Near every point we can find a set of defining functions that also work at all nearby points. Depending on U, perhaps even one global set of defining functions.

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.
Let $U^{*}=\{z: \bar{z} \in U\}$

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.
Let $U^{*}=\{z: \bar{z} \in U\}$
Suppose U is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^{*}$ (that is as $\rho(z, \xi)$ for $\left.(z, \xi) \in U \times U^{*}\right)$.

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.
Let $U^{*}=\{z: \bar{z} \in U\}$
Suppose U is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^{*}$ (that is as $\rho(z, \xi)$ for $\left.(z, \xi) \in U \times U^{*}\right)$.
Define the Segre variety (depends on U (and a priori on ρ)) as

$$
\Sigma_{q}(X, U)=\{z \in U: \rho(z, \bar{q})=0\}
$$

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.
Let $U^{*}=\{z: \bar{z} \in U\}$
Suppose U is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^{*}$ (that is as $\rho(z, \xi)$ for $\left.(z, \xi) \in U \times U^{*}\right)$.
Define the Segre variety (depends on U (and a priori on ρ)) as

$$
\Sigma_{q}(X, U)=\{z \in U: \rho(z, \bar{q})=0\}
$$

Alternatively, let $X \subset U \times U^{*}$ be the smallest complex subvariety containing the image $\iota(X)$ in the diagonal where $\iota(z)=(z, \bar{z})$.

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.
Let $U^{*}=\{z: \bar{z} \in U\}$
Suppose U is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^{*}$ (that is as $\rho(z, \xi)$ for $\left.(z, \xi) \in U \times U^{*}\right)$.
Define the Segre variety (depends on U (and a priori on ρ)) as

$$
\Sigma_{q}(X, U)=\{z \in U: \rho(z, \bar{q})=0\}
$$

Alternatively, let $X \subset U \times U^{*}$ be the smallest complex subvariety containing the image $\iota(X)$ in the diagonal where $\iota(z)=(z, \bar{z})$.
(For a small enough $U, X=\left\{(z, \xi) \in U \times U^{*}: \rho(z, \xi)=0\right\}$.)

Let $X \subset U \subset \mathbb{C}^{n}$ be a real-analytic subvariety and $p \in X$.
Let $U^{*}=\{z: \bar{z} \in U\}$
Suppose U is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^{*}$ (that is as $\rho(z, \xi)$ for $\left.(z, \xi) \in U \times U^{*}\right)$.
Define the Segre variety (depends on U (and a priori on ρ)) as

$$
\Sigma_{q}(X, U)=\{z \in U: \rho(z, \bar{q})=0\}
$$

Alternatively, let $X \subset U \times U^{*}$ be the smallest complex subvariety containing the image $\iota(X)$ in the diagonal where $\iota(z)=(z, \bar{z})$.
(For a small enough $U, X=\left\{(z, \xi) \in U \times U^{*}: \rho(z, \xi)=0\right\}$.)
Then

$$
\Sigma_{q}(X, U)=\{z \in U:(z, \bar{q}) \in X\} .
$$

Remark: If X is complex, then the Segre variety of X is X itself.

Remark: If X is complex, then the Segre variety of X is X itself.
If $p \in X$, then $p \in \Sigma_{p}(X, U)$.

Remark: If X is complex, then the Segre variety of X is X itself.
If $p \in X$, then $p \in \Sigma_{p}(X, U)$.
" $\Sigma_{p}(X, U)$ is to X as what $T_{p}^{(1,0)} X$ is to $T_{p} X$ (for a manifold)."
For a submanifold X, for a small enough U,

$$
T_{p}^{(1,0)} X=T_{p}^{(1,0)} \Sigma_{p}(X, U) .
$$

Remark: If X is complex, then the Segre variety of X is X itself.
If $p \in X$, then $p \in \Sigma_{p}(X, U)$.
" $\Sigma_{p}(X, U)$ is to X as what $T_{p}^{(1,0)} X$ is to $T_{p} X$ (for a manifold)."
For a submanifold X, for a small enough U,

$$
T_{p}^{(1,0)} X=T_{p}^{(1,0)} \Sigma_{p}(X, U) .
$$

Put another way: $\quad T_{p}^{(1,0)} X \oplus T_{p}^{(0,1)} X=\mathbb{C} \otimes T_{p} \Sigma_{p}(X, U)$.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q. Suppose U is a neighborhood of p. It is possible that for q arbitrarily close to $p, \Sigma_{q}(X, U)$ is different from $\Sigma_{q}(X)$, no matter how small U is.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q. Suppose U is a neighborhood of p. It is possible that for q arbitrarily close to $p, \Sigma_{q}(X, U)$ is different from $\Sigma_{q}(X)$, no matter how small U is. Recall the Whitney umbrella.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q. Suppose U is a neighborhood of p. It is possible that for q arbitrarily close to $p, \Sigma_{q}(X, U)$ is different from $\Sigma_{q}(X)$, no matter how small U is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_{p} to be the same as the real codimension of X at p. Another trouble is that it's not always the case.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q. Suppose U is a neighborhood of p. It is possible that for q arbitrarily close to $p, \Sigma_{q}(X, U)$ is different from $\Sigma_{q}(X)$, no matter how small U is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_{p} to be the same as the real codimension of X at p. Another trouble is that it's not always the case.

A point p is Segre degenerate if $\Sigma_{p}(X, U)$ has different (complex) codimension than the (real) codimension of X for all neighborhoods U of p. For hypersurfaces it is when $\Sigma_{p}(X, U)$ is all of U.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q. Suppose U is a neighborhood of p. It is possible that for q arbitrarily close to $p, \Sigma_{q}(X, U)$ is different from $\Sigma_{q}(X)$, no matter how small U is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_{p} to be the same as the real codimension of X at p. Another trouble is that it's not always the case.

A point p is Segre degenerate if $\Sigma_{p}(X, U)$ has different (complex) codimension than the (real) codimension of X for all neighborhoods U of p. For hypersurfaces it is when $\Sigma_{p}(X, U)$ is all of U.
Example: $X \subset \mathbb{C}^{2}$ given by $|z|^{2}-|w|^{2}=0$ (a complex cone) is Segre degenerate at the origin: The defining function can be written as $z \bar{z}-w \bar{w}=0$.

Segre variety is well-defined as a germ at p by using a neighborhood basis of p for U. The germ of $\Sigma_{p}(X, U)$ "stabilizes" as we take smaller and smaller U. Call this germ $\Sigma_{p}(X)$.

However, when X is singular, the defining function for X that is good at p may not be a defining function at q. Suppose U is a neighborhood of p. It is possible that for q arbitrarily close to $p, \Sigma_{q}(X, U)$ is different from $\Sigma_{q}(X)$, no matter how small U is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_{p} to be the same as the real codimension of X at p. Another trouble is that it's not always the case.
A point p is Segre degenerate if $\Sigma_{p}(X, U)$ has different (complex) codimension than the (real) codimension of X for all neighborhoods U of p. For hypersurfaces it is when $\Sigma_{p}(X, U)$ is all of U.
Example: $X \subset \mathbb{C}^{2}$ given by $|z|^{2}-|w|^{2}=0$ (a complex cone) is Segre degenerate at the origin: The defining function can be written as $z \bar{z}-w \bar{w}=0$.

Exercise: Prove that X is Levi-flat at regular points (outside the origin).

