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Maybe the main bit in the division question from last time:

Claim: Suppose f : (−1, 1) → ℝ is at least C∞ an f (0) = 0.
Then f (x) = xg(x) where g : (−1, 1) → ℝ is a C∞ function.

Proof: f (x) =
∫ x

0
f ′(t) dt =

∫ 1

0
f ′(sx) x ds = x

∫ 1

0
f ′(sx) ds □

Small review:

A real (resp. complex) subvariety X of an open set U ⊂ ℝn (resp. ℂn)
is a set locally given by vanishing of a set of real-analytic (resp.
holomorphic) functions

Xreg ⊂ X is the set of regular points (where X is an analytic manifold),
Xsing = X \ Xreg.

dim(X, p) is the minimum of the maximal dimension of a regular
point in a neighborhood of p.

dim X is the maximum dimension over all p ∈ X.

Question: Did anybody get the “one defining function” exercise?
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A subvariety X ⊂ U is said to be irreducible if it is not a union of two
proper subvarieties.

Example: x2 − y2 = 0 is not irreducible.

x

y

A subvariety is locally irreducible at p if it is irreducible in an arbitrary
neighborhood of p.

Example: (x + 1)x2 − y2 = 0 is irreducible,
but not locally irreducible at (0, 0).

x

y

Exercise: Prove that if Xreg is connected,
then X is irreducible.

Remark: For complex subvarieties, Xreg being connected is equivalent
to being irreducible. Not so for real subvarieties (example above).
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By a germ of a set or a function at a point p, we mean the equivalence
class of such objects equal on some neighborhood of p.

E.g., for analytic functions, germs are in one-to-one correspondence
with convergent power series.

Suppose X is a real or complex subvariety, we say 𝜌1 , . . . , 𝜌k are
defining functions of X at p if they generate the ideal of germs of
real-analytic or holomorphic functions vanishing on X near p.
(We could treat 𝜌 as a mapping 𝜌 : U → ℝk)

Example: If X = {(0, 0)} ⊂ ℝ2, then x, y are defining functions:
Every function vanishing on X can be written as xa(x, y) + yb(x, y).

But x2 + y2 is not a defining function for X. Not every function
vanishing at the origin is divisible by x2 + y2, e.g., x is not.

Exercise: Prove that x2 − y3 is a defining function for the cusp at every
point.
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A real-analytic subvariety X of (real) dimension k in U ⊂ ℝn can be
“complexified” to a subvariety Xof (complex) dimension k of some
neighborhood of U in ℂn by taking the defining functions and
treating the variables as complex.

Example: x2 − y3 = 0 in ℝ2 can be complexified to z2 − w3 = 0 in ℂ2.

It depends on X as to how “thin” the neighborhood in ℂn is.

Example: If 𝜖 > 0, then y = e−1/(x2+𝜖2) gives a subvariety of ℝ2, but it
cannot be complexified to all of ℂ2.

So a real X is the “trace” of X in ℝn. While Xhas all sorts of nice
properties, X can be quite bad.

Remark: If the real subvariety is really a subvariety of ℂn = ℝ2n, then
we can think of ℂn as the “diagonal” in ℂn ×ℂn = ℂ2n and complexify
to ℂ2n by treating z and z̄ as independent variables.

The issues surrounding complexification are extremely subtle.
Mainly, the complexification at one point may not be used at another
point (an example coming up).
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Example: (Whitney umbrella)
zx2 = y2 in ℝ3.

Irreducible.

Xsing is the set given by
x = 0, y = 0, and z ≥ 0.

The complexification on the
“handle” is 1 dimensional
arbitrarily close to the origin, but if we take the
defining function at the origin and complexify
that, we get a 2 dimensional set everywhere.

zx2 − y2 is a defining function at all points except on the “handle”.
No one set of defining functions that work at all points:
The Whitney umbrella is not so-called coherent.

Complex subvarieties do not have such issues and are coherent:
Near every point we can find a set of defining functions that also
work at all nearby points. Depending on U, perhaps even one global
set of defining functions.
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Let X ⊂ U ⊂ ℂn be a real-analytic subvariety and p ∈ X.

Let U∗ = {z : z̄ ∈ U}
Suppose U is small enough so that the defining functions 𝜌(z, z̄) have
a convergent series on U × U∗ (that is as 𝜌(z, 𝜉) for (z, 𝜉) ∈ U × U∗).

Define the Segre variety (depends on U (and a priori on 𝜌)) as

Σq(X,U) = {z ∈ U : 𝜌(z, q̄) = 0}.

Alternatively, let X⊂ U × U∗ be the smallest complex subvariety
containing the image 𝜄(X) in the diagonal where 𝜄(z) = (z, z̄).
(For a small enough U, X= {(z, 𝜉) ∈ U × U∗ : 𝜌(z, 𝜉) = 0}.)

Then
Σq(X,U) =

{
z ∈ U : (z, q̄) ∈ X

}
.
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Remark: If X is complex, then the Segre variety of X is X itself.

If p ∈ X, then p ∈ Σp(X,U).

“Σp(X,U) is to X as what T(1,0)
p X is to TpX (for a manifold).”

For a submanifold X, for a small enough U,

T(1,0)
p X = T(1,0)

p Σp(X,U).

Put another way: T(1,0)
p X ⊕ T(0,1)

p X = ℂ ⊗ TpΣp(X,U).
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Segre variety is well-defined as a germ at p by using a neighborhood
basis of p for U. The germ of Σp(X,U) “stabilizes” as we take smaller
and smaller U.

Call this germ Σp(X).

However, when X is singular, the defining function for X that is good
at p may not be a defining function at q. Suppose U is a neighborhood
of p. It is possible that for q arbitrarily close to p, Σq(X,U) is different
from Σq(X), no matter how small U is. Recall the Whitney umbrella.

We expect the complex codimension of Σp to be the same as the real
codimension of X at p. Another trouble is that it’s not always the case.

A point p is Segre degenerate if Σp(X,U) has different (complex)
codimension than the (real) codimension of X for all neighborhoods
U of p. For hypersurfaces it is when Σp(X,U) is all of U.

Example: X ⊂ ℂ2 given by |z|2 − |w|2 = 0 (a complex cone) is Segre
degenerate at the origin: The defining function can be written as
zz̄ − ww̄ = 0.

Exercise: Prove that X is Levi-flat at regular points (outside the
origin).
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