Singular Levi-flat hypersurfaces (5)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Claim: Suppose $f: (-1, 1) \to \mathbb{R}$ is at least C^{∞} an f(0) = 0. Then f(x) = xg(x) where $g: (-1, 1) \to \mathbb{R}$ is a C^{∞} function.

Claim: Suppose $f: (-1, 1) \to \mathbb{R}$ is at least C^{∞} an f(0) = 0. Then f(x) = xg(x) where $g: (-1, 1) \to \mathbb{R}$ is a C^{∞} function.

Proof: $f(x) = \int_0^x f'(t) dt$

Claim: Suppose $f: (-1, 1) \to \mathbb{R}$ is at least C^{∞} an f(0) = 0. Then f(x) = xg(x) where $g: (-1, 1) \to \mathbb{R}$ is a C^{∞} function.

Proof:
$$f(x) = \int_0^x f'(t) dt = \int_0^1 f'(sx) x ds$$

Claim: Suppose $f: (-1, 1) \to \mathbb{R}$ is at least C^{∞} an f(0) = 0. Then f(x) = xg(x) where $g: (-1, 1) \to \mathbb{R}$ is a C^{∞} function.

Proof:
$$f(x) = \int_0^x f'(t) dt = \int_0^1 f'(sx) x ds = x \int_0^1 f'(sx) ds$$

Claim: Suppose $f: (-1, 1) \to \mathbb{R}$ is at least C^{∞} an f(0) = 0. Then f(x) = xg(x) where $g: (-1, 1) \to \mathbb{R}$ is a C^{∞} function.

Proof:
$$f(x) = \int_0^x f'(t) dt = \int_0^1 f'(sx) x ds = x \int_0^1 f'(sx) ds$$

Small review:

A real (resp. complex) subvariety *X* of an open set $U \subset \mathbb{R}^n$ (resp. \mathbb{C}^n) is a set locally given by vanishing of a set of real-analytic (resp. holomorphic) functions

 $X_{reg} \subset X$ is the set of regular points (where *X* is an analytic manifold), $X_{sing} = X \setminus X_{reg}$.

 $\dim(X, p)$ is the minimum of the maximal dimension of a regular point in a neighborhood of p.

dim *X* is the maximum dimension over all $p \in X$.

Claim: Suppose $f: (-1, 1) \to \mathbb{R}$ is at least C^{∞} an f(0) = 0. Then f(x) = xg(x) where $g: (-1, 1) \to \mathbb{R}$ is a C^{∞} function.

Proof:
$$f(x) = \int_0^x f'(t) dt = \int_0^1 f'(sx) x ds = x \int_0^1 f'(sx) ds$$

Small review:

A real (resp. complex) subvariety *X* of an open set $U \subset \mathbb{R}^n$ (resp. \mathbb{C}^n) is a set locally given by vanishing of a set of real-analytic (resp. holomorphic) functions

 $X_{reg} \subset X$ is the set of regular points (where X is an analytic manifold), $X_{sing} = X \setminus X_{reg}$.

 $\dim(X, p)$ is the minimum of the maximal dimension of a regular point in a neighborhood of p.

dim *X* is the maximum dimension over all $p \in X$.

Question: Did anybody get the "one defining function" exercise?

A subvariety is *locally irreducible* at p if it is irreducible in an arbitrary neighborhood of p.

A subvariety is *locally irreducible* at *p* if it is irreducible in an arbitrary neighborhood of *p*.

Example: $(x + 1)x^2 - y^2 = 0$ is irreducible, but not locally irreducible at (0, 0).

A subvariety is *locally irreducible* at *p* if it is irreducible in an arbitrary neighborhood of *p*.

Example: $(x + 1)x^2 - y^2 = 0$ is irreducible, but not locally irreducible at (0, 0).

Exercise: Prove that if X_{reg} is connected, then *X* is irreducible.

A subvariety is *locally irreducible* at *p* if it is irreducible in an arbitrary neighborhood of *p*.

Example: $(x + 1)x^2 - y^2 = 0$ is irreducible, but not locally irreducible at (0, 0).

Remark: For complex subvarieties, X_{reg} being connected is equivalent to being irreducible. Not so for real subvarieties (example above).

x

E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose *X* is a real or complex subvariety, we say ρ_1, \ldots, ρ_k are *defining functions* of *X* at *p* if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on *X* near *p*.

E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose *X* is a real or complex subvariety, we say ρ_1, \ldots, ρ_k are *defining functions* of *X* at *p* if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on *X* near *p*. (We could treat ρ as a mapping $\rho: U \to \mathbb{R}^k$)

E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose *X* is a real or complex subvariety, we say ρ_1, \ldots, ρ_k are *defining functions* of *X* at *p* if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on *X* near *p*. (We could treat ρ as a mapping $\rho: U \to \mathbb{R}^k$)

Example: If $X = \{(0, 0)\} \subset \mathbb{R}^2$, then *x*, *y* are defining functions: Every function vanishing on *X* can be written as xa(x, y) + yb(x, y).

E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose *X* is a real or complex subvariety, we say ρ_1, \ldots, ρ_k are *defining functions* of *X* at *p* if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on *X* near *p*. (We could treat ρ as a mapping $\rho: U \to \mathbb{R}^k$)

Example: If $X = \{(0, 0)\} \subset \mathbb{R}^2$, then *x*, *y* are defining functions: Every function vanishing on *X* can be written as xa(x, y) + yb(x, y).

But $x^2 + y^2$ is not a defining function for X. Not every function vanishing at the origin is divisible by $x^2 + y^2$, e.g., x is not.

E.g., for analytic functions, germs are in one-to-one correspondence with convergent power series.

Suppose *X* is a real or complex subvariety, we say ρ_1, \ldots, ρ_k are *defining functions* of *X* at *p* if they generate the ideal of germs of real-analytic or holomorphic functions vanishing on *X* near *p*. (We could treat ρ as a mapping $\rho: U \to \mathbb{R}^k$)

Example: If $X = \{(0, 0)\} \subset \mathbb{R}^2$, then *x*, *y* are defining functions: Every function vanishing on *X* can be written as xa(x, y) + yb(x, y).

But $x^2 + y^2$ is not a defining function for X. Not every function vanishing at the origin is divisible by $x^2 + y^2$, e.g., x is not.

Exercise: Prove that $x^2 - y^3$ is a defining function for the cusp at every point.

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

It depends on *X* as to how "thin" the neighborhood in \mathbb{C}^n is.

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

It depends on *X* as to how "thin" the neighborhood in \mathbb{C}^n is.

Example: If $\epsilon > 0$, then $y = e^{-1/(x^2 + \epsilon^2)}$ gives a subvariety of \mathbb{R}^2 , but it cannot be complexified to all of \mathbb{C}^2 .

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

It depends on *X* as to how "thin" the neighborhood in \mathbb{C}^n is.

Example: If $\epsilon > 0$, then $y = e^{-1/(x^2 + \epsilon^2)}$ gives a subvariety of \mathbb{R}^2 , but it cannot be complexified to all of \mathbb{C}^2 .

So a real *X* is the "trace" of \mathfrak{X} in \mathbb{R}^n .

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

It depends on *X* as to how "thin" the neighborhood in \mathbb{C}^n is.

Example: If $\epsilon > 0$, then $y = e^{-1/(x^2 + \epsilon^2)}$ gives a subvariety of \mathbb{R}^2 , but it cannot be complexified to all of \mathbb{C}^2 .

So a real *X* is the "trace" of \mathfrak{X} in \mathbb{R}^n . While \mathfrak{X} has all sorts of nice properties, *X* can be quite bad.

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

It depends on *X* as to how "thin" the neighborhood in \mathbb{C}^n is.

Example: If $\epsilon > 0$, then $y = e^{-1/(x^2 + \epsilon^2)}$ gives a subvariety of \mathbb{R}^2 , but it cannot be complexified to all of \mathbb{C}^2 .

So a real *X* is the "trace" of \mathfrak{X} in \mathbb{R}^n . While \mathfrak{X} has all sorts of nice properties, *X* can be quite bad.

Remark: If the real subvariety is really a subvariety of $\mathbb{C}^n = \mathbb{R}^{2n}$, then we can think of \mathbb{C}^n as the "diagonal" in $\mathbb{C}^n \times \mathbb{C}^n = \mathbb{C}^{2n}$ and complexify to \mathbb{C}^{2n} by treating *z* and \overline{z} as independent variables.

Example: $x^2 - y^3 = 0$ in \mathbb{R}^2 can be complexified to $z^2 - w^3 = 0$ in \mathbb{C}^2 .

It depends on *X* as to how "thin" the neighborhood in \mathbb{C}^n is.

Example: If $\epsilon > 0$, then $y = e^{-1/(x^2 + \epsilon^2)}$ gives a subvariety of \mathbb{R}^2 , but it cannot be complexified to all of \mathbb{C}^2 .

So a real *X* is the "trace" of \mathfrak{X} in \mathbb{R}^n . While \mathfrak{X} has all sorts of nice properties, *X* can be quite bad.

Remark: If the real subvariety is really a subvariety of $\mathbb{C}^n = \mathbb{R}^{2n}$, then we can think of \mathbb{C}^n as the "diagonal" in $\mathbb{C}^n \times \mathbb{C}^n = \mathbb{C}^{2n}$ and complexify to \mathbb{C}^{2n} by treating *z* and \overline{z} as independent variables.

The issues surrounding complexification are extremely subtle. Mainly, the complexification at one point may not be used at another point (an example coming up).

 $zx^2 = y^2$ in \mathbb{R}^3 .

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

Example: (Whitney umbrella) $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

 $zx^2 - y^2$ is a defining function at all points except on the "handle".

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

 $zx^2 - y^2$ is a defining function at all points except on the "handle". No one set of defining functions that work at all points: The Whitney umbrella is not so-called *coherent*.

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

 $zx^2 - y^2$ is a defining function at all points except on the "handle". No one set of defining functions that work at all points: The Whitney umbrella is not so-called *coherent*.

Complex subvarieties do not have such issues and are coherent:

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

 $zx^2 - y^2$ is a defining function at all points except on the "handle". No one set of defining functions that work at all points: The Whitney umbrella is not so-called *coherent*.

Complex subvarieties do not have such issues and are coherent: Near every point we can find a set of defining functions that also work at all nearby points.

 $zx^2 = y^2$ in \mathbb{R}^3 .

Irreducible.

 X_{sing} is the set given by x = 0, y = 0, and $z \ge 0$.

The complexification on the "handle" is 1 dimensional arbitrarily close to the origin, but if we take the defining function at the origin and complexify that, we get a 2 dimensional set everywhere.

 $zx^2 - y^2$ is a defining function at all points except on the "handle". No one set of defining functions that work at all points: The Whitney umbrella is not so-called *coherent*.

Complex subvarieties do not have such issues and are coherent: Near every point we can find a set of defining functions that also work at all nearby points. Depending on *U*, perhaps even one global set of defining functions.

Let $X \subset U \subset \mathbb{C}^n$ be a real-analytic subvariety and $p \in X$.

Suppose *U* is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^*$ (that is as $\rho(z, \xi)$ for $(z, \xi) \in U \times U^*$).

Suppose *U* is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^*$ (that is as $\rho(z, \xi)$ for $(z, \xi) \in U \times U^*$).

Define the Segre variety (depends on *U* (and a priori on ρ)) as

 $\Sigma_q(X,U)=\{z\in U:\rho(z,\bar{q})=0\}.$

Suppose *U* is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^*$ (that is as $\rho(z, \xi)$ for $(z, \xi) \in U \times U^*$).

Define the Segre variety (depends on *U* (and a priori on ρ)) as

$$\Sigma_q(X,U)=\{z\in U:\rho(z,\bar{q})=0\}.$$

Alternatively, let $\mathfrak{X} \subset U \times U^*$ be the smallest complex subvariety containing the image $\iota(X)$ in the diagonal where $\iota(z) = (z, \overline{z})$.

Suppose *U* is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^*$ (that is as $\rho(z, \xi)$ for $(z, \xi) \in U \times U^*$).

Define the Segre variety (depends on *U* (and a priori on ρ)) as

$$\Sigma_q(X,U)=\{z\in U:\rho(z,\bar{q})=0\}.$$

Alternatively, let $\mathfrak{X} \subset U \times U^*$ be the smallest complex subvariety containing the image $\iota(X)$ in the diagonal where $\iota(z) = (z, \overline{z})$. (For a small enough $U, \mathfrak{X} = \{(z, \xi) \in U \times U^* : \rho(z, \xi) = 0\}$.)

Suppose *U* is small enough so that the defining functions $\rho(z, \bar{z})$ have a convergent series on $U \times U^*$ (that is as $\rho(z, \xi)$ for $(z, \xi) \in U \times U^*$).

Define the Segre variety (depends on *U* (and a priori on ρ)) as

$$\Sigma_q(X, U) = \{z \in U : \rho(z, \overline{q}) = 0\}.$$

Alternatively, let $\mathfrak{X} \subset U \times U^*$ be the smallest complex subvariety containing the image $\iota(X)$ in the diagonal where $\iota(z) = (z, \overline{z})$. (For a small enough $U, \mathfrak{X} = \{(z, \xi) \in U \times U^* : \rho(z, \xi) = 0\}$.)

Then

$$\Sigma_q(X,U)=\left\{z\in U:(z,\bar{q})\in\mathfrak{X}\right\}.$$

Remark: If *X* is complex, then the Segre variety of *X* is *X* itself.

Remark: If *X* is complex, then the Segre variety of *X* is *X* itself. If $p \in X$, then $p \in \Sigma_p(X, U)$. **Remark:** If *X* is complex, then the Segre variety of *X* is *X* itself. If $p \in X$, then $p \in \Sigma_p(X, U)$.

" $\Sigma_p(X, U)$ is to X as what $T_p^{(1,0)}X$ is to T_pX (for a manifold)."

For a submanifold *X*, for a small enough *U*,

$$T_p^{(1,0)}X = T_p^{(1,0)}\Sigma_p(X,U).$$

Remark: If *X* is complex, then the Segre variety of *X* is *X* itself. If $p \in X$, then $p \in \Sigma_p(X, U)$.

" $\Sigma_p(X, U)$ is to X as what $T_p^{(1,0)}X$ is to T_pX (for a manifold)."

For a submanifold *X*, for a small enough *U*,

$$T_p^{(1,0)}X = T_p^{(1,0)}\Sigma_p(X,U).$$

Put another way: $T_p^{(1,0)}X \oplus T_p^{(0,1)}X = \mathbb{C} \otimes T_p\Sigma_p(X, U).$

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*.

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*. Suppose *U* is a neighborhood of *p*. It is possible that for *q* arbitrarily close to *p*, $\Sigma_q(X, U)$ is different from $\Sigma_q(X)$, no matter how small *U* is.

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*. Suppose *U* is a neighborhood of *p*. It is possible that for *q* arbitrarily close to *p*, $\Sigma_q(X, U)$ is different from $\Sigma_q(X)$, no matter how small *U* is. Recall the Whitney umbrella.

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*. Suppose *U* is a neighborhood of *p*. It is possible that for *q* arbitrarily close to *p*, $\Sigma_q(X, U)$ is different from $\Sigma_q(X)$, no matter how small *U* is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_p to be the same as the real codimension of *X* at *p*. Another trouble is that it's not always the case.

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*. Suppose *U* is a neighborhood of *p*. It is possible that for *q* arbitrarily close to *p*, $\Sigma_q(X, U)$ is different from $\Sigma_q(X)$, no matter how small *U* is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_p to be the same as the real codimension of *X* at *p*. Another trouble is that it's not always the case.

A point *p* is *Segre degenerate* if $\Sigma_p(X, U)$ has different (complex) codimension than the (real) codimension of *X* for all neighborhoods *U* of *p*. For hypersurfaces it is when $\Sigma_p(X, U)$ is all of *U*.

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*. Suppose *U* is a neighborhood of *p*. It is possible that for *q* arbitrarily close to *p*, $\Sigma_q(X, U)$ is different from $\Sigma_q(X)$, no matter how small *U* is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_p to be the same as the real codimension of *X* at *p*. Another trouble is that it's not always the case.

A point *p* is *Segre degenerate* if $\Sigma_p(X, U)$ has different (complex) codimension than the (real) codimension of *X* for all neighborhoods *U* of *p*. For hypersurfaces it is when $\Sigma_p(X, U)$ is all of *U*.

Example: $X \subset \mathbb{C}^2$ given by $|z|^2 - |w|^2 = 0$ (a complex cone) is Segre degenerate at the origin: The defining function can be written as $z\bar{z} - w\bar{w} = 0$.

However, when *X* is singular, the defining function for *X* that is good at *p* may not be a defining function at *q*. Suppose *U* is a neighborhood of *p*. It is possible that for *q* arbitrarily close to *p*, $\Sigma_q(X, U)$ is different from $\Sigma_q(X)$, no matter how small *U* is. Recall the Whitney umbrella.

We expect the complex codimension of Σ_p to be the same as the real codimension of *X* at *p*. Another trouble is that it's not always the case.

A point *p* is *Segre degenerate* if $\Sigma_p(X, U)$ has different (complex) codimension than the (real) codimension of *X* for all neighborhoods *U* of *p*. For hypersurfaces it is when $\Sigma_p(X, U)$ is all of *U*.

Example: $X \subset \mathbb{C}^2$ given by $|z|^2 - |w|^2 = 0$ (a complex cone) is Segre degenerate at the origin: The defining function can be written as $z\bar{z} - w\bar{w} = 0$.

Exercise: Prove that *X* is Levi-flat at regular points (outside the origin).