Singular Levi-flat hypersurfaces (2)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Small review:

M given by $\{r = 0\}$.

The full Hessian is

$$H_{p} = \begin{bmatrix} \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} \\ \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} \end{bmatrix} = \begin{bmatrix} L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t} \end{bmatrix}$$

 L_p is the complex Hessian.

 $X_p^*L_pX_p$ for $X_p \in T_p^{(1,0)}M$ is the Levi form.

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let *z* denote coordinates in *V* and ζ in *V*'

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let *z* denote coordinates in *V* and ζ in *V*'

First the *Z* matrix:

 $\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell}$

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let *z* denote coordinates in *V* and ζ in *V*'

First the *Z* matrix:

$$\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell} = \frac{\partial}{\partial z_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \Big|_z + \frac{\partial r}{\partial \bar{\zeta}_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \Big|_{\bar{z}} \right)$$

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let *z* denote coordinates in *V* and ζ in *V*'

First the *Z* matrix:

$$\begin{aligned} \frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell} &= \frac{\partial}{\partial z_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial r}{\partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right) \\ &= \sum_{m,\nu=1}^n \left(\frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial f_\nu}{\partial z_k} \bigg|_z \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_z \right) \\ &+ \sum_{m=1}^n \frac{\partial r}{\partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_z \end{aligned}$$

0

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let *z* denote coordinates in *V* and ζ in *V*'

First the *Z* matrix:

$$\begin{aligned} \frac{\partial^2(r \circ f)}{\partial z_k \partial z_\ell} &= \frac{\partial}{\partial z_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial r}{\partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right) \\ &= \sum_{m,\nu=1}^n \left(\frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial f_\nu}{\partial z_k} \bigg|_z \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_z \right) \\ &+ \sum_{m=1}^n \frac{\partial r}{\partial \bar{\zeta}_m} \bigg|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_z \\ &= \sum_{m,\nu=1}^n \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \frac{\partial f_\nu}{\partial z_k} \frac{\partial f_m}{\partial z_\ell} + \sum_{m=1}^n \frac{\partial r}{\partial \bar{\zeta}_m} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \end{aligned}$$

0

Suppose $f: V \to V'$ is biholomorphic, $r: V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let *z* denote coordinates in *V* and ζ in *V*'

First the *Z* matrix:

$$\frac{\partial^2(r \circ f)}{\partial z_k \partial z_\ell} = \frac{\partial}{\partial z_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \tilde{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial r}{\partial \bar{\zeta}_m} \bigg|_{(f(z), \tilde{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right)^0$$

$$= \sum_{m, \nu=1}^n \left(\frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \bigg|_{(f(z), \tilde{f}(\bar{z}))} \frac{\partial f_\nu}{\partial z_k} \bigg|_z \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \zeta_m} \bigg|_{(f(z), \tilde{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z \right)^0$$

$$+ \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \tilde{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_z$$

$$= \sum_{m, \nu=1}^n \frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \frac{\partial f_\nu}{\partial z_k} \frac{\partial f_m}{\partial z_\ell} + \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_z$$

$$\leftarrow \text{ does not trans-form nicely}$$

0

 $\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell}$

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z \right)$$

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z \right)$$
$$= \sum_{m, \nu=1}^n \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \bigg|_z \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell} \bigg|_z$$

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \Big|_z \right)$$
$$= \sum_{m, \nu=1}^n \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \Big|_z \frac{\partial f_m}{\partial z_\ell} \Big|_z + \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell} \Big|_z$$

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z \right)$$

$$= \sum_{m, \nu=1}^n \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \bigg|_z \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell} \bigg|_z$$

$$= \sum_{m, \nu=1}^n \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \zeta_m} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \frac{\partial f_m}{\partial z_\ell}$$

 \Rightarrow *L*_p changes by *-congruence:

$$\frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}} = \frac{\partial}{\partial \bar{z}_{k}} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_{m}} \Big|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}} \Big|_{z} \right)$$

$$= \sum_{m,\nu=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{\nu} \partial \zeta_{m}} \Big|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial \bar{f}_{\nu}}{\partial \bar{z}_{k}} \Big|_{\bar{z}} \frac{\partial f_{m}}{\partial z_{\ell}} \Big|_{z} + \sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}} \Big|_{(f(z),\bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial \bar{z}_{k} \partial z_{\ell}} \Big|_{z}$$

$$= \sum_{m,\nu=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{\nu} \partial \zeta_{m}} \frac{\partial \bar{f}_{\nu}}{\partial \bar{z}_{k}} \frac{\partial f_{m}}{\partial z_{\ell}}$$

- \Rightarrow *L*_p changes by *-congruence:
- \Rightarrow inertia of the Levi-form is a biholomorphic invariant!

If for all $X_p \in T_p^{(1,0)}M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p$,

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell}\Big|_p \ge 0,$$

then *M* is said to be *pseudoconvex* at *p*.

If for all $X_p \in T_p^{(1,0)}M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p$,

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell}\Big|_p \ge 0,$$

then *M* is said to be *pseudoconvex* at *p*.

strictly or *strongly pseucodonvex* if $X_p^*L_pX_p > 0$ for $X_p \neq 0$.

If for all $X_p \in T_p^{(1,0)}M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k}\Big|_p$,

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \Big|_p \ge 0,$$

then *M* is said to be *pseudoconvex* at *p*.

strictly or *strongly pseucodonvex* if $X_p^*L_pX_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity.

If for all $X_p \in T_p^{(1,0)}M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k}\Big|_p$,

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_p \ge 0,$$

then *M* is said to be *pseudoconvex* at *p*. *strictly* or *strongly pseucodonvex* if $X_p^*L_pX_p > 0$ for $X_p \neq 0$. Note the similarity of the definition to classical convexity. Really, it is one side of the hypersurface that is pseudoconvex. If for all $X_p \in T_p^{(1,0)} M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p$,

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \Big|_p \ge 0,$$

then *M* is said to be *pseudoconvex* at *p*.

strictly or *strongly pseucodonvex* if $X_p^*L_pX_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity.

Really, it is one side of the hypersurface that is pseudoconvex.

If $U \subset \mathbb{C}^n$ is a domain with smooth boundary, $U = \{r < 0\}$, and $dr \neq 0$ near ∂U , then U is *pseudoconvex* if $\partial U = \{r = 0\}$ is pseudoconvex.

If for all $X_p \in T_p^{(1,0)} M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p$,

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_p \ge 0,$$

then *M* is said to be *pseudoconvex* at *p*.

strictly or *strongly pseucodonvex* if $X_p^*L_pX_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity.

Really, it is one side of the hypersurface that is pseudoconvex.

If $U \subset \mathbb{C}^n$ is a domain with smooth boundary, $U = \{r < 0\}$, and $dr \neq 0$ near ∂U , then U is *pseudoconvex* if $\partial U = \{r = 0\}$ is pseudoconvex.

Pseudoconvex domains are the natural domains of definition for holomorphic functions.

Example 1:
$$U = \mathbb{B}_2 \subset \mathbb{C}^2$$
, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \Big|_p$ (so $a_1 = 0$)

Example 1:
$$U = \mathbb{B}_2 \subset \mathbb{C}^2$$
, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \Big|_p$ (so $a_1 = 0$)

$$\sum_{k=1,\ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}} \Big|_{p} = \bar{a}_{1} a_{1} + \bar{a}_{2} a_{2} = \bar{a}_{2} a_{2} = |a_{2}|^{2} \ge 0$$

Example 1:
$$U = \mathbb{B}_2 \subset \mathbb{C}^2$$
, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \Big|_p$ (so $a_1 = 0$)

$$\sum_{k=1,\ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}} \Big|_{p} = \bar{a}_{1} a_{1} + \bar{a}_{2} a_{2} = \bar{a}_{2} a_{2} = |a_{2}|^{2} \ge 0$$

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_2$).

Example 1:
$$U = \mathbb{B}_2 \subset \mathbb{C}^2$$
, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \Big|_p$ (so $a_1 = 0$)

$$\sum_{k=1,\ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}} \Big|_{p} = \bar{a}_{1} a_{1} + \bar{a}_{2} a_{2} = \bar{a}_{2} a_{2} = |a_{2}|^{2} \ge 0$$

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_2$).

Example 2: In $(z, w) \in \mathbb{C}^2$, the set the domain $H_+ = {\text{Im } w > 0}$ is pseudoconvex at all $p \in M = \partial H_+ = \mathbb{C} \times \mathbb{R}$.

Example 1:
$$U = \mathbb{B}_2 \subset \mathbb{C}^2$$
, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \Big|_p$ (so $a_1 = 0$)

$$\sum_{k=1,\ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}} \Big|_{p} = \bar{a}_{1} a_{1} + \bar{a}_{2} a_{2} = \bar{a}_{2} a_{2} = |a_{2}|^{2} \ge 0$$

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_2$).

Example 2: In $(z, w) \in \mathbb{C}^2$, the set the domain $H_+ = {\text{Im } w > 0}$ is pseudoconvex at all $p \in M = \partial H_+ = \mathbb{C} \times \mathbb{R}$.

But so is the domain $H_- = {\text{Im } w < 0}$.

Example 1:
$$U = \mathbb{B}_2 \subset \mathbb{C}^2$$
, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \Big|_p$ (so $a_1 = 0$)

$$\sum_{k=1,\ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}} \Big|_{p} = \bar{a}_{1} a_{1} + \bar{a}_{2} a_{2} = \bar{a}_{2} a_{2} = |a_{2}|^{2} \ge 0$$

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_2$).

Example 2: In $(z, w) \in \mathbb{C}^2$, the set the domain $H_+ = {\text{Im } w > 0}$ is pseudoconvex at all $p \in M = \partial H_+ = \mathbb{C} \times \mathbb{R}$.

But so is the domain $H_{-} = {\text{Im } w < 0}.$

So $M = \mathbb{C} \times \mathbb{R} = {\text{Im } w = 0}$ is pseudoconvex from both sides (we call that Levi-flat).

Let $\pi_p: \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M \xrightarrow{} T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Let $\pi_p: \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M_{\mathcal{T}_p^{(1,0)}} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)}M$ to a vector field X in $T^{(1,0)}M$.

Let $\pi_p: \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M_{\mathcal{T}_p^{(1,0)}} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)}M$ to a vector field X in $T^{(1,0)}M$. Then define the intrinsic Levi-form as

$$\mathcal{L}(X_p, \overline{X}_p) = \pi_p \big([X, \overline{X}] |_p \big)$$

Let $\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)}M$ to a vector field X in $T^{(1,0)}M$. Then define the intrinsic Levi-form as

$$\mathcal{L}(X_p,\overline{X}_p) = \pi_p\big([X,\overline{X}]|_p\big)$$

This definition works in any codimension, and is completely intrinsic.

Let $\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)}M$ to a vector field X in $T^{(1,0)}M$. Then define the intrinsic Levi-form as

$$\mathcal{L}(X_p, \overline{X}_p) = \pi_p \big([X, \overline{X}] |_p \big)$$

This definition works in any codimension, and is completely intrinsic.

Exercise: Work out that this definition gives a form that has the same inertia as the previous definition.

$$\operatorname{Im} w = \varphi(z, \overline{z}, \operatorname{Re} w) = q(z, \overline{z}) + (\operatorname{Re} w)(Tz + \overline{Tz}) + a(\operatorname{Re} w)^2 + O(3),$$

Change variables in *z* to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

$$\operatorname{Im} w = \varphi(z, \overline{z}, \operatorname{Re} w) = q(z, \overline{z}) + (\operatorname{Re} w)(Tz + \overline{Tz}) + a(\operatorname{Re} w)^2 + O(3),$$

Change variables in *z* to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon wz_1$ to get

Im
$$w = q(z, \bar{z}) - \epsilon i (\text{Im } w)(z_1 - \bar{z}_1) + a (\text{Im } w)^2 + O(3)$$

$$\operatorname{Im} w = \varphi(z, \overline{z}, \operatorname{Re} w) = q(z, \overline{z}) + (\operatorname{Re} w)(Tz + \overline{Tz}) + a(\operatorname{Re} w)^2 + O(3),$$

Change variables in *z* to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon w z_1$ to get

Im
$$w = q(z, \bar{z}) - \epsilon i (\text{Im } w)(z_1 - \bar{z}_1) + a (\text{Im } w)^2 + O(3)$$

Solve for Im w (which is O(2)) by IVT to get

Im
$$w = q(z, \bar{z}) + O(3) = z^*Az + z^tBz + \overline{z^tBz} + O(3)$$

$$\operatorname{Im} w = \varphi(z, \overline{z}, \operatorname{Re} w) = q(z, \overline{z}) + (\operatorname{Re} w)(Tz + \overline{Tz}) + a(\operatorname{Re} w)^2 + O(3),$$

Change variables in *z* to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon w z_1$ to get

Im
$$w = q(z, \bar{z}) - \epsilon i (\text{Im } w)(z_1 - \bar{z}_1) + a (\text{Im } w)^2 + O(3)$$

Solve for Im w (which is O(2)) by IVT to get

Im
$$w = q(z, \bar{z}) + O(3) = z^*Az + z^tBz + \overline{z^tBz} + O(3)$$

Change variables again taking w to $w + 2iz^tBz$ to get

$$\operatorname{Im} w = z^* A z + O(3)$$

The matrix *A* is then the Levi-form.

$$\operatorname{Im} w = \varphi(z, \overline{z}, \operatorname{Re} w) = q(z, \overline{z}) + (\operatorname{Re} w)(Tz + \overline{Tz}) + a(\operatorname{Re} w)^2 + O(3),$$

Change variables in *z* to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon wz_1$ to get

Im
$$w = q(z, \bar{z}) - \epsilon i (\text{Im } w)(z_1 - \bar{z}_1) + a (\text{Im } w)^2 + O(3)$$

Solve for $\operatorname{Im} w$ (which is O(2)) by IVT to get

$$\operatorname{Im} w = q(z, \overline{z}) + O(3) = z^* A z + z^t B z + \overline{z^t B z} + O(3)$$

Change variables again taking w to $w + 2iz^tBz$ to get

$$\operatorname{Im} w = z^* A z + O(3)$$

The matrix *A* is then the Levi-form.

Diagonalizing A and rescaling

Im $w = \lambda_1 |z_1|^2 + \dots + \lambda_{n-1} |z_{n-1}|^2 + O(3)$ where $\lambda_k = 0$ or ± 1 .

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathbb{O}(\mathbb{C}^n)$, then vf = 0 for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathcal{O}(\mathbb{C}^n)$, then vf = 0 for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

There are other smooth CR functions.

Example: Suppose $M = {\text{Im } w = 0}$, and $f: M \to \mathbb{C}$ is $e^{-(1/\text{Re }w)^2}$ if Re $w \neq 0$ and 0 if Re w = 0. Then f is CR, C^{∞} , but f is not real-analytic, so not a restriction of a holomorphic function.

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathfrak{G}(\mathbb{C}^n)$, then vf = 0 for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

There are other smooth CR functions.

Example: Suppose $M = {\text{Im } w = 0}$, and $f: M \to \mathbb{C}$ is $e^{-(1/\text{Re } w)^2}$ if Re $w \neq 0$ and 0 if Re w = 0. Then f is CR, C^{∞} , but f is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic *M* and *f*, CR functions *are* restrictions of holomorphic functions.

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathcal{O}(\mathbb{C}^n)$, then vf = 0 for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

There are other smooth CR functions.

Example: Suppose $M = {\text{Im } w = 0}$, and $f: M \to \mathbb{C}$ is $e^{-(1/\text{Re } w)^2}$ if Re $w \neq 0$ and 0 if Re w = 0. Then f is CR, C^{∞} , but f is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic *M* and *f*, CR functions *are* restrictions of holomorphic functions.

For two CR submanifolds *M* and *N*, $f: M \rightarrow N$ is a CR mapping if each component of *f* is a CR function.

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathcal{O}(\mathbb{C}^n)$, then vf = 0 for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

There are other smooth CR functions.

Example: Suppose $M = {\text{Im } w = 0}$, and $f: M \to \mathbb{C}$ is $e^{-(1/\text{Re } w)^2}$ if Re $w \neq 0$ and 0 if Re w = 0. Then f is CR, C^{∞} , but f is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic *M* and *f*, CR functions *are* restrictions of holomorphic functions.

For two CR submanifolds *M* and *N*, $f: M \rightarrow N$ is a CR mapping if each component of *f* is a CR function.

M and *N* are *CR diffeomorphic* if there is a diffeomorphism $f: M \to N$ such that f and f^{-1} are CR.