Singular Levi-flat hypersurfaces (2)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Small review:

M given by $\{r=0\}$.
The full Hessian is

$$
H_{p}=\left[\begin{array}{cccccc}
\left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{n}}\right|_{p} \\
\left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{n}}\right|_{p}
\end{array}\right]=\left[\begin{array}{cc}
L_{p} & \overline{Z_{p}} \\
Z_{p} & L_{p}^{t}
\end{array}\right]
$$

L_{p} is the complex Hessian.
$X_{p}^{*} L_{p} X_{p}$ for $X_{p} \in T_{p}^{(1,0)} M$ is the Levi form.

We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.

We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let z denote coordinates in V and ζ in V^{\prime}

We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.
Let z denote coordinates in V and ζ in V^{\prime}
First the Z matrix:
$\frac{\partial^{2}(r \circ f)}{\partial z_{k} \partial z_{\ell}}$

We are mostly interested in biholomorphic invariants.
So what happens under a biholomorphism?
Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.
Let z denote coordinates in V and ζ in V^{\prime}
First the Z matrix:

$$
\frac{\partial^{2}(r \circ f)}{\partial z_{k} \partial z_{\ell}}=\frac{\partial}{\partial z_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\frac{\partial r}{\partial \bar{\zeta}_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{m}}{\partial z_{\ell}}\right|_{\bar{z}} ^{0}\right)^{0}
$$

We are mostly interested in biholomorphic invariants.
So what happens under a biholomorphism?
Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.
Let z denote coordinates in V and ζ in V^{\prime}
First the Z matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial z_{k} \partial z_{\ell}}= \\
& =\frac{\partial}{\partial z_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\frac{\partial r}{\partial \bar{\zeta}_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{m}}{\partial z_{\ell}}\right|_{\bar{z}} ^{0}\right)^{0} \\
& \quad \sum_{m, v=1}^{n}\left(\left.\left.\left.\frac{\partial^{2} r}{\partial \zeta_{\nu} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{v}}{\partial z_{k}}\right|_{z} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\left.\frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{v}}{\partial z_{k}}\right|_{\bar{z}} ^{0} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial z_{k} \partial z_{\ell}}\right|_{z}
\end{aligned}
$$

We are mostly interested in biholomorphic invariants.
So what happens under a biholomorphism?
Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.
Let z denote coordinates in V and ζ in V^{\prime}
First the Z matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial z_{k} \partial z_{\ell}}=\frac{\partial}{\partial z_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\frac{\partial r}{\partial \bar{\zeta}_{m}}\right|_{(f(z), \bar{f}(\bar{z})))} \frac{\partial \bar{f}_{m}}{\partial z_{\ell}}\right|_{\bar{z}} ^{0}\right)^{0} \\
& \quad=\sum_{m, v=1}^{n}\left(\left.\left.\left.\frac{\partial^{2} r}{\partial \zeta_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{v}}{\partial z_{k}}\right|_{z} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\left.\frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{v}}{\partial z_{k}}\right|_{\bar{z}} ^{0} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial z_{k} \partial z_{\ell}}\right|_{z} \\
& \quad=\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \zeta_{v} \partial \zeta_{m}} \frac{\partial f_{v}}{\partial z_{k}} \frac{\partial f_{m}}{\partial z_{\ell}}+\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}} \frac{\partial^{2} f_{m}}{\partial z_{k} \partial z_{\ell}}
\end{aligned}
$$

We are mostly interested in biholomorphic invariants.
So what happens under a biholomorphism?
Suppose $f: V \rightarrow V^{\prime}$ is biholomorphic, $r: V^{\prime} \rightarrow \mathbb{R}$ a defining function for $M \subset V^{\prime}$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.
Let z denote coordinates in V and ζ in V^{\prime}
First the Z matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial z_{k} \partial z_{\ell}}=\frac{\partial}{\partial z_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\frac{\partial r}{\partial \bar{\zeta}_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{m}}{\partial z_{\ell}}\right|_{\bar{z}} ^{0}\right)^{0} \\
& =\sum_{m, v=1}^{n}\left(\left.\left.\left.\frac{\partial^{2} r}{\partial \zeta_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{v}}{\partial z_{k}}\right|_{z} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\left.\frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{f})))} \frac{\partial \bar{f}_{v}}{\partial z_{k}}\right|_{\bar{z}} ^{0} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial z_{k} \partial z_{\ell}}\right|_{z} \\
& \quad=\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \zeta_{v} \partial \zeta_{m}} \frac{\partial f_{v}}{\partial z_{k}} \frac{\partial f_{m}}{\partial z_{\ell}}+\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}} \frac{\partial^{2} f_{m}}{\partial z_{k} \partial z_{\ell}}
\end{aligned} \quad \begin{aligned}
& \text { does not trans- } \\
& \text { form nicely }
\end{aligned}
$$

Now the L_{p} matrix:
$\frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}}$

Now the L_{p} matrix:

$$
\frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}}=\frac{\partial}{\partial \bar{z}_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right)
$$

Now the L_{p} matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}}=\frac{\partial}{\partial \bar{z}_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad=\left.\left.\left.\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{v}}{\partial \bar{z}_{k}}\right|_{\bar{z}} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{z} ^{0}
\end{aligned}
$$

Now the L_{p} matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}}=\frac{\partial}{\partial \bar{z}_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad=\left.\left.\left.\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{v}}{\partial \bar{z}_{k}}\right|_{\bar{z}} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{z} ^{0} \\
& \quad=\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}} \frac{\partial \bar{f}_{v}}{\partial \bar{z}_{k}} \frac{\partial f_{m}}{\partial z_{\ell}}
\end{aligned}
$$

Now the L_{p} matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}}=\frac{\partial}{\partial \bar{z}_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad=\left.\left.\left.\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{v}}{\partial \bar{z}_{k}}\right|_{\bar{z}} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{z} ^{0} \\
& \quad=\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}} \frac{\partial \bar{f}_{v}}{\partial \bar{z}_{k}} \frac{\partial f_{m}}{\partial z_{\ell}}
\end{aligned}
$$

$\Rightarrow \quad L_{p}$ changes by *-congruence:

Now the L_{p} matrix:

$$
\begin{aligned}
& \frac{\partial^{2}(r \circ f)}{\partial \bar{z}_{k} \partial z_{\ell}}=\frac{\partial}{\partial \bar{z}_{k}} \sum_{m=1}^{n}\left(\left.\left.\frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}\right) \\
& \quad=\left.\left.\left.\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_{v}}{\partial_{\bar{z}}}\right|_{\bar{z}} \frac{\partial f_{m}}{\partial z_{\ell}}\right|_{z}+\left.\left.\sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_{m}}\right|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^{2} f_{m}}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{z} ^{0} \\
& \quad=\sum_{m, v=1}^{n} \frac{\partial^{2} r}{\partial \bar{\zeta}_{v} \partial \zeta_{m}} \frac{\partial \bar{f}_{v}}{\partial \bar{z}_{k}} \frac{\partial f_{m}}{\partial z_{\ell}}
\end{aligned}
$$

$\Rightarrow \quad L_{p}$ changes by *-congruence:
$\Rightarrow \quad$ inertia of the Levi-form is a biholomorphic invariant!

If for all $X_{p} \in T_{p}^{(1,0)} M, X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p}$,

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} \geq 0,
$$

then M is said to be p seudoconvex at p.

If for all $X_{p} \in T_{p}^{(1,0)} M, X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p}$,

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} \geq 0,
$$

then M is said to be p seudoconvex at p.
strictly or strongly pseucodonvex if $X_{p}^{*} L_{p} X_{p}>0$ for $X_{p} \neq 0$.

If for all $X_{p} \in T_{p}^{(1,0)} M, X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p}$,

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} \geq 0,
$$

then M is said to be p seudoconvex at p.
strictly or strongly pseucodonvex if $X_{p}^{*} L_{p} X_{p}>0$ for $X_{p} \neq 0$.
Note the similarity of the definition to classical convexity.

If for all $X_{p} \in T_{p}^{(1,0)} M, X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p^{\prime}}$

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} \geq 0,
$$

then M is said to be p seudoconvex at p.
strictly or strongly pseucodonvex if $X_{p}^{*} L_{p} X_{p}>0$ for $X_{p} \neq 0$.
Note the similarity of the definition to classical convexity.
Really, it is one side of the hypersurface that is pseudoconvex.

If for all $X_{p} \in T_{p}^{(1,0)} M, X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p^{\prime}}$

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} \geq 0
$$

then M is said to be p seudoconvex at p.
strictly or strongly pseucodonvex if $X_{p}^{*} L_{p} X_{p}>0$ for $X_{p} \neq 0$.
Note the similarity of the definition to classical convexity.
Really, it is one side of the hypersurface that is pseudoconvex.
If $U \subset \mathbb{C}^{n}$ is a domain with smooth boundary, $U=\{r<0\}$, and $d r \neq 0$ near ∂U, then U is p seudoconvex if $\partial U=\{r=0\}$ is pseudoconvex.

If for all $X_{p} \in T_{p}^{(1,0)} M, X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p^{\prime}}$

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} \geq 0
$$

then M is said to be p seudoconvex at p.
strictly or strongly pseucodonvex if $X_{p}^{*} L_{p} X_{p}>0$ for $X_{p} \neq 0$.
Note the similarity of the definition to classical convexity.
Really, it is one side of the hypersurface that is pseudoconvex.
If $U \subset \mathbb{C}^{n}$ is a domain with smooth boundary, $U=\{r<0\}$, and $d r \neq 0$ near ∂U, then U is pseudoconvex if $\partial U=\{r=0\}$ is pseudoconvex.
Pseudoconvex domains are the natural domains of definition for holomorphic functions.

Example 1: $U=\mathbb{B}_{2} \subset \mathbb{C}^{2}$, then $r=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$.
At $p=(1,0), X_{p} \in T_{p}^{(1,0)} \partial U$ means $X_{p}=\left.a_{2} \frac{\partial}{\partial z_{2}}\right|_{p}\left(\right.$ so $\left.a_{1}=0\right)$

Example 1: $U=\mathbb{B}_{2} \subset \mathbb{C}^{2}$, then $r=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$.
At $p=(1,0), X_{p} \in T_{p}^{(1,0)} \partial U$ means $X_{p}=\left.a_{2} \frac{\partial}{\partial z_{2}}\right|_{p}\left(\right.$ so $\left.a_{1}=0\right)$
The Levi-form (at p) is
$\left.\sum_{k=1, \ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}=\bar{a}_{1} a_{1}+\bar{a}_{2} a_{2}=\bar{a}_{2} a_{2}=\left|a_{2}\right|^{2} \geq 0$

Example 1: $U=\mathbb{B}_{2} \subset \mathbb{C}^{2}$, then $r=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$.
At $p=(1,0), X_{p} \in T_{p}^{(1,0)} \partial U$ means $X_{p}=\left.a_{2} \frac{\partial}{\partial z_{2}}\right|_{p}\left(\right.$ so $\left.a_{1}=0\right)$
The Levi-form (at p) is
$\left.\sum_{k=1, \ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}=\bar{a}_{1} a_{1}+\bar{a}_{2} a_{2}=\bar{a}_{2} a_{2}=\left|a_{2}\right|^{2} \geq 0$
So \mathbb{B}_{2} is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_{2}$).

Example 1: $U=\mathbb{B}_{2} \subset \mathbb{C}^{2}$, then $r=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$.
At $p=(1,0), X_{p} \in T_{p}^{(1,0)} \partial U$ means $X_{p}=\left.a_{2} \frac{\partial}{\partial z_{2}}\right|_{p}\left(\right.$ so $\left.a_{1}=0\right)$
The Levi-form (at p) is
$\left.\sum_{k=1, \ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}=\bar{a}_{1} a_{1}+\bar{a}_{2} a_{2}=\bar{a}_{2} a_{2}=\left|a_{2}\right|^{2} \geq 0$
So \mathbb{B}_{2} is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_{2}$).

Example 2: $\operatorname{In}(z, w) \in \mathbb{C}^{2}$, the set the domain $H_{+}=\{\operatorname{Im} w>0\}$ is pseudoconvex at all $p \in M=\partial H_{+}=\mathbb{C} \times \mathbb{R}$.

Example 1: $U=\mathbb{B}_{2} \subset \mathbb{C}^{2}$, then $r=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$.
At $p=(1,0), X_{p} \in T_{p}^{(1,0)} \partial U$ means $X_{p}=\left.a_{2} \frac{\partial}{\partial z_{2}}\right|_{p}\left(\right.$ so $\left.a_{1}=0\right)$
The Levi-form (at p) is
$\left.\sum_{k=1, \ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}=\bar{a}_{1} a_{1}+\bar{a}_{2} a_{2}=\bar{a}_{2} a_{2}=\left|a_{2}\right|^{2} \geq 0$
So \mathbb{B}_{2} is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_{2}$).

Example 2: $\operatorname{In}(z, w) \in \mathbb{C}^{2}$, the set the domain $H_{+}=\{\operatorname{Im} w>0\}$ is pseudoconvex at all $p \in M=\partial H_{+}=\mathbb{C} \times \mathbb{R}$.

But so is the domain $H_{-}=\{\operatorname{Im} w<0\}$.

Example 1: $U=\mathbb{B}_{2} \subset \mathbb{C}^{2}$, then $r=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$.
At $p=(1,0), X_{p} \in T_{p}^{(1,0)} \partial U$ means $X_{p}=\left.a_{2} \frac{\partial}{\partial z_{2}}\right|_{p}\left(\right.$ so $\left.a_{1}=0\right)$
The Levi-form (at p) is
$\left.\sum_{k=1, \ell=1}^{2} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}=\bar{a}_{1} a_{1}+\bar{a}_{2} a_{2}=\bar{a}_{2} a_{2}=\left|a_{2}\right|^{2} \geq 0$
So \mathbb{B}_{2} is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_{2}$).

Example 2: $\operatorname{In}(z, w) \in \mathbb{C}^{2}$, the set the domain $H_{+}=\{\operatorname{Im} w>0\}$ is pseudoconvex at all $p \in M=\partial H_{+}=\mathbb{C} \times \mathbb{R}$.
But so is the domain $H_{-}=\{\operatorname{Im} w<0\}$.
So $M=\mathbb{C} \times \mathbb{R}=\{\operatorname{Im} w=0\}$ is pseudoconvex from both sides (we call that Levi-flat).

The Levi-form is intrinsic.

The Levi-form is intrinsic.
Let $\pi_{p}: \mathbb{C} \otimes T_{p} M \rightarrow \mathbb{C} \otimes T_{p} M / T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \cong B_{p}$
be the natural projection.

The Levi-form is intrinsic.
Let $\pi_{p}: \mathbb{C} \otimes T_{p} M \rightarrow \mathbb{C} \otimes T_{p} M / T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \cong B_{p}$
be the natural projection.
Extend a vector $X_{p} \in T_{p}^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.

The Levi-form is intrinsic.
Let $\pi_{p}: \mathbb{C} \otimes T_{p} M \rightarrow \mathbb{C} \otimes T_{p} M / T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \cong B_{p}$
be the natural projection.
Extend a vector $X_{p} \in T_{p}^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.
Then define the intrinsic Levi-form as

$$
\mathscr{L}\left(X_{p}, \bar{X}_{p}\right)=\pi_{p}\left(\left.[X, \bar{X}]\right|_{p}\right)
$$

The Levi-form is intrinsic.
Let $\pi_{p}: \mathbb{C} \otimes T_{p} M \rightarrow \mathbb{C} \otimes T_{p} M / T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \cong B_{p}$
be the natural projection.
Extend a vector $X_{p} \in T_{p}^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.
Then define the intrinsic Levi-form as

$$
\mathscr{L}\left(X_{p}, \bar{X}_{p}\right)=\pi_{p}\left(\left.[X, \bar{X}]\right|_{p}\right)
$$

This definition works in any codimension, and is completely intrinsic.

The Levi-form is intrinsic.
Let $\pi_{p}: \mathbb{C} \otimes T_{p} M \rightarrow \mathbb{C} \otimes T_{p} M / T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \cong B_{p}$
be the natural projection.
Extend a vector $X_{p} \in T_{p}^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.
Then define the intrinsic Levi-form as

$$
\mathscr{L}\left(X_{p}, \bar{X}_{p}\right)=\pi_{p}\left(\left.[X, \bar{X}]\right|_{p}\right)
$$

This definition works in any codimension, and is completely intrinsic.
Exercise: Work out that this definition gives a form that has the same inertia as the previous definition.

Write an M as before as $\left(T: \mathbb{C}^{n-1} \rightarrow \mathbb{C}\right.$ is linear)

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)=q(z, \bar{z})+(\operatorname{Re} w)(T z+\overline{T z})+a(\operatorname{Re} w)^{2}+O(3)
$$

Change variables in z to make $T z=\epsilon z_{1}$ where $\epsilon=0$ or 1 .

Write an M as before as $\left(T: \mathbb{C}^{n-1} \rightarrow \mathbb{C}\right.$ is linear)

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)=q(z, \bar{z})+(\operatorname{Re} w)(T z+\overline{T z})+a(\operatorname{Re} w)^{2}+O(3)
$$

Change variables in z to make $T z=\epsilon z_{1}$ where $\epsilon=0$ or 1 .
Change variables changing w to $w+i a w w^{2}+2 i \epsilon w z_{1}$ to get

$$
\operatorname{Im} w=q(z, \bar{z})-\epsilon i(\operatorname{Im} w)\left(z_{1}-\bar{z}_{1}\right)+a(\operatorname{Im} w)^{2}+O(3)
$$

Write an M as before as $\left(T: \mathbb{C}^{n-1} \rightarrow \mathbb{C}\right.$ is linear)

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)=q(z, \bar{z})+(\operatorname{Re} w)(T z+\overline{T z})+a(\operatorname{Re} w)^{2}+O(3)
$$

Change variables in z to make $T z=\epsilon z_{1}$ where $\epsilon=0$ or 1 .
Change variables changing w to $w+i a w w^{2}+2 i \epsilon w z_{1}$ to get

$$
\operatorname{Im} w=q(z, \bar{z})-\epsilon i(\operatorname{Im} w)\left(z_{1}-\bar{z}_{1}\right)+a(\operatorname{Im} w)^{2}+O(3)
$$

Solve for $\operatorname{Im} w$ (which is $O(2)$) by IVT to get

$$
\operatorname{Im} w=q(z, \bar{z})+O(3)=z^{*} A z+z^{t} B z+\overline{z^{t} B z}+O(3)
$$

Write an M as before as ($T: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ is linear)

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)=q(z, \bar{z})+(\operatorname{Re} w)(T z+\overline{T z})+a(\operatorname{Re} w)^{2}+O(3)
$$

Change variables in z to make $T z=\epsilon z_{1}$ where $\epsilon=0$ or 1 .
Change variables changing w to $w+i a w w^{2}+2 i \epsilon w z_{1}$ to get

$$
\operatorname{Im} w=q(z, \bar{z})-\epsilon i(\operatorname{Im} w)\left(z_{1}-\bar{z}_{1}\right)+a(\operatorname{Im} w)^{2}+O(3)
$$

Solve for $\operatorname{Im} w$ (which is $O(2)$) by IVT to get

$$
\operatorname{Im} w=q(z, \bar{z})+O(3)=z^{*} A z+z^{t} B z+\overline{z^{t} B z}+O(3)
$$

Change variables again taking w to $w+2 i z^{t} B z$ to get

$$
\operatorname{Im} w=z^{*} A z+O(3)
$$

The matrix A is then the Levi-form.

Write an M as before as ($T: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ is linear)

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)=q(z, \bar{z})+(\operatorname{Re} w)(T z+\overline{T z})+a(\operatorname{Re} w)^{2}+O(3)
$$

Change variables in z to make $T z=\epsilon z_{1}$ where $\epsilon=0$ or 1 .
Change variables changing w to $w+i a w w^{2}+2 i \epsilon w z_{1}$ to get

$$
\operatorname{Im} w=q(z, \bar{z})-\epsilon i(\operatorname{Im} w)\left(z_{1}-\bar{z}_{1}\right)+a(\operatorname{Im} w)^{2}+O(3)
$$

Solve for $\operatorname{Im} w$ (which is $O(2)$) by IVT to get

$$
\operatorname{Im} w=q(z, \bar{z})+O(3)=z^{*} A z+z^{t} B z+\overline{z^{t} B z}+O(3)
$$

Change variables again taking w to $w+2 i z^{t} B z$ to get

$$
\operatorname{Im} w=z^{*} A z+O(3)
$$

The matrix A is then the Levi-form.
Diagonalizing A and rescaling

$$
\operatorname{Im} w=\lambda_{1}\left|z_{1}\right|^{2}+\cdots+\lambda_{n-1}\left|z_{n-1}\right|^{2}+O(3) \quad \text { where } \lambda_{k}=0 \text { or } \pm 1
$$

A smooth function $f: M \rightarrow \mathbb{C}$ is a $C R$ function if

$$
v f=0
$$

for all vector fields $v \in \Gamma\left(T^{(0,1)} M\right)$.

A smooth function $f: M \rightarrow \mathbb{C}$ is a $C R$ function if

$$
\text { vf }=0
$$

for all vector fields $v \in \Gamma\left(T^{(0,1)} M\right)$.
Example: If $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $v f=0$ for all $v \in \Gamma\left(T^{(0,1)} \mathbb{C}^{n}\right)$. So $\left.f\right|_{M}$ is $C R$.

A smooth function $f: M \rightarrow \mathbb{C}$ is a $C R$ function if

$$
v f=0
$$

for all vector fields $v \in \Gamma\left(T^{(0,1)} M\right)$.
Example: If $f \in O\left(\mathbb{C}^{n}\right)$, then $v f=0$ for all $v \in \Gamma\left(T^{(0,1)} \mathbb{C}^{n}\right)$. So $\left.f\right|_{M}$ is $C R$.
There are other smooth $C R$ functions.
Example: Suppose $M=\{\operatorname{Im} w=0\}$, and $f: M \rightarrow \mathbb{C}$ is $e^{-(1 / \operatorname{Re} w)^{2}}$ if $\operatorname{Re} w \neq 0$ and 0 if $\operatorname{Re} w=0$. Then f is $\mathrm{CR}, \mathrm{C}^{\infty}, \operatorname{but} f$ is not real-analytic, so not a restriction of a holomorphic function.

A smooth function $f: M \rightarrow \mathbb{C}$ is a $C R$ function if

$$
v f=0
$$

for all vector fields $v \in \Gamma\left(T^{(0,1)} M\right)$.
Example: If $f \in O\left(\mathbb{C}^{n}\right)$, then $v f=0$ for all $v \in \Gamma\left(T^{(0,1)} \mathbb{C}^{n}\right)$. So $\left.f\right|_{M}$ is $C R$.
There are other smooth $C R$ functions.
Example: Suppose $M=\{\operatorname{Im} w=0\}$, and $f: M \rightarrow \mathbb{C}$ is $e^{-(1 / \operatorname{Re} w)^{2}}$ if $\operatorname{Re} w \neq 0$ and 0 if $\operatorname{Re} w=0$. Then f is $\mathrm{CR}, \mathrm{C}^{\infty}$, but f is not real-analytic, so not a restriction of a holomorphic function.
We will see that for real-analytic M and $f, C R$ functions are restrictions of holomorphic functions.

A smooth function $f: M \rightarrow \mathbb{C}$ is a $C R$ function if

$$
v f=0
$$

for all vector fields $v \in \Gamma\left(T^{(0,1)} M\right)$.
Example: If $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $v f=0$ for all $v \in \Gamma\left(T^{(0,1)} \mathbb{C}^{n}\right)$. So $\left.f\right|_{M}$ is $C R$.
There are other smooth $C R$ functions.
Example: Suppose $M=\{\operatorname{Im} w=0\}$, and $f: M \rightarrow \mathbb{C}$ is $e^{-(1 / \operatorname{Re} w)^{2}}$ if $\operatorname{Re} w \neq 0$ and 0 if $\operatorname{Re} w=0$. Then f is $\mathrm{CR}, \mathrm{C}^{\infty}$, but f is not real-analytic, so not a restriction of a holomorphic function.
We will see that for real-analytic M and $f, C R$ functions are restrictions of holomorphic functions.
For two CR submanifolds M and $N, f: M \rightarrow N$ is a CR mapping if each component of f is a CR function.

A smooth function $f: M \rightarrow \mathbb{C}$ is a $C R$ function if

$$
v f=0
$$

for all vector fields $v \in \Gamma\left(T^{(0,1)} M\right)$.
Example: If $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $v f=0$ for all $v \in \Gamma\left(T^{(0,1)} \mathbb{C}^{n}\right)$. So $\left.f\right|_{M}$ is $C R$.
There are other smooth $C R$ functions.
Example: Suppose $M=\{\operatorname{Im} w=0\}$, and $f: M \rightarrow \mathbb{C}$ is $e^{-(1 / \operatorname{Re} w)^{2}}$ if $\operatorname{Re} w \neq 0$ and 0 if $\operatorname{Re} w=0$. Then f is $\mathrm{CR}, \mathrm{C}^{\infty}$, but f is not real-analytic, so not a restriction of a holomorphic function.
We will see that for real-analytic M and $f, C R$ functions are restrictions of holomorphic functions.
For two $C R$ submanifolds M and $N, f: M \rightarrow N$ is a CR mapping if each component of f is a CR function.
M and N are $C R$ diffeomorphic if there is a diffeomorphism $f: M \rightarrow N$ such that f and f^{-1} are CR.

