Singular Levi-flat hypersurfaces (1)

Jiří Lebl

Departamento pri Matematiko de Oklahoma Štata Universitato
Let \mathbb{C}^n be the complex Euclidean space.
$z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$ and $\mathbb{C}^n \cong \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$ via

$$z = x + iy, \quad \bar{z} = x - iy, \quad x, y \in \mathbb{R}^n, \quad i = \sqrt{-1}.$$
Let \mathbb{C}^n be the complex Euclidean space.
$z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$ and $\mathbb{C}^n \cong \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$ via

$$z = x + iy, \quad \bar{z} = x - iy, \quad x, y \in \mathbb{R}^n, \quad i = \sqrt{-1}.$$

Exterior derivative leads to 1-forms

$$dz_\ell = dx_\ell + i dy_\ell, \quad d\bar{z}_\ell = dx_\ell - i dy_\ell.$$
Let \(\mathbb{C}^n \) be the complex Euclidean space.

\[z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n \text{ and } \mathbb{C}^n \cong \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n} \text{ via} \]

\[z = x + iy, \quad \bar{z} = x - iy, \quad x, y \in \mathbb{R}^n, \quad i = \sqrt{-1}. \]

Exterior derivative leads to 1-forms

\[dz_\ell = dx_\ell + i dy_\ell, \quad d\bar{z}_\ell = dx_\ell - i dy_\ell. \]

Define the Wirtinger operators

\[\frac{\partial}{\partial z_\ell} \text{ def } \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} - i \frac{\partial}{\partial y_\ell} \right), \quad \frac{\partial}{\partial \bar{z}_\ell} \text{ def } \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} + i \frac{\partial}{\partial y_\ell} \right). \]
Let \(\mathbb{C}^n \) be the complex Euclidean space. \(z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n \) and \(\mathbb{C}^n \cong \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n} \) via

\[
z = x + iy, \quad \bar{z} = x - iy, \quad x, y \in \mathbb{R}^n, \quad i = \sqrt{-1}.
\]

Exterior derivative leads to 1-forms

\[
dz_\ell = dx_\ell + i dy_\ell, \quad \d\bar{z}_\ell = dx_\ell - i dy_\ell.
\]

Define the Wirtinger operators

\[
\frac{\partial}{\partial z_\ell} \overset{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} - i \frac{\partial}{\partial y_\ell} \right), \quad \frac{\partial}{\partial \bar{z}_\ell} \overset{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} + i \frac{\partial}{\partial y_\ell} \right).
\]

These are determined by being the dual bases of \(dz \) and \(d\bar{z} \)

\[
dz_k \left(\frac{\partial}{\partial z_\ell} \right) = \delta^k_\ell, \quad \dz_k \left(\frac{\partial}{\partial \bar{z}_\ell} \right) = 0, \quad \dz_k \left(\frac{\partial}{\partial z_\ell} \right) = 0, \quad \dz_k \left(\frac{\partial}{\partial \bar{z}_\ell} \right) = \delta^k_\ell.
\]
Let \mathbb{C}^n be the complex Euclidean space. $z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$ and $\mathbb{C}^n \cong \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$ via $z = x + iy$, $\bar{z} = x - iy$, $x, y \in \mathbb{R}^n$, $i = \sqrt{-1}$.

Exterior derivative leads to 1-forms

$$dz_\ell = dx_\ell + idy_\ell, \quad d\bar{z}_\ell = dx_\ell - idy_\ell.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_\ell} \overset{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} - i \frac{\partial}{\partial y_\ell} \right), \quad \frac{\partial}{\partial \bar{z}_\ell} \overset{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} + i \frac{\partial}{\partial y_\ell} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k \left(\frac{\partial}{\partial z_\ell} \right) = \delta^k_\ell, \quad dz_k \left(\frac{\partial}{\partial \bar{z}_\ell} \right) = 0, \quad d\bar{z}_k \left(\frac{\partial}{\partial z_\ell} \right) = 0, \quad d\bar{z}_k \left(\frac{\partial}{\partial \bar{z}_\ell} \right) = \delta^k_\ell$$

$f : U \subset \mathbb{C}^n \to \mathbb{C}$ is holomorphic if f satisfies

$$\frac{\partial f}{\partial \bar{z}_\ell} = 0 \quad \text{for } \ell = 1, 2, \ldots, n \quad \text{(the Cauchy–Riemann (CR) equations)}. $$
Let \mathbb{C}^n be the complex Euclidean space.
$z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$ and $\mathbb{C}^n \cong \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$ via

$$z = x + iy, \quad \bar{z} = x - iy, \quad x, y \in \mathbb{R}^n, \quad i = \sqrt{-1}.$$

Exterior derivative leads to 1-forms

$$dz_\ell = dx_\ell + i dy_\ell, \quad d\bar{z}_\ell = dx_\ell - i dy_\ell.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_\ell} \overset{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} - i \frac{\partial}{\partial y_\ell} \right), \quad \frac{\partial}{\partial \bar{z}_\ell} \overset{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_\ell} + i \frac{\partial}{\partial y_\ell} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k \left(\frac{\partial}{\partial z_\ell} \right) = \delta^k_\ell, \quad dz_k \left(\frac{\partial}{\partial \bar{z}_\ell} \right) = 0, \quad d\bar{z}_k \left(\frac{\partial}{\partial z_\ell} \right) = 0, \quad d\bar{z}_k \left(\frac{\partial}{\partial \bar{z}_\ell} \right) = \delta^k_\ell$$

$f : U \subset \mathbb{C}^n \to \mathbb{C}$ is holomorphic if f satisfies

$$\frac{\partial f}{\partial \bar{z}_\ell} = 0 \quad \text{for } \ell = 1, 2, \ldots, n \quad (\text{the Cauchy–Riemann (CR) equations}).$$

Write $\mathcal{O}(U)$ for set of holomorphic functions on U.
We write a smooth (C^∞) function $f : U \subset \mathbb{C}^n \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.

If f is a polynomial (in x and y), write $x = z + \bar{z}$, $y = z - \bar{z}$, and it really does become a polynomial in z and \bar{z}.

E.g., $2x^1 + 2y^1 + 4y^2 = (1 - i)z^1 + (1 + i)\bar{z}^1 - z^2 + 2z^2\bar{z}^2 - \bar{z}^2$.

f is holomorphic if it does not depend on \bar{z}.

If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.

f is holomorphic if the power series only has z terms.

Treat z and \bar{z} as separate variables.

$f(z, \bar{z})$ becomes $f(z, \zeta)$. This is called complexification.

We must worry about convergence! More on all this later.
We write a smooth (C^∞) function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \bar{z})$.

If f is a polynomial (in x and y), write

$$x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \bar{z}.

Treat z and \bar{z} as separate variables. $f(z, \bar{z})$ becomes $f(z, \zeta)$. This is called complexification.

We must worry about convergence! More on all this later.
We write a smooth \((C^\infty)\) function \(f : U \subset \mathbb{C}^n \to \mathbb{C}\) as \(f(z, \bar{z})\).

If \(f\) is a polynomial (in \(x\) and \(y\)), write

\[
\begin{align*}
x &= \frac{z + \bar{z}}{2}, \\
y &= \frac{z - \bar{z}}{2i}
\end{align*}
\]

and it really does become a polynomial in \(z\) and \(\bar{z}\). E.g.,

\[
2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\bar{z}_1 - z_2^2 + 2z_2\bar{z}_2 - \bar{z}_2^2
\]

\(f\) is holomorphic if it does not depend on \(\bar{z}\).
We write a smooth \((C^\infty)\) function \(f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}\) as \(f(z, \bar{z})\).

If \(f\) is a polynomial (in \(x\) and \(y\)), write

\[
x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}
\]

and it really does become a polynomial in \(z\) and \(\bar{z}\). E.g.,

\[
2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\bar{z}_1 - z_2^2 + 2z_2\bar{z}_2 - \bar{z}_2^2
\]

\(f\) is holomorphic if it does not depend on \(\bar{z}\).

If \(f\) is real-analytic (has a power series in \(x\) and \(y\)), then \(f\) has a power series in \(z\) and \(\bar{z}\).
We write a smooth \((C^\infty)\) function \(f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}\) as \(f(z, \bar{z}).\)

If \(f\) is a polynomial (in \(x\) and \(y\)), write

\[
x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}
\]

and it really does become a polynomial in \(z\) and \(\bar{z}\). E.g.,

\[
2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\bar{z}_1 - z_2^2 + 2z_2\bar{z}_2 - \bar{z}_2^2
\]

\(f\) is holomorphic if it does not depend on \(\bar{z}\).

If \(f\) is real-analytic (has a power series in \(x\) and \(y\)), then \(f\) has a power series in \(z\) and \(\bar{z}\).

\(f\) is holomorphic if the power series only has \(z\) terms.
We write a smooth (C^∞) function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \bar{z})$.

If f is a polynomial (in x and y), write

$$x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\bar{z}_1 - z_2^2 + 2z_2\bar{z}_2 - \bar{z}_2^2$$

f is holomorphic if it does not depend on \bar{z}.

If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.

f is holomorphic if the power series only has z terms.

Treat z and \bar{z} as separate variables.

$f(z, \bar{z})$ becomes $f(z, \xi)$. This is called complexification.
We write a smooth (C^∞) function $f : U \subset \mathbb{C}^n \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.

If f is a polynomial (in x and y), write

$$x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\bar{z}_1 - z_2^2 + 2z_2\bar{z}_2 - \bar{z}_2^2$$

f is holomorphic if it does not depend on \bar{z}.

If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.

f is holomorphic if the power series only has z terms.

Treat z and \bar{z} as separate variables.

$f(z, \bar{z})$ becomes $f(z, \xi)$. This is called complexification.

We must worry about convergence! More on all this later.
Theorem (Hartogs)

Let $U \subset \mathbb{C}^n$, $n \geq 2$, be a domain, and $K \subset\subset U$ be compact with $U \setminus K$ connected. If $f \in \mathcal{O}(U \setminus K)$, then there exists a unique $F \in \mathcal{O}(U)$ such that $F|_{U\setminus K} = f$.

Note: Not every domain is a natural domain of definition for a holomorphic function. Geometry of the boundary plays a role!
Theorem (Hartogs)

Let $U \subset \mathbb{C}^n$, $n \geq 2$, be a domain, and $K \subset \subset U$ be compact with $U \setminus K$ connected. If $f \in \mathcal{O}(U \setminus K)$, then there exists a unique $F \in \mathcal{O}(U)$ such that $F|_{U \setminus K} = f$.

Note: Not every domain is a natural domain of definition for a holomorphic function. Geometry of the boundary plays a role!
If $U, V \subset \mathbb{C}^n$ and $f : U \rightarrow V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a **biholomorphism** and U and V are **biholomorphic**.

Remark: f^{-1} is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.

Example: $U = B(0, 2) \setminus B(0, 1)$. The outer (convex) and the inner (concave) boundaries have very different properties. In fact it is a form of "convexity" that we need to study to understand boundaries.
If $U, V \subset \mathbb{C}^n$ and $f : U \to V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.

Remark: f^{-1} is automatically holomorphically.
If $U, V \subset \mathbb{C}^n$ and $f : U \rightarrow V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.

Remark: f^{-1} is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.
If $U, V \subset \mathbb{C}^n$ and $f : U \to V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.

Remark: f^{-1} is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.

Example: $U = \overline{B(0, 2)} \setminus \overline{B(0, 1)}$. The outer (convex) and the inner (concave) boundaries have very different properties. In fact it is a form of “convexity” that we need to study to understand boundaries.
Take the real tangent space $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n}$. Write

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial x_1} \bigg|_p, \frac{\partial}{\partial y_1} \bigg|_p, \ldots, \frac{\partial}{\partial x_n} \bigg|_p, \frac{\partial}{\partial y_n} \bigg|_p \right\}.$$
Take the real tangent space $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n}$. Write
\[\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial x_1} \bigg|_p, \frac{\partial}{\partial y_1} \bigg|_p, \ldots, \frac{\partial}{\partial x_n} \bigg|_p, \frac{\partial}{\partial y_n} \bigg|_p \right\}. \]

Then
\[\frac{\partial}{\partial z_k} \bigg|_p, \frac{\partial}{\partial \bar{z}_k} \bigg|_p \in \mathbb{C} \otimes T_p \mathbb{C}^n \]
and
\[\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} \bigg|_p, \frac{\partial}{\partial \bar{z}_1} \bigg|_p, \ldots, \frac{\partial}{\partial z_n} \bigg|_p, \frac{\partial}{\partial \bar{z}_n} \bigg|_p \right\}. \]
Take the real tangent space $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n}$. Write

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial x_1} |_p, \frac{\partial}{\partial y_1} |_p, \ldots, \frac{\partial}{\partial x_n} |_p, \frac{\partial}{\partial y_n} |_p \right\}.$$

Then

$$\frac{\partial}{\partial z_k} |_p, \frac{\partial}{\partial \bar{z}_k} |_p \in \mathbb{C} \otimes T_p \mathbb{C}^n$$

and

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} |_p, \frac{\partial}{\partial \bar{z}_1} |_p, \ldots, \frac{\partial}{\partial z_n} |_p, \frac{\partial}{\partial \bar{z}_n} |_p \right\}.$$

Define

$$T_p^{(1,0)} \mathbb{C}^n \overset{\text{def}}{=} \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} |_p, \ldots, \frac{\partial}{\partial z_n} |_p \right\} \quad (\text{holomorphic vectors}),$$

$$T_p^{(0,1)} \mathbb{C}^n \overset{\text{def}}{=} \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} |_p, \ldots, \frac{\partial}{\partial \bar{z}_n} |_p \right\} \quad (\text{antiholomorphic vectors}).$$
Take the real tangent space $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n}$. Write
\[
\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial x_1} \big|_p, \frac{\partial}{\partial y_1} \big|_p, \ldots, \frac{\partial}{\partial x_n} \big|_p, \frac{\partial}{\partial y_n} \big|_p \right\}.
\]
Then
\[
\frac{\partial}{\partial z_k} \big|_p, \frac{\partial}{\partial \bar{z}_k} \big|_p \in \mathbb{C} \otimes T_p \mathbb{C}^n
\]
and
\[
\mathbb{C} \otimes T_p \mathbb{C}^n = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} \big|_p, \frac{\partial}{\partial \bar{z}_1} \big|_p, \ldots, \frac{\partial}{\partial z_n} \big|_p, \frac{\partial}{\partial \bar{z}_n} \big|_p \right\}.
\]
Define
\[
T_p^{(1,0)} \mathbb{C}^n \overset{\text{def}}{=} \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} \big|_p, \ldots, \frac{\partial}{\partial z_n} \big|_p \right\} \quad \text{(holomorphic vectors)},
\]
\[
T_p^{(0,1)} \mathbb{C}^n \overset{\text{def}}{=} \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} \big|_p, \ldots, \frac{\partial}{\partial \bar{z}_n} \big|_p \right\} \quad \text{(antiholomorphic vectors)}.
\]
Then
\[
\mathbb{C} \otimes T_p \mathbb{C}^n = T_p^{(1,0)} \mathbb{C}^n \oplus T_p^{(0,1)} \mathbb{C}^n.
\]
Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface.
Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface. I.e., near each $p \in M$, \exists a neighbourhood U of p, and a smooth $r: U \to \mathbb{R}$ s.t. $dr \neq 0$ on U and

$$M \cap U = \{z : r(z, \bar{z}) = 0\}.$$
Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface. I.e., near each $p \in M$, \exists a neighbourhood U of p, and a smooth $r: U \to \mathbb{R}$ s.t. $dr \neq 0$ on U and

$$M \cap U = \{ z : r(z, \bar{z}) = 0 \}.$$

Then

$$T_pM = \{ X \in T_p\mathbb{C}^n : Xr = 0 \}.$$
Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface. I.e., near each $p \in M$, \exists a neighbourhood U of p, and a smooth $r: U \rightarrow \mathbb{R}$ s.t. $dr \neq 0$ on U and

$$M \cap U = \{z : r(z, \bar{z}) = 0\}.$$

Then

$$T_pM = \{X \in T_p\mathbb{C}^n : Xr = 0\}.$$

Define

$$T_p^{(1,0)}M \overset{\text{def}}{=} (\mathbb{C} \otimes T_pM) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$

$$T_p^{(0,1)}M \overset{\text{def}}{=} (\mathbb{C} \otimes T_pM) \cap (T_p^{(0,1)}\mathbb{C}^n).$$
Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface. I.e., near each $p \in M$, \exists a neighbourhood U of p, and a smooth $r: U \to \mathbb{R}$ s.t. $dr \ne 0$ on U and

$$M \cap U = \{z : r(z, \bar{z}) = 0\}.$$

Then

$$T_pM = \{X \in T_p\mathbb{C}^n : Xr = 0\}.$$

Define

$$T_p^{(1,0)}M \triangleq (\mathbb{C} \otimes T_pM) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$

$$T_p^{(0,1)}M \triangleq (\mathbb{C} \otimes T_pM) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Decompose $\mathbb{C} \otimes T_pM$ as

$$\mathbb{C} \otimes T_pM = T_p^{(1,0)}M \oplus T_p^{(0,1)}M \oplus B_p.$$
Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface. I.e., near each $p \in M$, \exists a neighbourhood U of p, and a smooth $r : U \to \mathbb{R}$ s.t. $dr \neq 0$ on U and

$$M \cap U = \{ z : r(z, \bar{z}) = 0 \}.$$

Then

$$T_p M = \{ X \in T_p \mathbb{C}^n : Xr = 0 \}.$$

Define

$$T_p^{(1,0)} M \overset{\text{def}}{=} \left(\mathbb{C} \otimes T_p M \right) \cap \left(T_p^{(1,0)} \mathbb{C}^n \right),$$

and

$$T_p^{(0,1)} M \overset{\text{def}}{=} \left(\mathbb{C} \otimes T_p M \right) \cap \left(T_p^{(0,1)} \mathbb{C}^n \right).$$

Decompose $\mathbb{C} \otimes T_p M$ as

$$\mathbb{C} \otimes T_p M = T_p^{(1,0)} M \oplus T_p^{(0,1)} M \oplus B_p.$$

$B_p \cong \mathbb{C} \otimes T_p M \big/ T_p^{(1,0)} M \oplus T_p^{(0,1)} M$ is a one-dimensional space.
More explicitly,

\[
X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} \big|_p + b_k \frac{\partial}{\partial \bar{z}_k} \big|_p \in \mathbb{C} \otimes T_pM \iff \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} \big|_p + b_k \frac{\partial r}{\partial \bar{z}_k} \big|_p = 0.
\]
More explicitly,

\[X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_p + b_k \frac{\partial}{\partial \bar{z}_k} |_p \in \mathbb{C} \otimes T_p M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} |_p + b_k \frac{\partial r}{\partial \bar{z}_k} |_p = 0. \]

And

\[X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_p \in T^{(1,0)}_p M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} |_p = 0. \]
More explicitly,

\[X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_p + b_k \frac{\partial}{\partial \bar{z}_k} |_p \in \mathbb{C} \otimes T_p M \iff \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} |_p + b_k \frac{\partial r}{\partial \bar{z}_k} |_p = 0. \]

And

\[X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} |_p \in T^{(1,0)}_p M \iff \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} |_p = 0. \]

Example: \(\text{Im} z_n = \frac{z_n - \bar{z}_n}{2i} = 0 \) defines \(M = \mathbb{C}^{n-1} \times \mathbb{R} \subset \mathbb{C}^n \).

\(T^{(1,0)}_p M = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} |_p, \ldots, \frac{\partial}{\partial z_{n-1}} |_p \right\} \)

\(T^{(0,1)}_p M = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} |_p, \ldots, \frac{\partial}{\partial \bar{z}_{n-1}} |_p \right\} \)

\(B_p = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial x_n} |_p \right\} = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial (\text{Re} z_n)} |_p \right\} = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_n} |_p + \frac{\partial}{\partial \bar{z}_n} |_p \right\} \)
If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)} \mathbb{C}^n),$$

and

$$T_p^{(0,1)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)} \mathbb{C}^n).$$
If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

\[
T_p^{(1,0)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)} \mathbb{C}^n), \quad \text{and} \quad T_p^{(0,1)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)} \mathbb{C}^n).
\]

Now

\[
\mathbb{C} \otimes T_p M = T_p^{(1,0)} M \oplus T_p^{(0,1)} M \oplus B_p.
\]

If $T_p^{(1,0)} M$ and $T_p^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a CR submanifold.
If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

\[T_{p}^{(1,0)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_{p}^{(1,0)} \mathbb{C}^n), \quad \text{and} \]
\[T_{p}^{(0,1)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_{p}^{(0,1)} \mathbb{C}^n). \]

Now

\[\mathbb{C} \otimes T_p M = T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_p. \]

If $T_{p}^{(1,0)} M$ and $T_{p}^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a **CR submanifold**.

Remark: Every hypersurface is a CR submanifold (next slide).
If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)} \mathbb{C}^n), \quad \text{and}$$

$$T_p^{(0,1)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)} \mathbb{C}^n).$$

Now

$$\mathbb{C} \otimes T_p M = T_p^{(1,0)} M \oplus T_p^{(0,1)} M \oplus B_p.$$

If $T_p^{(1,0)} M$ and $T_p^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a CR submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).

Example 1: $M = \mathbb{R}^2 \subset \mathbb{C}^2$.

$$T_p^{(1,0)} M = \{0\}, \quad T_p^{(0,1)} M = \{0\}, \quad B_p = \mathbb{C} \otimes T_p M.$$
If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

\[
T_p^{(1,0)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)} \mathbb{C}^n), \quad \text{and}
\]
\[
T_p^{(0,1)} M \overset{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)} \mathbb{C}^n).
\]

Now

\[
\mathbb{C} \otimes T_p M = T_p^{(1,0)} M \oplus T_p^{(0,1)} M \oplus B_p.
\]

If $T_p^{(1,0)} M$ and $T_p^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a CR submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).

Example 1: $M = \mathbb{R}^2 \subset \mathbb{C}^2$.

\[T_p^{(1,0)} M = \{0\}, \quad T_p^{(0,1)} M = \{0\}, \quad B_p = \mathbb{C} \otimes T_p M.\]

Example 2: $M = \mathbb{C} \times \{0\} \subset \mathbb{C}^2$.

\[T_p^{(1,0)} M = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial z_1} \bigg|_p \right\}, \quad T_p^{(0,1)} M = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \overline{z}_1} \bigg|_p \right\}, \quad B_p = \{0\}.\]
Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. After a translation and rotation via a unitary matrix, $p = 0$ and near the origin M is written in variables $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} (w = z_n)$ as

$$\text{Im } w = \varphi(z, \bar{z}, \text{Re } w),$$

with the $\varphi(0)$ and $d\varphi(0) = 0$.
Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. After a translation and rotation via a unitary matrix, $p = 0$ and near the origin M is written in variables $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$ ($w = z_n$) as

$$\text{Im } w = \varphi(z, \bar{z}, \text{Re } w),$$

with the $\varphi(0)$ and $d\varphi(0) = 0$.

Consequently

$$T^{(1,0)}_0 M = \text{span}_\mathbb{C} \left\{ \left. \frac{\partial}{\partial z_1} \right|_0, \ldots, \left. \frac{\partial}{\partial z_{n-1}} \right|_0 \right\},$$

$$T^{(0,1)}_0 M = \text{span}_\mathbb{C} \left\{ \left. \frac{\partial}{\partial \bar{z}_1} \right|_0, \ldots, \left. \frac{\partial}{\partial \bar{z}_{n-1}} \right|_0 \right\},$$

$$B_0 = \text{span}_\mathbb{C} \left\{ \left. \frac{\partial}{\partial (\text{Re } w)} \right|_0 \right\}.$$

In particular, $\dim_\mathbb{C} T^{(1,0)}_p M = \dim_\mathbb{C} T^{(0,1)}_p M = n - 1$ and $\dim_\mathbb{C} B_p = 1$.
Suppose $M = \{r = 0\}$ as before, and $p \in M$.

Write the (full) Hessian of r at p as the Hermitian matrix $H_p =
\begin{pmatrix}
\frac{\partial^2 r}{\partial \bar{z}_1 \partial z_1}
p \cdots \\
\frac{\partial^2 r}{\partial \bar{z}_1 \partial \bar{z}_1}
p \cdots \\
\vdots \ & \ddots \ & \ddots \\
\frac{\partial^2 r}{\partial \bar{z}_n \partial z_1}
p \cdots \\
\frac{\partial^2 r}{\partial \bar{z}_n \partial \bar{z}_1}
p \cdots \\
\frac{\partial^2 r}{\partial z_1 \partial z_1}
p \cdots \\
\vdots \ & \ddots \ & \ddots \\
\frac{\partial^2 r}{\partial z_n \partial \bar{z}_1}
p \cdots \\
\frac{\partial^2 r}{\partial z_n \partial \bar{z}_n}
p \cdots \\
\end{pmatrix} = L_p Z_p L_p^t.
Suppose $M = \{ r = 0 \}$ as before, and $p \in M$.

Write the (full) Hessian of r at p as the Hermitian matrix

$$ H_p = \begin{bmatrix} \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial z_n} |_p & \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_n} |_p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 r}{\partial z_n \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_n \partial z_n} |_p & \frac{\partial^2 r}{\partial z_n \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_n \partial \bar{z}_n} |_p \\ \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial z_n} |_p & \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_n} |_p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 r}{\partial z_n \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_n \partial z_n} |_p & \frac{\partial^2 r}{\partial z_n \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_n \partial \bar{z}_n} |_p \end{bmatrix} = \begin{bmatrix} L_p & Z_p \\ Z_p & L^t_p \end{bmatrix} $$
Suppose $M = \{ r = 0 \}$ as before, and $p \in M$.

Write the (full) Hessian of r at p as the Hermitian matrix

$$H_p = \begin{bmatrix}
\frac{\partial^2 r}{\partial z_1 \partial z_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial z_n} |_p \\
\frac{\partial^2 r}{\partial z_1 \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial \bar{z}_n} |_p \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 r}{\partial z_n \partial z_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_n \partial z_n} |_p \\
\frac{\partial^2 r}{\partial z_n \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial z_n \partial \bar{z}_n} |_p \\
\frac{\partial^2 r}{\partial \bar{z}_1 \partial z_1} |_p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_1 \partial z_n} |_p \\
\frac{\partial^2 r}{\partial \bar{z}_1 \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_1 \partial \bar{z}_n} |_p \\
\frac{\partial^2 r}{\partial \bar{z}_n \partial z_1} |_p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_n} |_p \\
\frac{\partial^2 r}{\partial \bar{z}_n \partial \bar{z}_1} |_p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_n \partial \bar{z}_n} |_p
\end{bmatrix} = \begin{bmatrix}
L_p & \bar{Z}_p \\
Z_p & L^t_p
\end{bmatrix}$$

M is (strictly if inequality strict) convex at p (really one side of M is) if

$$X^*_p H_p X_p \geq 0 \quad \text{for all } X_p \in \mathbb{C} \otimes T_p M.$$
Suppose \(M = \{ r = 0 \} \) as before, and \(p \in M \).

Write the (full) Hessian of \(r \) at \(p \) as the Hermitian matrix

\[
H_p = \begin{bmatrix}
\frac{\partial^2 r}{\partial z_1 \partial z_1} | p & \cdots & \frac{\partial^2 r}{\partial z_1 \partial z_n} | p & \frac{\partial^2 r}{\partial \bar{z}_1 \partial z_1} | p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_1 \partial z_n} | p \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\partial^2 r}{\partial z_n \partial z_1} | p & \cdots & \frac{\partial^2 r}{\partial z_n \partial z_n} | p & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_1} | p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_n} | p \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\partial^2 r}{\partial z_n \partial z_1} | p & \cdots & \frac{\partial^2 r}{\partial z_n \partial z_n} | p & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_1} | p & \cdots & \frac{\partial^2 r}{\partial \bar{z}_n \partial z_n} | p
\end{bmatrix} = \begin{bmatrix} L_p & Z_p \\ Z_p & L^t_p \end{bmatrix}
\]

\(M \) is (strictly if inequality strict) convex at \(p \) (really one side of \(M \) is) if

\[
X_p^* H_p X_p \geq 0 \quad \text{for all } X_p \in \mathbb{C} \otimes T_p M.
\]

A complex linear change of coordinates \(A : \mathbb{C}^n \to \mathbb{C}^n \) acts like

\[
\begin{bmatrix}
A & 0 \\
0 & \bar{A}
\end{bmatrix}^* \begin{bmatrix}
L & \bar{Z} \\
Z & L^t
\end{bmatrix} \begin{bmatrix}
A & 0 \\
0 & \bar{A}
\end{bmatrix} = \begin{bmatrix}
A^* L A & \bar{A}^t Z A \\
A^t Z A & (A^* L A)^t
\end{bmatrix}.
\]
Consider the Hessian $H_p = \begin{bmatrix} L_p & \overline{Z_p} \\ Z_p & L_p^t \end{bmatrix}$ (an $2n \times 2n$ matrix)
Consider the Hessian $H_p = \begin{bmatrix} L_p & \overline{Z_p} \\ Z_p & L_p^t \end{bmatrix}$ (an $2n \times 2n$ matrix)

$L_p = \left[\frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \right]_{k\ell}$ is called the complex Hessian (an $n \times n$ matrix).
Consider the Hessian $H_p = \begin{bmatrix} L_p & \overline{Z_p} \\ Z_p & L_p^t \end{bmatrix}$ (an $2n \times 2n$ matrix)

$L_p = \left[\frac{\partial^2 r}{\partial \bar{z}_k \partial z_{\ell}} \right]_{k\ell}^p$ is called the complex Hessian (an $n \times n$ matrix).

For $X_p \in T_p^{(1,0)}M$ (n − 1 dimensional space),

$$X^*L_pX_p$$

is called the Levi-form at p.

Consider the Hessian $H_p = \begin{bmatrix} L_p & \overline{Z}_p \\ Z_p & L_p^t \end{bmatrix}$ (an $2n \times 2n$ matrix)

$L_p = \left[\frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \right]_{k\ell \mid p}$ is called the complex Hessian (an $n \times n$ matrix).

For $X_p \in T_p^{(1,0)} M$ ($n - 1$ dimensional space),

$$X^*_p L_p X_p$$

is called the Levi-form at p.

Explicitly, $X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} \bigg|_p \in T_p^{(1,0)} M$ iff $X_p r = \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} \bigg|_p = 0$,

and

$$X^*_p L_p X_p = \sum_{k=1, \ell=1}^{n} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_p.$$
Consider the Hessian $H_p = \begin{bmatrix} L_p & Z_p \\ Z_p^t & L_p^t \end{bmatrix}$ \hspace{1em} (an $2n \times 2n$ matrix)

$L_p = \begin{bmatrix} \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_{p} \end{bmatrix}_{k\ell}$ is called the complex Hessian \hspace{1em} (an $n \times n$ matrix).

For $X_p \in T_p^{(1,0)}M$ \hspace{1em} ($n-1$ dimensional space),

$$X_p^*L_pX_p$$

is called the Levi-form at p.

Explicitly, $X_p = \sum_{k=1}^{n} a_k \frac{\partial}{\partial z_k} \bigg|_{p} \in T_p^{(1,0)}M$ \hspace{1em} iff \hspace{1em} $X_pr = \sum_{k=1}^{n} a_k \frac{\partial r}{\partial z_k} \bigg|_{p} = 0$,

and

$$X_p^*L_pX_p = \sum_{k=1,\ell=1}^{n} \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \bigg|_{p}.$$

Exercise: H_p and L_p depend on the defining function r, but their inertia on the tangent space does not change if we change the defining function r. (Assume the new r is negative on the same side of M).