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Small review:

For a CR manifold M, a smooth function f : M → ℂ is a CR function if

vf = 0

for all vector fields v ∈ Γ(T(0,1)M).
There exist smooth CR functions that are not restrictions of
holomorphic functions, but we will show in just a bit that all
real-analytic CR functions on a real-analytic CR submanifold are.

Then we will completely locally classify ALL real-analytic
(nonsingular) Levi-flat hypersurfaces.
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Suppose M ⊂ ℂn is a real-analytic real hypersurface given in
(z,w) ∈ ℂn−1 ×ℂ as

Im w = 𝜑(z, z̄,Re w) or w − w̄
2i

= 𝜑
(
z, z̄, w + w̄

2

)
,

with the 𝜑(0) and d𝜑(0) = 0.

Treat a defining equation as a function of z, z̄, w, and w̄ independently.
Holomorphic implicit function theorem implies a holomorphic Q
such that M is given by

w̄ = Q(z, z̄,w) (derivatives of Q in z and z̄ vanish at 0)

Similarly w = Q̄(z̄, z, w̄) gives the same set. We have

w̄ = Q
(
z, z̄, Q̄(z̄, z, w̄)

)
for all z, z̄, w̄.

We can also find a basis for the vector fields in T(0,1)M:
That is, vector fields in T(0,1)ℂn that vanish on the function
w̄ − Q(z, z̄,w). The following will work:

Xk =
𝜕

𝜕z̄k
+ 𝜕Q

𝜕z̄k

𝜕

𝜕w̄
.
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Theorem (Severi)
If M ⊂ ℂn is a real-analytic CR submanifold. Suppose that f : M → ℂ is a
real-analytic CR function. For every p ∈ M, there exists a holomorphic
function F defined in a neighbourhood of p such that F equals f on M.

Sketch of proof for hypersurface:
Write f (z, z̄,w, w̄) for any old real-analytic extension.
Then consider f (z, z̄,w,Q(z, z̄,w)) instead.
WLOG, we can treat f as an analytic function of z, z̄, and w.

On M:
0 = Xkf =

𝜕f
𝜕z̄k

+ 𝜕Q
𝜕z̄k

𝜕f
𝜕w̄

=
𝜕f
𝜕z̄k

.

For any fixed z, we have a holomorphic function (in w) 𝜕f
𝜕z̄k

that is zero
on a curve in ℂ so it is identically zero.

So f is holomorphic in both z and w. □
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Real hypersurface M = {r = 0} ⊂ ℂn is Levi-flat at p if

• the Levi form is zero: X∗
pLpXp = 0 for all Xp ∈ T(1,0)

p M

• or equivalently
n∑

k=1,ℓ=1
ākaℓ

𝜕2r
𝜕z̄k𝜕zℓ

���
p
= 0 if

n∑
k=1

ak
𝜕r
𝜕zk

���
p
= 0

• or equivalently (for real-analytic M by w̄ = Q(z, z̄,w) as before)

𝜕2Q
𝜕z̄k𝜕zℓ

���
0
= 0 for all k, ℓ = 1, . . . , n − 1

• or equivalently L(Xp ,Xp) = 𝜋p
(
[X,X]|p

)
= 0 for all X ∈ T(1,0)M

• or equivalently, there exists a biholomorphic change of coordinates
taking p to 0 such that in the new coordinates M is given by

Im w = O(3)

• or equivalently, M is “pseudoconvex from both sides”: M divides
space near p into two pieces both of which are pseudoconvex at p.
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Proposition: Suppose M is Levi-flat, then T(1,0)M ⊕ T(0,1)M is
involutive.

If X,Y ∈ Γ(T(1,0)M), then [X,Y] ∈ Γ(T(1,0)M) and [X,Y] ∈ Γ(T(0,1)M).
As M is Levi-flat, 𝜋p([X,Y]|p) = 0, so [X,Y] ∈ Γ(T(1,0)M ⊕ T(0,1)M).

In fact, the Levi-form precisely measures how involutive or not
T(1,0)M ⊕ T(0,1)M is.

A computation may be instructive:
For simplicity, suppose M is real-analytic, w̄ = Q(z, z̄,w).

[Xk ,Xℓ ] =
(
𝜕

𝜕z̄k
+ 𝜕Q

𝜕z̄k

𝜕

𝜕w̄

) (
𝜕

𝜕zℓ
+ 𝜕Q̄

𝜕zℓ
𝜕

𝜕w

)
−
(
𝜕

𝜕zℓ
+ 𝜕Q̄

𝜕zℓ
𝜕

𝜕w

) (
𝜕

𝜕z̄k
+ 𝜕Q

𝜕z̄k

𝜕

𝜕w̄

)
=

(
𝜕2Q̄

𝜕zℓ𝜕z̄k
+ 𝜕Q

𝜕z̄k

𝜕2Q̄
𝜕zℓ𝜕w̄

)
𝜕

𝜕w
−
(

𝜕2Q
𝜕z̄k𝜕zℓ

+ 𝜕Q̄
𝜕zℓ

𝜕2Q
𝜕z̄k𝜕w

)
𝜕

𝜕w̄
𝜕Q̄
𝜕zℓ

��
0 = 0, and Levi-flat at the origin implies 𝜕2Q
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So for any smooth Levi-flat M, T(1,0)M ⊕ T(0,1)M is involutive.

Frobenius theorem says that M is foliated by manifolds whose
complexified tangent spaces are T(1,0)M ⊕ T(0,1)M.

This foliation is called the Levi-foliation.

Suppose M is a hypersurface. This means that (locally) there exists a
smooth function f : M → ℝ such that Nt = f−1(t) are submanifolds
such that ℂ ⊗ TNt = T(1,0)M ⊕ T(0,1)M.

Nt

By the Newlander–Nirenberg theorem, each Nt is a complex manifold.

An example: M = {Im w = 0}, here f = Re w.
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such that ℂ ⊗ TNt = T(1,0)M ⊕ T(0,1)M.

Nt

By the Newlander–Nirenberg theorem, each Nt is a complex manifold.

An example: M = {Im w = 0}, here f = Re w.
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Theorem (Cartan)

If M ⊂ ℂn is a Levi-flat real-analytic smooth hypersurface, then near each
point p ∈ M, there exist local holomorphic coordinates (z,w) ∈ ℂn−1 ×ℂ

vanishing at p such that M near p is given by

Im w = 0.

The leaves of the Levi-foliation are given by

{(z,w) : w = t} for t ∈ ℝ.

Sketch of proof: Frobenius gives (locally) a real-analytic real-valued
function f with nonvanishing derivative giving the foliation.

As f is constant along the leaves, Xf = 0 for all X ∈ Γ(T(0,1)M) in
particular, so f is CR.

Severi says that f is the restriction to M of a holomorphic function.

Change variables to make the extended f be the w. □

Exercise: Give the right statement and proof for higher codimension
CR manifolds.
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Remarks:
1) There are no local biholomorphic invariants in the nonsingular
real-analytic case.

2) No such normalization in the C∞ smooth case.

Exercise: Suppose the f that one gets from Frobenius extends as a
holomorphic function (it does not always do that), what sort of
normalization do you get?

Exercise: Alternatively, in the C∞ case, is it possible to get a “bad” f
from Frobenius, one that doesn’t extend as a holomorphic function,
even if there is another one that does?

3) Given any holomorphic function f , the set

{z ∈ ℂn : Im f (z) = 0},

is a nonsingular Levi-flat hypersurface for all points where the
derivative of f does not vanish (it is singular if df = 0).
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