Singular Levi-flat hypersurfaces (2)

Jiří Lebl

Departamento pri Matematiko de Oklahoma Štata Universitato
Small review:

M given by $\{r = 0\}$.

The full Hessian is

$$H_p = \begin{bmatrix}
\frac{\partial^2 r}{\partial z_1 \partial z_1} & \cdots & \frac{\partial^2 r}{\partial z_1 \partial z_n} & \frac{\partial^2 r}{\partial \bar{z}_1 \partial z_1} & \cdots & \frac{\partial^2 r}{\partial \bar{z}_1 \partial z_n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 r}{\partial z_n \partial z_1} & \cdots & \frac{\partial^2 r}{\partial z_n \partial z_n} & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_1} & \cdots & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 r}{\partial z_n \partial \bar{z}_1} & \cdots & \frac{\partial^2 r}{\partial z_n \partial \bar{z}_n} & \frac{\partial^2 r}{\partial \bar{z}_n \partial \bar{z}_1} & \cdots & \frac{\partial^2 r}{\partial \bar{z}_n \partial \bar{z}_n}
\end{bmatrix} = \begin{bmatrix}
L_p & \bar{Z}_p \\
Z_p & L_p^t
\end{bmatrix}$$

L_p is the complex Hessian.

$X_p^* L_p X_p$ for $X_p \in T_p^{(1,0)} M$ is the Levi form.
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f : V \to V'$ is biholomorphic, $r : V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$.

\[
\frac{\partial^2}{\partial z_k \partial z_\ell} (r \circ f) = \frac{\partial}{\partial z_k} \left(\sum_{m,n} \frac{\partial^2 r}{\partial \zeta_m \partial \bar{\zeta}_n} (f(z), \bar{f}(\bar{z})) \frac{\partial f_m}{\partial z_\ell} z \right) + \frac{\partial^2}{\partial \bar{\zeta}_m \partial \zeta_\nu} \left(\sum_{n} \frac{\partial^2 r}{\partial \zeta_n \partial \bar{\zeta}_\nu} (f(z), \bar{f}(\bar{z})) \frac{\partial f_n}{\partial z_k} \right).
\]
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f : V \to V'$ is biholomorphic, $r : V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let z denote coordinates in V and ζ in V'.
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose \(f : V \to V' \) is biholomorphic,
\(r : V' \to \mathbb{R} \) a defining function for \(M \subset V' \)
and \(r \circ f \) the defining function for \(f^{-1}(M) \subset V \).

Let \(z \) denote coordinates in \(V \) and \(\zeta \) in \(V' \)

First the \(Z \) matrix:

\[
\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell}
\]
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f: V \rightarrow V'$ is biholomorphic, $r: V' \rightarrow \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let z denote coordinates in V and ζ in V'

First the Z matrix:

$$
\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell} = \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_{z} + \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right)
$$
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose \(f: V \to V' \) is biholomorphic, \(r: V' \to \mathbb{R} \) a defining function for \(M \subset V' \) and \(r \circ f \) the defining function for \(f^{-1}(M) \subset V \).

Let \(z \) denote coordinates in \(V \) and \(\zeta \) in \(V' \).

First the Z matrix:

\[
\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell} = \frac{\partial}{\partial z_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \Big|_z + \frac{\partial r}{\partial \bar{\zeta}_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \Big|_{\bar{z}} \right)
\]

\[
= \sum_{m, \nu=1}^{n} \left(\frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_\nu}{\partial z_k} \Big|_z \frac{\partial f_m}{\partial z_\ell} \Big|_z + \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_\nu}{\partial z_k} \Big|_{\bar{z}} \frac{\partial \bar{f}_m}{\partial z_\ell} \Big|_{\bar{z}} \right)
\]

\[
+ \sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_m} \Big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \Big|_z
\]
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f : V \to V'$ is biholomorphic, $r : V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let z denote coordinates in V and ζ in V'.

First the Z matrix:

$$\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell} = \frac{\partial}{\partial z_k} \sum_{m=1}^n \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right)$$

$$= \sum_{m, \nu=1}^n \left(\frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_\nu}{\partial z_k} \bigg|_z \frac{\partial f_m}{\partial z_\ell} \bigg|_z + \frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_\nu}{\partial z_k} \bigg|_z \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right)$$

$$+ \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_z$$

$$= \sum_{m, \nu=1}^n \frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \frac{\partial f_\nu}{\partial z_k} \frac{\partial f_m}{\partial z_\ell} \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} + \sum_{m=1}^n \frac{\partial r}{\partial \zeta_m} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell}$$
We are mostly interested in biholomorphic invariants. So what happens under a biholomorphism?

Suppose $f : V \to V'$ is biholomorphic, $r : V' \to \mathbb{R}$ a defining function for $M \subset V'$ and $r \circ f$ the defining function for $f^{-1}(M) \subset V$. Let z denote coordinates in V and ζ in V'.

First the Z matrix:

$$
\frac{\partial^2 (r \circ f)}{\partial z_k \partial z_\ell} = \frac{\partial}{\partial z_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_{z} + \frac{\partial r}{\partial \bar{\zeta}_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right)
$$

$$
= \sum_{m,v=1}^{n} \left(\frac{\partial^2 r}{\partial \zeta_v \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_v}{\partial z_k} \bigg|_{z} \frac{\partial f_m}{\partial z_\ell} \bigg|_{z} + \frac{\partial^2 r}{\partial \bar{\zeta}_v \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_v}{\partial z_k} \bigg|_{\bar{z}} \frac{\partial \bar{f}_m}{\partial z_\ell} \bigg|_{\bar{z}} \right) + \sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_{z}
$$

$$
= \sum_{m,v=1}^{n} \frac{\partial^2 r}{\partial \zeta_v \partial \zeta_m} \frac{\partial f_v}{\partial z_k} \frac{\partial f_m}{\partial z_\ell} \bigg|_{z} + \sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_m} \frac{\partial^2 f_m}{\partial z_k \partial z_\ell} \bigg|_{z}
$$

does not transform nicely
Now the L_p matrix:

\[
\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell}
\]
Now the L_p matrix:

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_z \right)$$
Now the L_p matrix:

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial f_m}{\partial z_\ell} \bigg|_{z} \right)$$

$$= \sum_{m,v=1}^{n} \frac{\partial^2 r}{\partial \zeta_v \partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_v}{\partial \bar{z}_k} \bigg|_{\bar{z}} \frac{\partial f_m}{\partial z_\ell} \bigg|_{z} + \sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_m} \bigg|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell} \bigg|_{z}$$
Now the L_p matrix:

\[
\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \zeta_m} \frac{\partial f_m}{\partial z_\ell} \big|_{(f(z), \bar{f}(\bar{z}))} \right)
\]

\[
= \sum_{m,\nu=1}^{n} \frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \frac{\partial f_m}{\partial z_\ell} \big|_{z} + \sum_{m=1}^{n} \frac{\partial r}{\partial \zeta_m} \big|_{(f(z), \bar{f}(\bar{z}))} \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell} \big|_{z}
\]

\[
= \sum_{m,\nu=1}^{n} \frac{\partial^2 r}{\partial \zeta_\nu \partial \zeta_m} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \frac{\partial f_m}{\partial z_\ell}
\]
Now the L_p matrix:

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \bar{\zeta}_m} \left|_{(f(z), \bar{f} (\bar{z}))} \right. \frac{\partial f_m}{\partial z_\ell} \left|_{z} \right. \right)$$

$$= \sum_{m, \nu=1}^{n} \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \left|_{(f(z), \bar{f} (\bar{z}))} \right. \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \left|_{\bar{z}} \right. \frac{\partial f_m}{\partial z_\ell} \left|_{z} \right. \right) + \sum_{m=1}^{n} \frac{\partial r}{\partial \bar{\zeta}_m} \left|_{(f(z), \bar{f} (\bar{z}))} \right. \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell} \left|_{z} \right. \right)$$

$$= \sum_{m, \nu=1}^{n} \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \frac{\partial f_m}{\partial z_\ell}$$

$$\Rightarrow \quad L_p \text{ changes by } \ast\text{-congruence:}$$
Now the L_p matrix:

$$\frac{\partial^2 (r \circ f)}{\partial \bar{z}_k \partial z_\ell} = \frac{\partial}{\partial \bar{z}_k} \sum_{m=1}^{n} \left(\frac{\partial r}{\partial \bar{\zeta}_m} \frac{\partial f_m}{\partial z_\ell} \right)$$

$$= \sum_{m,\nu=1}^{n} \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} (f(z), \bar{f}(\bar{z})) \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \frac{\partial f_m}{\partial z_\ell} + \sum_{m=1}^{n} \frac{\partial r}{\partial \bar{\zeta}_m} (f(z), \bar{f}(\bar{z})) \frac{\partial^2 f_m}{\partial \bar{z}_k \partial z_\ell}$$

$$= \sum_{m,\nu=1}^{n} \frac{\partial^2 r}{\partial \bar{\zeta}_\nu \partial \bar{\zeta}_m} \frac{\partial \bar{f}_\nu}{\partial \bar{z}_k} \frac{\partial f_m}{\partial z_\ell}$$

\Rightarrow L_p changes by \ast-congruence:

\Rightarrow inertia of the Levi-form is a biholomorphic invariant!
If for all $X_p \in T_{p}^{(1,0)} M$, $X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_p$,

$$X_p^* L_p X_p = \sum_{k=1,\ell=1}^{n} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} |_p \geq 0,$$

then M is said to be pseudoconvex at p.

Note the similarity of the definition to classical convexity. Really, it is one side of the hypersurface that is pseudoconvex.

If $U \subset \mathbb{C}^n$ is a domain with smooth boundary, $U = \{r < 0\}$, and $dr \neq 0$ near ∂U, then U is pseudoconvex if $\partial U = \{r = 0\}$ is pseudoconvex.

Pseudoconvex domains are the natural domains of definition for holomorphic functions.
If for all $X_p \in T_p^{(1,0)} M$, $X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_{p}$,

$$X_p^* L_p X_p = \sum_{k=1, \ell=1}^{n} \tilde{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} |_{p} \geq 0,$$

then M is said to be pseudoconvex at p.

strictly or strongly pseudoconvex if $X_p^* L_p X_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity. Really, it is one side of the hypersurface that is pseudoconvex. If $U \subset \mathbb{C}^n$ is a domain with smooth boundary, $U = \{ r < 0 \}$, and $dr \neq 0$ near ∂U, then U is pseudoconvex if $\partial U = \{ r = 0 \}$ is pseudoconvex. Pseudoconvex domains are the natural domains of definition for holomorphic functions.
If for all \(X_p \in T_p^{(1,0)} M \), \(X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} \big|_p \),

\[
X_p^* L_p X_p = \sum_{k=1, \ell=1}^{n} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \big|_p \geq 0,
\]

then \(M \) is said to be \textit{pseudoconvex} at \(p \).

\textit{Strictly} or \textit{strongly pseucodonvex} if \(X_p^* L_p X_p > 0 \) for \(X_p \neq 0 \).

Note the similarity of the definition to classical convexity.
If for all $X_p \in T_p^{(1,0)} M$, $X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} \bigg|_p$,

$$X^*_p L_p X_p = \sum_{k=1, \ell=1}^{n} \overline{a}_k a_\ell \frac{\partial^2 r}{\partial \overline{z}_k \partial z_\ell} \bigg|_p \geq 0,$$

then M is said to be pseudoconvex at p.

strictly or strongly pseudoconvex if $X^*_p L_p X_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity.
Really, it is one side of the hypersurface that is pseudoconvex.
If for all $X_p \in T_p^{(1,0)} M$, $X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} |_p$,

$$X_p^* L_p X_p = \sum_{k=1, \ell=1}^n \bar{a}_k a_{\ell} \frac{\partial^2 r}{\partial \bar{z}_k \partial z_{\ell}} |_p \geq 0,$$

then M is said to be pseudoconvex at p.

strictly or strongly pseucodonvex if $X_p^* L_p X_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity.

Really, it is one side of the hypersurface that is pseudoconvex.

If $U \subset \mathbb{C}^n$ is a domain with smooth boundary, $U = \{r < 0\}$, and $dr \neq 0$ near ∂U, then U is pseudoconvex if $\partial U = \{r = 0\}$ is pseudoconvex.
If for all $X_p \in T_p^{(1,0)} M$, $X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_p$,

$$X_p^* L_p X_p = \sum_{k=1, \ell=1}^{n} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} |_p \geq 0,$$

then M is said to be pseudoconvex at p.

strictly or strongly pseucodonvex if $X_p^* L_p X_p > 0$ for $X_p \neq 0$.

Note the similarity of the definition to classical convexity.

Really, it is one side of the hypersurface that is pseudoconvex.

If $U \subset \mathbb{C}^n$ is a domain with smooth boundary, $U = \{r < 0\}$, and $dr \neq 0$ near ∂U, then U is pseudoconvex if $\partial U = \{r = 0\}$ is pseudoconvex.

Pseudoconvex domains are the natural domains of definition for holomorphic functions.
Example 1: $U = \mathbb{B}_2 \subset \mathbb{C}^2$, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} |_p$ (so $a_1 = 0$)
Example 1: \(U = \mathbb{B}_2 \subset \mathbb{C}^2 \), then \(r = |z_1|^2 + |z_2|^2 - 1 \).

At \(p = (1, 0) \), \(X_p \in T_p^{(1,0)} \partial U \) means \(X_p = a_2 \frac{\partial}{\partial z_2} \) (so \(a_1 = 0 \))

The Levi-form (at \(p \)) is
\[
\sum_{k=1, \ell=1}^{2} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_p = \bar{a}_1 a_1 + \bar{a}_2 a_2 = \bar{a}_2 a_2 = |a_2|^2 \geq 0
\]
Example 1: $U = \mathbb{B}_2 \subset \mathbb{C}^2$, then $r = |z_1|^2 + |z_2|^2 - 1$.
At $p = (1, 0)$, $X_p \in T_p^{(1,0)}\partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \big|_p$ (so $a_1 = 0$)

The Levi-form (at p) is
\[
\sum_{k=1,\ell=1}^2 \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \big|_p = \bar{a}_1 a_1 + \bar{a}_2 a_2 = \bar{a}_2 a_2 = |a_2|^2 \geq 0
\]

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p
(and similarly at all $p \in \partial \mathbb{B}_2$).
Example 1: \(U = \mathbb{B}_2 \subset \mathbb{C}^2 \), then \(r = |z_1|^2 + |z_2|^2 - 1 \).

At \(p = (1, 0) \), \(X_p \in T_p^{(1,0)} \partial U \) means \(X_p = a_2 \frac{\partial}{\partial z_2} |_p \) (so \(a_1 = 0 \))

The Levi-form (at \(p \)) is
\[
\sum_{k=1,\ell=1}^{2} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} |_p = \bar{a}_1 a_1 + \bar{a}_2 a_2 = \bar{a}_2 a_2 = |a_2|^2 \geq 0
\]

So \(\mathbb{B}_2 \) is pseudoconvex (strongly in fact) at \(p \)
(and similarly at all \(p \in \partial \mathbb{B}_2 \)).

Example 2: In \((z, w) \in \mathbb{C}^2\), the set the domain \(H_+ = \{ \text{Im} w > 0 \} \) is pseudoconvex at all \(p \in M = \partial H_+ = \mathbb{C} \times \mathbb{R} \).
Example 1: $U = \mathbb{B}_2 \subset \mathbb{C}^2$, then $r = |z_1|^2 + |z_2|^2 - 1$.

At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} \big|_p$ (so $a_1 = 0$)

The Levi-form (at p) is

$$
\sum_{k=1,\ell=1}^2 \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_p = \bar{a_1} a_1 + \bar{a_2} a_2 = \bar{a_2} a_2 = |a_2|^2 \geq 0
$$

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_2$).

Example 2: In $(z, w) \in \mathbb{C}^2$, the set the domain $H_+ = \{\text{Im } w > 0\}$ is pseudoconvex at all $p \in M = \partial H_+ = \mathbb{C} \times \mathbb{R}$.

But so is the domain $H_- = \{\text{Im } w < 0\}$.
Example 1: $U = \mathbb{B}_2 \subset \mathbb{C}^2$, then $r = |z_1|^2 + |z_2|^2 - 1$. At $p = (1, 0)$, $X_p \in T_p^{(1,0)} \partial U$ means $X_p = a_2 \frac{\partial}{\partial z_2} |_p$ (so $a_1 = 0$).

The Levi-form (at p) is

$$\sum_{k=1, \ell=1}^2 \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} |_p = \bar{a}_1 a_1 + \bar{a}_2 a_2 = \bar{a}_2 a_2 = |a_2|^2 \geq 0$$

So \mathbb{B}_2 is pseudoconvex (strongly in fact) at p (and similarly at all $p \in \partial \mathbb{B}_2$).

Example 2: In $(z, w) \in \mathbb{C}^2$, the set the domain $H_+ = \{ \text{Im } w > 0 \}$ is pseudoconvex at all $p \in M = \partial H_+ = \mathbb{C} \times \mathbb{R}$.

But so is the domain $H_- = \{ \text{Im } w < 0 \}$.

So $M = \mathbb{C} \times \mathbb{R} = \{ \text{Im } w = 0 \}$ is pseudoconvex from both sides (we call that Levi-flat).
The Levi-form is intrinsic.
The Levi-form is intrinsic.

Let \(\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M / T_p (1,0) M \oplus T_p (0,1) M \cong B_p \)
be the natural projection.

Exercise: Work out that this definition gives a form that has the same
inertia as the previous definition.
The Levi-form is intrinsic.

Let $\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p$

be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.

Then define the intrinsic Levi-form as

$L(X_p, X_p) = \pi_p [X, X]|_p$
The Levi-form is intrinsic.

Let $\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M \rightarrow \mathbb{C} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.

Then define the intrinsic Levi-form as

$$ \mathcal{L}(X_p, \bar{X}_p) = \pi_p([X, \bar{X}]|_p) $$
The Levi-form is intrinsic.

Let \(\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p \) be the natural projection.

Extend a vector \(X_p \in T_p^{(1,0)} M \) to a vector field \(X \) in \(T^{(1,0)} M \).

Then define the intrinsic Levi-form as

\[
\mathcal{L}(X_p, \overline{X}_p) = \pi_p([X, \overline{X}]|_p)
\]

This definition works in any codimension, and is completely intrinsic.
The Levi-form is intrinsic.

Let $\pi_p : \mathbb{C} \otimes T_p M \to \mathbb{C} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \cong B_p$ be the natural projection.

Extend a vector $X_p \in T_p^{(1,0)} M$ to a vector field X in $T^{(1,0)} M$.

Then define the intrinsic Levi-form as

$$\mathcal{L}(X_p, \bar{X}_p) = \pi_p([X, \bar{X}]|_p)$$

This definition works in any codimension, and is completely intrinsic.

Exercise: Work out that this definition gives a form that has the same inertia as the previous definition.
Write an M as before as $(T: \mathbb{C}^{n-1} \to \mathbb{C}$ is linear)

$$\text{Im } w = \varphi(z, \bar{z}, \text{Re } w) = q(z, \bar{z}) + (\text{Re } w)(Tz + \bar{Tz}) + a(\text{Re } w)^2 + O(3),$$

Change variables in z to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.
Write an M as before as $(T : \mathbb{C}^{n-1} \to \mathbb{C} \text{ is linear})$

\[\Im w = \varphi(z, \bar{z}, \Re w) = q(z, \bar{z}) + (\Re w)(Tz + \bar{Tz}) + a(\Re w)^2 + O(3), \]

Change variables in z to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon wz_1$ to get

\[\Im w = q(z, \bar{z}) - \epsilon i(\Im w)(z_1 - \bar{z}_1) + a(\Im w)^2 + O(3) \]
Write an M as before as $(T: \mathbb{C}^{n-1} \to \mathbb{C}$ is linear)

$$\text{Im } w = \varphi(z, \bar{z}, \text{Re } w) = q(z, \bar{z}) + (\text{Re } w)(Tz + \bar{Tz}) + a(\text{Re } w)^2 + O(3),$$

Change variables in z to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon wz_1$ to get

$$\text{Im } w = q(z, \bar{z}) - \epsilon i(\text{Im } w)(z_1 - \bar{z}_1) + a(\text{Im } w)^2 + O(3)$$

Solve for $\text{Im } w$ (which is $O(2)$) by IVT to get

$$\text{Im } w = q(z, \bar{z}) + O(3) = z^*Az + z^tBz + \bar{z}^tBz + O(3)$$
Write an M as before as $(T: \mathbb{C}^{n-1} \to \mathbb{C}$ is linear)

$$\text{Im } w = \varphi(z, \bar{z}, \text{Re } w) = q(z, \bar{z}) + (\text{Re } w)(Tz + \overline{Tz}) + a(\text{Re } w)^2 + O(3),$$

Change variables in z to make $Tz = \varepsilon z_1$ where $\varepsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\varepsilon wz_1$ to get

$$\text{Im } w = q(z, \bar{z}) - \varepsilon i(\text{Im } w)(z_1 - \bar{z}_1) + a(\text{Im } w)^2 + O(3)$$

Solve for $\text{Im } w$ (which is $O(2)$) by IVT to get

$$\text{Im } w = q(z, \bar{z}) + O(3) = z^*Az + z^tBz + \overline{z^tBz} + O(3)$$

Change variables again taking w to $w + 2iz^tBz$ to get

$$\text{Im } w = z^*Az + O(3)$$

The matrix A is then the Levi-form.
Write an M as before as ($T: \mathbb{C}^{n-1} \to \mathbb{C}$ is linear)

$$\text{Im } w = \varphi(z, \bar{z}, \text{Re } w) = q(z, \bar{z}) + (\text{Re } w)(Tz + \overline{Tz}) + a(\text{Re } w)^2 + O(3),$$

Change variables in z to make $Tz = \epsilon z_1$ where $\epsilon = 0$ or 1.

Change variables changing w to $w + iaw^2 + 2i\epsilon wz_1$ to get

$$\text{Im } w = q(z, \bar{z}) - \epsilon i(\text{Im } w)(z_1 - \bar{z}_1) + a(\text{Im } w)^2 + O(3)$$

Solve for $\text{Im } w$ (which is $O(2)$) by IVT to get

$$\text{Im } w = q(z, \bar{z}) + O(3) = z^*Az + z^tBz + \overline{z^tBz} + O(3)$$

Change variables again taking w to $w + 2iz^tBz$ to get

$$\text{Im } w = z^*Az + O(3)$$

The matrix A is then the Levi-form.

Diagonalizing A and rescaling

$$\text{Im } w = \lambda_1|z_1|^2 + \cdots + \lambda_{n-1}|z_{n-1}|^2 + O(3) \quad \text{where } \lambda_k = 0 \text{ or } \pm 1.$$
A smooth function $f : M \to \mathbb{C}$ is a CR function if

$$\nabla f = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

There are other smooth CR functions. Example: Suppose $M = \{ \text{Im} \, w = 0 \}$, and $f : M \to \mathbb{C}$ is $e^{-\left(\frac{1}{\text{Re} \, w}\right)^2}$ if $\text{Re} \, w \neq 0$ and 0 if $\text{Re} \, w = 0$. Then f is CR, C^∞, but f is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic M and f, CR functions are restrictions of holomorphic functions.

For two CR submanifolds M and N, $f : M \to N$ is a CR mapping if each component of f is a CR function. M and N are CR diffeomorphic if there is a diffeomorphism $f : M \to N$ such that f and f^{-1} are CR.
A smooth function $f : M \to \mathbb{C}$ is a CR function if

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathcal{O}(\mathbb{C}^n)$, then $vf = 0$ for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.
A smooth function \(f : M \to \mathbb{C} \) is a CR function if

\[\forall f = 0 \]

for all vector fields \(v \in \Gamma(T^{(0,1)}M) \).

Example: If \(f \in \mathcal{O}(\mathbb{C}^n) \), then \(\forall f = 0 \) for all \(v \in \Gamma(T^{(0,1)}\mathbb{C}^n) \). So \(f|_M \) is CR.

There are other smooth CR functions.

Example: Suppose \(M = \{ \text{Im} \, w = 0 \} \), and \(f : M \to \mathbb{C} \) is \(e^{-\left(\frac{1}{\text{Re} \, w}\right)^2} \) if \(\text{Re} \, w \neq 0 \) and 0 if \(\text{Re} \, w = 0 \). Then \(f \) is CR, \(C^\infty \), but \(f \) is not real-analytic, so not a restriction of a holomorphic function.
A smooth function \(f : M \to \mathbb{C} \) is a CR function if

\[vf = 0 \]

for all vector fields \(v \in \Gamma(T^{(0,1)}M) \).

Example: If \(f \in \mathcal{O}(\mathbb{C}^n) \), then \(vf = 0 \) for all \(v \in \Gamma(T^{(0,1)}\mathbb{C}^n) \). So \(f\big|_M \) is CR.

There are other smooth CR functions.

Example: Suppose \(M = \{ \text{Im } w = 0 \} \), and \(f : M \to \mathbb{C} \) is \(e^{-(1/\text{Re } w)^2} \) if \(\text{Re } w \neq 0 \) and 0 if \(\text{Re } w = 0 \). Then \(f \) is CR, \(C^\infty \), but \(f \) is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic \(M \) and \(f \), CR functions are restrictions of holomorphic functions.
A smooth function $f : M \to \mathbb{C}$ is a CR function if

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathcal{O}(\mathbb{C}^n)$, then $vf = 0$ for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

There are other smooth CR functions.

Example: Suppose $M = \{\text{Im } w = 0\}$, and $f : M \to \mathbb{C}$ is $e^{-(1/\text{Re } w)^2}$ if $\text{Re } w \neq 0$ and 0 if $\text{Re } w = 0$. Then f is CR, C^∞, but f is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic M and f, CR functions are restrictions of holomorphic functions.

For two CR submanifolds M and N, $f : M \to N$ is a CR mapping if each component of f is a CR function.
A smooth function $f: M \rightarrow \mathbb{C}$ is a CR function if

$$vf = 0$$

for all vector fields $v \in \Gamma(T^{(0,1)}M)$.

Example: If $f \in \mathcal{O}(\mathbb{C}^n)$, then $vf = 0$ for all $v \in \Gamma(T^{(0,1)}\mathbb{C}^n)$. So $f|_M$ is CR.

There are other smooth CR functions.

Example: Suppose $M = \{\text{Im } w = 0\}$, and $f: M \rightarrow \mathbb{C}$ is $e^{-(1/\text{Re } w)^2}$ if $\text{Re } w \neq 0$ and 0 if $\text{Re } w = 0$. Then f is CR, C^∞, but f is not real-analytic, so not a restriction of a holomorphic function.

We will see that for real-analytic M and f, CR functions are restrictions of holomorphic functions.

For two CR submanifolds M and N, $f: M \rightarrow N$ is a CR mapping if each component of f is a CR function.

M and N are CR diffeomorphic if there is a diffeomorphism $f: M \rightarrow N$ such that f and f^{-1} are CR.