Signature pairs of positive polynomials

Jiríl Lebl
Department of Mathematics, University of Wisconsin-Madison

January 11th, 2013

Joint work with Jennifer Halfpap

Positivity in \mathbb{R}^{n}

Let $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial.
Question: How can we tell if $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$?

Positivity in \mathbb{R}^{n}

Let $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial.
Question: How can we tell if $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$?
If we can write

$$
p(x)=\left(p_{1}(x)\right)^{2}+\cdots+\left(p_{k}(x)\right)^{2}
$$

for real polynomials p_{j}, then $p \geq 0$.

Positivity in \mathbb{R}^{n}

Let $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial.
Question: How can we tell if $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$?
If we can write

$$
p(x)=\left(p_{1}(x)\right)^{2}+\cdots+\left(p_{k}(x)\right)^{2}
$$

for real polynomials p_{j}, then $p \geq 0$.
Artin's 1927 solution to Hilbert 17 th problem says that if $p \geq 0$, then there is a polynomial g such that $p g^{2}$ is a sum of squares.

In 1967 Pfister showed that you need at most 2^{n} squares!

Hermitian squares in \mathbb{C}^{n}

Let $p: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be a real polynomial.
Question: How can we tell if $p(z, \bar{z}) \geq 0$ for all $z \in \mathbb{C}^{n}$?

Hermitian squares in \mathbb{C}^{n}

Let $p: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be a real polynomial.
Question: How can we tell if $p(z, \bar{z}) \geq 0$ for all $z \in \mathbb{C}^{n}$?
If we can write

$$
p(z, \bar{z})=\left|p_{1}(z)\right|^{2}+\cdots+\left|p_{k}(z)\right|^{2}
$$

for holomorphic polynomials p_{j}, then $p \geq 0$. In other words:

$$
p(z, \bar{z})=\|F(z)\|^{2}
$$

for a holomorphic mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$.

Hermitian squares in \mathbb{C}^{n}

Let $p: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be a real polynomial.
Question: How can we tell if $p(z, \bar{z}) \geq 0$ for all $z \in \mathbb{C}^{n}$?
If we can write

$$
p(z, \bar{z})=\left|p_{1}(z)\right|^{2}+\cdots+\left|p_{k}(z)\right|^{2}
$$

for holomorphic polynomials p_{j}, then $p \geq 0$. In other words:

$$
p(z, \bar{z})=\|F(z)\|^{2}
$$

for a holomorphic mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$.
But e.g.

$$
p(z, \bar{z})=\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{2}
$$

is not a squared norm. It is not even a quotient of squared norms $\frac{\|F(z)\|^{2}}{\|G(z)\|^{2}}$. The zero set is too large!

Quillen's theorem

Quillen in 1968 proved that if $p(z, \bar{z})$ is bihomogeneous (that is, $\left.p(t z, \bar{z})=p(z, t \bar{z})=t^{d} p(z, \bar{z})\right)$, and positive on the sphere, then

$$
p(z, \bar{z})=\frac{\|F(z)\|^{2}}{\|G(z)\|^{2}}
$$

Although there is no bound on the number of squares needed (no Pfister-like theorem), D'Angelo-Lebl (2012).

Quillen's theorem

Quillen in 1968 proved that if $p(z, \bar{z})$ is bihomogeneous (that is, $\left.p(t z, \bar{z})=p(z, t \bar{z})=t^{d} p(z, \bar{z})\right)$, and positive on the sphere, then

$$
p(z, \bar{z})=\frac{\|F(z)\|^{2}}{\|G(z)\|^{2}}
$$

Although there is no bound on the number of squares needed (no Pfister-like theorem), D'Angelo-Lebl (2012).
There is also a more recent independent proof of Quillen's theorem by Catlin-D'Angelo (using Bergman kernel on \mathbb{B}_{n} and compact operators).

Quillen's theorem

Quillen in 1968 proved that if $p(z, \bar{z})$ is bihomogeneous (that is, $\left.p(t z, \bar{z})=p(z, t \bar{z})=t^{d} p(z, \bar{z})\right)$, and positive on the sphere, then

$$
p(z, \bar{z})=\frac{\|F(z)\|^{2}}{\|G(z)\|^{2}}
$$

Although there is no bound on the number of squares needed (no Pfister-like theorem), D'Angelo-Lebl (2012).
There is also a more recent independent proof of Quillen's theorem by Catlin-D'Angelo (using Bergman kernel on \mathbb{B}_{n} and compact operators).
We can take the denominator G to be $z^{\otimes d}$, that is

$$
\|G(z)\|^{2}=\left\|z^{\otimes d}\right\|^{2}=\|z\|^{2 d}=\sum_{|\alpha|=d}\left|\sqrt{\binom{d}{\alpha}} z^{\alpha}\right|^{2}
$$

Positivity classes Ψ_{d}

So we say that $p \in \Psi_{d}$ if $\|z\|^{2 d} p(z, \bar{z})$ is a squared norm.
Ψ_{d} then interpolate between positive polynomials and squared norms

$$
\Psi_{0} \subsetneq \Psi_{1} \subsetneq \Psi_{2} \subsetneq \cdots \subset \Psi_{\infty}=\bigcup_{d} \Psi_{d}
$$

Positivity classes Ψ_{d}

So we say that $p \in \Psi_{d}$ if $\|z\|^{2 d} p(z, \bar{z})$ is a squared norm.
Ψ_{d} then interpolate between positive polynomials and squared norms

$$
\Psi_{0} \subsetneq \psi_{1} \subsetneq \Psi_{2} \subsetneq \cdots \subset \Psi_{\infty}=\bigcup_{d} \Psi_{d}
$$

D'Angelo-Varolin showed that while

$$
p(z, \bar{z})=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{4}-\lambda\left|z_{1} z_{2}\right|^{4} .
$$

is in Ψ_{d} for $\lambda<16$, as $\lambda \rightarrow 16$, one requires larger and larger d.

Differences of squared norms

Any polynomial $p(z, \bar{z})$ can be written as

$$
p(z, \bar{z})=\|F(z)\|^{2}-\|G(z)\|^{2}
$$

for some mappings $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N_{+}}$and $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N_{-}}$.

Differences of squared norms

Any polynomial $p(z, \bar{z})$ can be written as

$$
p(z, \bar{z})=\|F(z)\|^{2}-\|G(z)\|^{2}
$$

for some mappings $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N_{+}}$and $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N_{-}}$.
The mappings F and G are not unique, but the minimal numbers N_{+}and N_{-}are. We say p has N_{+}positive eigenvalues, N_{-}negative eigenvalues, and rank $N_{+}+N_{-}$. We say p has signature pair $\left(N_{+}, N_{-}\right)$.

Differences of squared norms

Any polynomial $p(z, \bar{z})$ can be written as

$$
p(z, \bar{z})=\|F(z)\|^{2}-\|G(z)\|^{2}
$$

for some mappings $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N_{+}}$and $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N_{-}}$.
The mappings F and G are not unique, but the minimal numbers N_{+}and N_{-}are. We say p has N_{+}positive eigenvalues, N_{-}negative eigenvalues, and rank $N_{+}+N_{-}$. We say p has signature pair $\left(N_{+}, N_{-}\right)$.
Same for real-analytic functions if we allow ℓ^{2}-valued F and G.
(See D'Angelo's book for many applications of this idea to CR geometry)

Where the terminology comes from

If we let $\mathcal{Z}=\left(1, z_{1}, z_{2}, \ldots, z_{n}, z_{1}^{2}, z_{1} z_{2}, \ldots, z^{\alpha}, \ldots\right)^{t}$, then we can write

$$
p(z, \bar{z})=\mathcal{Z}^{*} C \mathcal{Z}
$$

where C is finite rank when p is a polynomial. In general, if p is real-analytic, and convergent on a neighbourhood of the closed unit polydisc, then C is a trace-class operator.

Where the terminology comes from

If we let $\mathcal{Z}=\left(1, z_{1}, z_{2}, \ldots, z_{n}, z_{1}^{2}, z_{1} z_{2}, \ldots, z^{\alpha}, \ldots\right)^{t}$, then we can write

$$
p(z, \bar{z})=\mathcal{Z}^{*} C \mathcal{Z}
$$

where C is finite rank when p is a polynomial. In general, if p is real-analytic, and convergent on a neighbourhood of the closed unit polydisc, then C is a trace-class operator.

$$
p(z, \bar{z})=\|F(z)\|^{2}-\|G(z)\|^{2}
$$

is obtained by diagonalizing C, and signature and rank have their usual meanings.

Class Ψ_{1}

What most commonly comes up in CR geometry is Ψ_{1}.

Class Ψ_{1}

What most commonly comes up in CR geometry is Ψ_{1}.
Question: If p is in Ψ_{1}, how many positive eigenvalues are needed to cancel each negative eigenvalue? That is, if

$$
\begin{aligned}
\|z\|^{2} p(z, \bar{z}) & =\|z\|^{2}\left(\|F(z)\|^{2}-\|G(z)\|^{2}\right) \\
& =\|z \otimes F(z)\|^{2}-\|z \otimes G(z)\|^{2}=\|H(z)\|^{2}
\end{aligned}
$$

and N_{+}is the \# of components of F and N_{-}is the \# of components of G. What can we say about the ratio

$$
\frac{N_{-}}{N_{+}}
$$

Class Ψ_{1}

What most commonly comes up in CR geometry is Ψ_{1}.
Question: If p is in Ψ_{1}, how many positive eigenvalues are needed to cancel each negative eigenvalue? That is, if

$$
\begin{aligned}
\|z\|^{2} p(z, \bar{z}) & =\|z\|^{2}\left(\|F(z)\|^{2}-\|G(z)\|^{2}\right) \\
& =\|z \otimes F(z)\|^{2}-\|z \otimes G(z)\|^{2}=\|H(z)\|^{2}
\end{aligned}
$$

and N_{+}is the \# of components of F and N_{-}is the \# of components of G. What can we say about the ratio

$$
\frac{N_{-}}{N_{+}}
$$

By playing around, one might come to a conclusion that many positive eigenvalues are needed for every negative eigenvalue.

Theorem in Ψ_{1}

But!
Theorem
Let $r(z, \bar{z})$ be a real polynomial on $\mathbb{C}^{n}, n \geq 2$, and suppose that $r(z, \bar{z})\|z\|^{2}$ is a squared norm. Let $\left(N_{+}, N_{-}\right)$be the signature pair of r. Then
(i)

$$
\frac{N_{-}}{N_{+}}<n-1 .
$$

(ii) The above inequality is sharp, i.e., for every $\varepsilon>0$ there exists r with $\frac{N_{-}}{N_{+}} \geq n-1-\varepsilon$.

Theorem in Ψ_{1}

But!
Theorem
Let $r(z, \bar{z})$ be a real polynomial on $\mathbb{C}^{n}, n \geq 2$, and suppose that $r(z, \bar{z})\|z\|^{2}$ is a squared norm. Let $\left(N_{+}, N_{-}\right)$be the signature pair of r.
Then
(i)

$$
\frac{N_{-}}{N_{+}}<n-1 .
$$

(ii) The above inequality is sharp, i.e., for every $\varepsilon>0$ there exists r with $\frac{N_{-}}{N_{+}} \geq n-1-\varepsilon$.

You can have (almost) $n-1$ negatives for every positive! But to get close you need very large degree.

Theorem in Ψ_{d}

Theorem

Let $r(z, \bar{z})$ be a real polynomial on $\mathbb{C}^{n}, n \geq 2, d \geq 1$, and suppose that $r(z, \bar{z})\|z\|^{2 d}$ is a squared norm. Let $\left(N_{+}, N_{-}\right)$be the signature pair of r.
Then
(i)

$$
\frac{N_{-}}{N_{+}} \leq\binom{ n-1+d}{d}-1
$$

(ii) For each fixed n, there exists a constant C_{n} such that for each d there is a polynomial $r \in \Psi_{d}$ with $\frac{N_{-}}{N_{+}} \geq C_{n} d^{n-1}$.

Note $\binom{n-1+d}{d}$ is a polynomial in d of degree $n-1$. So (ii) says that the bound in (i) is of the correct order.

Theorem in Ψ_{d}

Theorem

Let $r(z, \bar{z})$ be a real polynomial on $\mathbb{C}^{n}, n \geq 2, d \geq 1$, and suppose that $r(z, \bar{z})\|z\|^{2 d}$ is a squared norm. Let $\left(N_{+}, N_{-}\right)$be the signature pair of r. Then
(i)

$$
\frac{N_{-}}{N_{+}} \leq\binom{ n-1+d}{d}-1
$$

(ii) For each fixed n, there exists a constant C_{n} such that for each d there is a polynomial $r \in \Psi_{d}$ with $\frac{N_{-}}{N_{+}} \geq C_{n} d^{n-1}$.

Note $\binom{n-1+d}{d}$ is a polynomial in d of degree $n-1$. So (ii) says that the bound in (i) is of the correct order.

It is possible to construct an example with just n positives, and an arbitrarily high number of negatives, if d is large enough.

Easier setting, similar question

Suppose $d=1$ for simplicity. A similar question that is easier to play around with is the following:

If $p\left(x_{1}, \ldots, x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)$ has only positive coefficients, and p has N_{+} positive coefficients and N_{-}negative coefficients, then we have the sharp bound

$$
\frac{N_{-}}{N_{+}}<n-1
$$

Easier setting, similar question

Suppose $d=1$ for simplicity. A similar question that is easier to play around with is the following:

If $p\left(x_{1}, \ldots, x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)$ has only positive coefficients, and p has N_{+} positive coefficients and N_{-}negative coefficients, then we have the sharp bound

$$
\frac{N_{-}}{N_{+}}<n-1
$$

The degrees required to get close to the bound are large. E.g. in degree 6 the largest ratio is for

$$
\begin{array}{r}
p(x, y, z)=2 x y z^{4}+2 x^{3} z^{3}+2 y^{3} z^{3}+2 x^{2} y^{2} z^{2}+2 x^{4} y z+2 x y^{4} z+2 x^{3} y^{3} \\
-x^{2} y z^{3}-x y^{2} z^{3}-x^{3} y z^{2}-x y^{3} z^{2}-x^{3} y^{2} z-x^{2} y^{3} z .
\end{array}
$$

$p(x, y, z)(x+y+z)$ has only, positive coefficients. Here $N_{+}=7, N_{-}=6$, and $6 / 7$ is still much less than $n-1=2$.

Thank you!

