Singular Levi-flat hypersurfaces (1)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Let \mathbb{C}^{n} be the complex Euclidean space. $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Let \mathbb{C}^{n} be the complex Euclidean space. $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell}
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1}
$$

Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right) .
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1}
$$

Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right) .
$$

These are determined by being the dual bases of $d z$ and $d \bar{z}$

$$
d z_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=\delta_{\ell}^{k}, \quad d z_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=\delta_{\ell}^{k}
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1}
$$

Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right) .
$$

These are determined by being the dual bases of $d z$ and $d \bar{z}$

$$
d z_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=\delta_{\ell}^{k}, \quad d z_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=\delta_{\ell}^{k}
$$

$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f satisfies

$$
\frac{\partial f}{\partial \bar{z}_{\ell}}=0 \quad \text { for } \ell=1,2, \ldots, n \quad \text { (the Cauchy-Riemann }(C R) \text { equations). }
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right) .
$$

These are determined by being the dual bases of $d z$ and $d \bar{z}$

$$
d z_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=\delta_{\ell}^{k}, \quad d z_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=\delta_{\ell}^{k}
$$

$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f satisfies

$$
\frac{\partial f}{\partial \bar{z}_{\ell}}=0 \quad \text { for } \ell=1,2, \ldots, n \quad \text { (the Cauchy-Riemann (CR) equations). }
$$

Write $\mathcal{O}(U)$ for set of holomorphic functions on U.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
If f is a polynomial (in x and y), write

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

and it really does become a polynomial in z and \bar{z}.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
If f is a polynomial (in x and y), write

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2}
$$

f is holomorphic if it does not depend on \bar{z}.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
If f is a polynomial (in x and y), write

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2}
$$

f is holomorphic if it does not depend on \bar{z}.
If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
If f is a polynomial (in x and y), write

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2}
$$

f is holomorphic if it does not depend on \bar{z}.
If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.
f is holomorphic if the power series only has z terms.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
If f is a polynomial (in x and y), write

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2}
$$

f is holomorphic if it does not depend on \bar{z}.
If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.
f is holomorphic if the power series only has z terms.
Treat z and \bar{z} as separate variables.
$f(z, \bar{z})$ becomes $f(z, \xi)$. This is called complexification.

We write a smooth $\left(C^{\infty}\right)$ function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
If f is a polynomial (in x and y), write

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2}
$$

f is holomorphic if it does not depend on \bar{z}.
If f is real-analytic (has a power series in x and y), then f has a power series in z and \bar{z}.
f is holomorphic if the power series only has z terms.
Treat z and \bar{z} as separate variables.
$f(z, \bar{z})$ becomes $f(z, \xi)$. This is called complexification.
We must worry about convergence! More on all this later.

Theorem (Hartogs)

Let $U \subset \mathbb{C}^{n}, n \geq 2$, be a domain, and $K \subset \subset U$ be compact with $U \backslash K$ connected. If $\in \mathcal{O}(U \backslash K)$, then there exists a unique $F \in \mathcal{O}(U)$ such that $\left.F\right|_{u \backslash K}=f$.

Theorem (Hartogs)

Let $U \subset \mathbb{C}^{n}, n \geq 2$, be a domain, and $K \subset \subset U$ be compact with $U \backslash K$ connected. If $\in \mathcal{O}(U \backslash K)$, then there exists a unique $F \in \mathcal{O}(U)$ such that $\left.F\right|_{u \backslash K}=f$.

Note: Not every domain is a natural domain of definition for a holomorphic function. Geometry of the boundary plays a role!

If $U, V \subset \mathbb{C}^{n}$ and $f: U \rightarrow V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.

If $U, V \subset \mathbb{C}^{n}$ and $f: U \rightarrow V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.
Remark: f^{-1} is automatically holomorphic.

If $U, V \subset \mathbb{C}^{n}$ and $f: U \rightarrow V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.
Remark: f^{-1} is automatically holomorphic.
Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.

If $U, V \subset \mathbb{C}^{n}$ and $f: U \rightarrow V$ is holomorphic (every component is holomorphic), bijective, and f^{-1} is holomorphic, then f is a biholomorphism and U and V are biholomorphic.
Remark: f^{-1} is automatically holomorphic.
Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.
Example: $U=B(0,2) \backslash \overline{B(0,1)}$. The outer (convex) and the inner (concave) boundaries have very different properties. In fact it is a form of "convexity" that we need to study to understand boundaries.

Take the real tangent space $T_{p} \mathbb{C}^{n}=T_{p} \mathbb{R}^{2 n}$. Write

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial x_{1}}\right|_{p},\left.\frac{\partial}{\partial y_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p},\left.\frac{\partial}{\partial y_{n}}\right|_{p}\right\} .
$$

Take the real tangent space $T_{p} \mathbb{C}^{n}=T_{p} \mathbb{R}^{2 n}$. Write

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial x_{1}}\right|_{p},\left.\frac{\partial}{\partial y_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p},\left.\frac{\partial}{\partial y_{n}}\right|_{p}\right\} .
$$

Then

$$
\left.\frac{\partial}{\partial z_{k}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{k}}\right|_{p} \in \mathbb{C} \otimes T_{p} \mathbb{C}^{n}
$$

and

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial z_{n}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{n}}\right|_{p}\right\} .
$$

Take the real tangent space $T_{p} \mathbb{C}^{n}=T_{p} \mathbb{R}^{2 n}$. Write

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial x_{1}}\right|_{p},\left.\frac{\partial}{\partial y_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p},\left.\frac{\partial}{\partial y_{n}}\right|_{p}\right\} .
$$

Then

$$
\left.\frac{\partial}{\partial z_{k}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{k}}\right|_{p} \in \mathbb{C} \otimes T_{p} \mathbb{C}^{n}
$$

and

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial z_{n}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{n}}\right|_{p}\right\} .
$$

Define

$$
\begin{array}{ll}
T_{p}^{(1,0)} \mathbb{C}^{n} \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial z_{n}}\right|_{p}\right\} & \text { (holomorphic vectors), } \\
T_{p}^{(0,1)} \mathbb{C}^{n} \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \bar{z}_{n}}\right|_{p}\right\} & \text { (antiholomorphic vectors). }
\end{array}
$$

Take the real tangent space $T_{p} \mathbb{C}^{n}=T_{p} \mathbb{R}^{2 n}$. Write

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial x_{1}}\right|_{p},\left.\frac{\partial}{\partial y_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p},\left.\frac{\partial}{\partial y_{n}}\right|_{p}\right\} .
$$

Then

$$
\left.\frac{\partial}{\partial z_{k}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{k}}\right|_{p} \in \mathbb{C} \otimes T_{p} \mathbb{C}^{n}
$$

and

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial z_{n}}\right|_{p},\left.\frac{\partial}{\partial \bar{z}_{n}}\right|_{p}\right\} .
$$

Define

$$
\begin{array}{ll}
T_{p}^{(1,0)} \mathbb{C}^{n} \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial z_{n}}\right|_{p}\right\} & \text { (holomorphic vectors), } \\
T_{p}^{(0,1)} \mathbb{C}^{n} \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \bar{z}_{n}}\right|_{p}\right\} & \text { (antiholomorphic vectors). }
\end{array}
$$

Then

$$
\mathbb{C} \otimes T_{p} \mathbb{C}^{n}=T_{p}^{(1,0)} \mathbb{C}^{n} \oplus T_{p}^{(0,1)} \mathbb{C}^{n}
$$

Let $M \subset \mathbb{C}^{n}$ be a real smooth hypersurface.

Let $M \subset \mathbb{C}^{n}$ be a real smooth hypersurface. I.e., near each $p \in M, \exists$ a neighbourhood U of p, and a smooth $r: U \rightarrow \mathbb{R}$ s.t. $d r \neq 0$ on U and

$$
M \cap U=\{z: r(z, \bar{z})=0\} .
$$

Let $M \subset \mathbb{C}^{n}$ be a real smooth hypersurface. I.e., near each $p \in M, \exists$ a neighbourhood U of p, and a smooth $r: U \rightarrow \mathbb{R}$ s.t. $d r \neq 0$ on U and

$$
M \cap U=\{z: r(z, \bar{z})=0\} .
$$

Then

$$
T_{p} M=\left\{X \in T_{p} \mathbb{C}^{n}: X r=0\right\}
$$

Let $M \subset \mathbb{C}^{n}$ be a real smooth hypersurface. I.e., near each $p \in M, \exists$ a neighbourhood U of p, and a smooth $r: U \rightarrow \mathbb{R}$ s.t. $d r \neq 0$ on U and

$$
M \cap U=\{z: r(z, \bar{z})=0\} .
$$

Then

$$
T_{p} M=\left\{X \in T_{p} \mathbb{C}^{n}: X r=0\right\}
$$

Define

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right)
\end{aligned}
$$

Let $M \subset \mathbb{C}^{n}$ be a real smooth hypersurface. I.e., near each $p \in M, \exists$ a neighbourhood U of p, and a smooth $r: U \rightarrow \mathbb{R}$ s.t. $d r \neq 0$ on U and

$$
M \cap U=\{z: r(z, \bar{z})=0\} .
$$

Then

$$
T_{p} M=\left\{X \in T_{p} \mathbb{C}^{n}: X r=0\right\}
$$

Define

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right)
\end{aligned}
$$

Decompose $\mathbb{C} \otimes T_{p} M$ as

$$
\mathbb{C} \otimes T_{p} M=T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_{p} .
$$

Let $M \subset \mathbb{C}^{n}$ be a real smooth hypersurface. I.e., near each $p \in M, \exists$ a neighbourhood U of p, and a smooth $r: U \rightarrow \mathbb{R}$ s.t. $d r \neq 0$ on U and

$$
M \cap U=\{z: r(z, \bar{z})=0\} .
$$

Then

$$
T_{p} M=\left\{X \in T_{p} \mathbb{C}^{n}: X r=0\right\}
$$

Define

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right)
\end{aligned}
$$

Decompose $\mathbb{C} \otimes T_{p} M$ as

$$
\mathbb{C} \otimes T_{p} M=T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_{p} .
$$

$B_{p} \cong \mathbb{C} \otimes T_{p} M / T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M$ is a one-dimensional space.

More explicitly,

$$
X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p}+\left.\left.b_{k} \frac{\partial}{\partial \bar{z}_{k}}\right|_{p} \in \mathbb{C} \otimes T_{p} M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}+\left.b_{k} \frac{\partial r}{\partial \bar{z}_{k}}\right|_{p}=0
$$

More explicitly,
$X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p}+\left.\left.b_{k} \frac{\partial}{\partial \bar{z}_{k}}\right|_{p} \in \mathbb{C} \otimes T_{p} M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}+\left.b_{k} \frac{\partial r}{\partial \bar{z}_{k}}\right|_{p}=0$.
And

$$
X_{p}=\left.\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p} \in T_{p}^{(1,0)} M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}=0 .
$$

More explicitly,
$X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p}+\left.\left.b_{k} \frac{\partial}{\partial \bar{z}_{k}}\right|_{p} \in \mathbb{C} \otimes T_{p} M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}+\left.b_{k} \frac{\partial r}{\partial \bar{z}_{k}}\right|_{p}=0$.
And

$$
X_{p}=\left.\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p} \in T_{p}^{(1,0)} M \quad \Leftrightarrow \quad \sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}=0 .
$$

Example: $\operatorname{Im} z_{n}=\frac{z_{n}-\bar{z}_{n}}{2 i}=0$ defines $M=\mathbb{C}^{n-1} \times \mathbb{R} \subset \mathbb{C}^{n}$.

$$
\begin{aligned}
& T_{p}^{(1,0)} M=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial z_{n-1}}\right|_{p}\right\} \quad T_{p}^{(0,1)} M=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \bar{z}_{n-1}}\right|_{p}\right\} \\
& B_{p}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right\}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial\left(\operatorname{Re} z_{n}\right)}\right|_{p}\right\}=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{n}}\right|_{p}+\left.\frac{\partial}{\partial \bar{z}_{n}}\right|_{p}\right\}
\end{aligned}
$$

If $M \subset \mathbb{C}^{n}$ is a smooth real submanifold (any dimension), do the same:

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right) .
\end{aligned}
$$

If $M \subset \mathbb{C}^{n}$ is a smooth real submanifold (any dimension), do the same:

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right) .
\end{aligned}
$$

Now

$$
\mathbb{C} \otimes T_{p} M=T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_{p} .
$$

If $T_{p}^{(1,0)} M$ and $T_{p}^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a $C R$ submanifold.

If $M \subset \mathbb{C}^{n}$ is a smooth real submanifold (any dimension), do the same:

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right) .
\end{aligned}
$$

Now

$$
\mathbb{C} \otimes T_{p} M=T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_{p} .
$$

If $T_{p}^{(1,0)} M$ and $T_{p}^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a $C R$ submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).

If $M \subset \mathbb{C}^{n}$ is a smooth real submanifold (any dimension), do the same:

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right) .
\end{aligned}
$$

Now

$$
\mathbb{C} \otimes T_{p} M=T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_{p} .
$$

If $T_{p}^{(1,0)} M$ and $T_{p}^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a $C R$ submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).
Example 1: $M=\mathbb{R}^{2} \subset \mathbb{C}^{2}$.

$$
T_{p}^{(1,0)} M=\{0\}, \quad T_{p}^{(0,1)} M=\{0\}, \quad B_{p}=\mathbb{C} \otimes T_{p} M
$$

If $M \subset \mathbb{C}^{n}$ is a smooth real submanifold (any dimension), do the same:

$$
\begin{aligned}
& T_{p}^{(1,0)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(1,0)} \mathbb{C}^{n}\right), \quad \text { and } \\
& T_{p}^{(0,1)} M \stackrel{\text { def }}{=}\left(\mathbb{C} \otimes T_{p} M\right) \cap\left(T_{p}^{(0,1)} \mathbb{C}^{n}\right)
\end{aligned}
$$

Now

$$
\mathbb{C} \otimes T_{p} M=T_{p}^{(1,0)} M \oplus T_{p}^{(0,1)} M \oplus B_{p} .
$$

If $T_{p}^{(1,0)} M$ and $T_{p}^{(0,1)} M$ have constant dimension as p ranges over M, then M is called a $C R$ submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).
Example 1: $M=\mathbb{R}^{2} \subset \mathbb{C}^{2}$.

$$
T_{p}^{(1,0)} M=\{0\}, \quad T_{p}^{(0,1)} M=\{0\}, \quad B_{p}=\mathbb{C} \otimes T_{p} M
$$

Example 2: $M=\mathbb{C} \times\{0\} \subset \mathbb{C}^{2}$.

$$
T_{p}^{(1,0)} M=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{p}\right\}, \quad T_{p}^{(0,1)} M=\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{p}\right\}, \quad B_{p}=\{0\} .
$$

Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface, $p \in M$. After a translation and rotation via a unitary matrix, $p=0$ and near the origin M is written in variables $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}\left(w=z_{n}\right)$ as

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)
$$

with the $\varphi(0)$ and $d \varphi(0)=0$.

Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface, $p \in M$. After a translation and rotation via a unitary matrix, $p=0$ and near the origin M is written in variables $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}\left(w=z_{n}\right)$ as

$$
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w),
$$

with the $\varphi(0)$ and $d \varphi(0)=0$.
Consequently

$$
\begin{aligned}
T_{0}^{(1,0)} M & =\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial z_{1}}\right|_{0}, \ldots,\left.\frac{\partial}{\partial z_{n-1}}\right|_{0}\right\}, \\
T_{0}^{(0,1)} M & =\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial \bar{z}_{1}}\right|_{0}, \ldots,\left.\frac{\partial}{\partial \bar{z}_{n-1}}\right|_{0}\right\}, \\
B_{0} & =\operatorname{span}_{\mathbb{C}}\left\{\left.\frac{\partial}{\partial(\operatorname{Re} w)}\right|_{0}\right\} .
\end{aligned}
$$

In particular, $\operatorname{dim}_{\mathbb{C}} T_{p}^{(1,0)} M=\operatorname{dim}_{\mathbb{C}} T_{p}^{(0,1)} M=n-1$ and $\operatorname{dim}_{\mathbb{C}} B_{p}=1$.

Suppose $M=\{r=0\}$ as before, and $p \in M$.

Suppose $M=\{r=0\}$ as before, and $p \in M$.
Write the (full) Hessian of r at p as the Hermitian matrix

$$
H_{p}=\left[\begin{array}{cccccc}
\left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{n}}\right|_{p} \\
\left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{n}}\right|_{p}
\end{array}\right]=\left[\begin{array}{cc}
L_{p} & \overline{Z_{p}} \\
Z_{p} & L_{p}^{t}
\end{array}\right]
$$

Suppose $M=\{r=0\}$ as before, and $p \in M$.
Write the (full) Hessian of r at p as the Hermitian matrix

$$
H_{p}=\left[\begin{array}{cccccc}
\left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{n}}\right|_{p} \\
\left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{n}}\right|_{p}
\end{array}\right]=\left[\begin{array}{cc}
L_{p} & \overline{Z_{p}} \\
Z_{p} & L_{p}^{t}
\end{array}\right]
$$

M is (strictly if inequality strict) convex at p (really one side of M is) if

$$
X_{p}^{*} H_{p} X_{p} \geq 0 \quad \text { for all } X_{p} \in \mathbb{C} \otimes T_{p} M .
$$

Suppose $M=\{r=0\}$ as before, and $p \in M$.
Write the (full) Hessian of r at p as the Hermitian matrix

$$
H_{p}=\left[\begin{array}{cccccc}
\left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial \bar{z}_{n} \partial \bar{z}_{n}}\right|_{p} \\
\left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{1} \partial \bar{z}_{n}}\right|_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial z_{n}}\right|_{p} & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{1}}\right|_{p} & \cdots & \left.\frac{\partial^{2} r}{\partial z_{n} \partial \bar{z}_{n}}\right|_{p}
\end{array}\right]=\left[\begin{array}{cc}
L_{p} & \overline{Z_{p}} \\
Z_{p} & L_{p}^{t}
\end{array}\right]
$$

M is (strictly if inequality strict) convex at p (really one side of M is) if

$$
X_{p}^{*} H_{p} X_{p} \geq 0 \quad \text { for all } X_{p} \in \mathbb{C} \otimes T_{p} M .
$$

A complex linear change of coordinates $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ acts like

$$
\left[\begin{array}{cc}
A & 0 \\
0 & \bar{A}
\end{array}\right]^{*}\left[\begin{array}{cc}
L & \bar{Z} \\
Z & L^{t}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & \bar{A}
\end{array}\right]=\left[\begin{array}{cc}
A^{*} L A & \overline{A^{t} Z A} \\
A^{t} Z A & \left(A^{*} L A\right)^{t}
\end{array}\right] .
$$

Consider the Hessian $H_{p}=\left[\begin{array}{cc}L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t}\end{array}\right] \quad$ (an $2 n \times 2 n$ matrix)

Consider the Hessian $H_{p}=\left[\begin{array}{ll}L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t}\end{array}\right] \quad$ (an $2 n \times 2 n$ matrix)
$L_{p}=\left[\left.\frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}\right]_{k \ell} \quad$ is called the complex Hessian (an $n \times n$ matrix).

Consider the Hessian $H_{p}=\left[\begin{array}{cc}L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t}\end{array}\right] \quad$ (an $2 n \times 2 n$ matrix)
$L_{p}=\left[\left.\frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}\right]_{k \ell} \quad$ is called the complex Hessian (an $n \times n$ matrix).
For $X_{p} \in T_{p}^{(1,0)} M \quad(n-1$ dimensional space $)$,

$$
X_{p}^{*} L_{p} X_{p}
$$

is called the Levi-form at p.

Consider the Hessian $H_{p}=\left[\begin{array}{ll}L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t}\end{array}\right] \quad$ (an $2 n \times 2 n$ matrix)
$L_{p}=\left[\left.\frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}\right]_{k \ell} \quad$ is called the complex Hessian (an $n \times n$ matrix).
For $X_{p} \in T_{p}^{(1,0)} M \quad(n-1$ dimensional space),

$$
X_{p}^{*} L_{p} X_{p}
$$

is called the Levi-form at p.
Explicitly, $\quad X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p} \in T_{p}^{(1,0)} M \quad$ iff $\quad X_{p} r=\left.\sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}=0$, and

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} .
$$

Consider the Hessian $H_{p}=\left[\begin{array}{ll}L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t}\end{array}\right] \quad$ (an $2 n \times 2 n$ matrix)
$L_{p}=\left[\left.\frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p}\right]_{k \ell} \quad$ is called the complex Hessian (an $n \times n$ matrix).
For $X_{p} \in T_{p}^{(1,0)} M \quad(n-1$ dimensional space),

$$
X_{p}^{*} L_{p} X_{p}
$$

is called the Levi-form at p.
Explicitly, $\quad X_{p}=\left.\sum_{k=1}^{n} a_{k} \frac{\partial}{\partial z_{k}}\right|_{p} \in T_{p}^{(1,0)} M \quad$ iff $\quad X_{p} r=\left.\sum_{k=1}^{n} a_{k} \frac{\partial r}{\partial z_{k}}\right|_{p}=0$, and

$$
X_{p}^{*} L_{p} X_{p}=\left.\sum_{k=1, \ell=1}^{n} \bar{a}_{k} a_{\ell} \frac{\partial^{2} r}{\partial \bar{z}_{k} \partial z_{\ell}}\right|_{p} .
$$

Exercise: H_{p} and L_{p} depend on the defining function r, but their inertia on the tangent space does not change if we change the defining function r. (Assume the new r is negative on the same side of M).

