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Positivity in Rn

Let p : Rn → R be a polynomial.

Question: How can we tell if p(x) ≥ 0 for all x ∈ Rn?

If we can write
p(x) =

(
p1(x)

)2
+ · · ·+

(
pk(x)

)2

for real polynomials pj , then p ≥ 0.

Artin’s 1927 solution to Hilbert 17th problem says that if p ≥ 0, then
there is a polynomial g such that pg 2 is a sum of squares.

In 1967 Pfister showed that you need at most 2n squares!
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Hermitian squares in Cn

Let p : Cn → R be a real polynomial.

Question: How can we tell if p(z , z̄) ≥ 0 for all z ∈ Cn?

If we can write
p(z , z̄) = |p1(z)|2 + · · ·+ |pk(z)|2

for holomorphic polynomials pj , then p ≥ 0. In other words:

p(z , z̄) = ‖F (z)‖2

for a holomorphic mapping F : Cn → Ck .

But e.g.

p(z , z̄) =
(
|z1|2 − |z2|2

)2

is not a squared norm. It is not even a quotient of squared norms ‖F (z)‖2

‖G(z)‖2 .

The zero set is too large!
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Quillen’s theorem

Quillen in 1968 proved that if p(z , z̄) is bihomogeneous (that is,
p(tz , z̄) = p(z , tz̄) = tdp(z , z̄)), and positive on the sphere, then

p(z , z̄) =
‖F (z)‖2

‖G (z)‖2

Although there is no bound on the number of squares needed (no
Pfister-like theorem), D’Angelo-Lebl (2012).

There is also a more recent independent proof of Quillen’s theorem by
Catlin-D’Angelo (using Bergman kernel on Bn and compact operators).

We can take the denominator G to be z⊗d , that is

‖G (z)‖2 = ‖z⊗d‖2 = ‖z‖2d =
∑
|α|=d

∣∣∣∣∣
√(

d

α

)
zα

∣∣∣∣∣
2
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Positivity classes Ψd

So we say that p ∈ Ψd if ‖z‖2dp(z , z̄) is a squared norm.

Ψd then interpolate between positive polynomials and squared norms

Ψ0 ( Ψ1 ( Ψ2 ( · · · ⊂ Ψ∞ =
⋃
d

Ψd

D’Angelo-Varolin showed that while

p(z , z̄) = (|z1|2 + |z2|2)
4 − λ |z1z2|4 .

is in Ψd for λ < 16, as λ→ 16, one requires larger and larger d .
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Differences of squared norms

Any polynomial p(z , z̄) can be written as

p(z , z̄) = ‖F (z)‖2 − ‖G (z)‖2

for some mappings F : Cn → CN+ and G : Cn → CN− .

The mappings F and G are not unique, but the minimal numbers N+ and
N− are. We say p has N+ positive eigenvalues, N− negative eigenvalues,
and rank N+ + N−. We say p has signature pair (N+,N−).

Same for real-analytic functions if we allow `2-valued F and G .

(See D’Angelo’s book for many applications of this idea to CR geometry)
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Where the terminology comes from

If we let Z = (1, z1, z2, . . . , zn, z
2
1 , z1z2, . . . , z

α, . . . )t , then we can write

p(z , z̄) = Z∗CZ

where C is finite rank when p is a polynomial. In general, if p is
real-analytic, and convergent on a neighbourhood of the closed unit
polydisc, then C is a trace-class operator.

p(z , z̄) = ‖F (z)‖2 − ‖G (z)‖2

is obtained by diagonalizing C , and signature and rank have their usual
meanings.
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Class Ψ1

What most commonly comes up in CR geometry is Ψ1.

Question: If p is in Ψ1, how many positive eigenvalues are needed to
cancel each negative eigenvalue? That is, if

‖z‖2p(z , z̄) = ‖z‖2(‖F (z)‖2 − ‖G (z)‖2)

= ‖z ⊗ F (z)‖2 − ‖z ⊗ G (z)‖2 = ‖H(z)‖2,

and N+ is the # of components of F and N− is the # of components of
G . What can we say about the ratio

N−
N+

By playing around, one might come to a conclusion that many positive
eigenvalues are needed for every negative eigenvalue.
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Theorem in Ψ1

But!

Theorem

Let r(z , z̄) be a real polynomial on Cn, n ≥ 2, and suppose that
r(z , z̄) ‖z‖2 is a squared norm. Let (N+,N−) be the signature pair of r .
Then

(i)
N−
N+

< n − 1.

(ii) The above inequality is sharp, i.e., for every ε > 0 there exists r with
N−
N+
≥ n − 1− ε.

You can have (almost) n − 1 negatives for every positive! But to get close
you need very large degree.
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Theorem in Ψd

Theorem

Let r(z , z̄) be a real polynomial on Cn, n ≥ 2, d ≥ 1, and suppose that
r(z , z̄) ‖z‖2d is a squared norm. Let (N+,N−) be the signature pair of r .
Then

(i)
N−
N+
≤
(

n − 1 + d

d

)
− 1.

(ii) For each fixed n, there exists a constant Cn such that for each d
there is a polynomial r ∈ Ψd with N−

N+
≥ Cndn−1.

Note
(n−1+d

d

)
is a polynomial in d of degree n − 1. So (ii) says that the

bound in (i) is of the correct order.

It is possible to construct an example with just n positives, and an
arbitrarily high number of negatives, if d is large enough.
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Easier setting, similar question

Suppose d = 1 for simplicity. A similar question that is easier to play
around with is the following:

If p(x1, . . . , xn)(x1 + · · ·+ xn) has only positive coefficients, and p has N+

positive coefficients and N− negative coefficients, then we have the sharp
bound

N−
N+

< n − 1

The degrees required to get close to the bound are large. E.g. in degree 6
the largest ratio is for

p(x , y , z) = 2xyz4 + 2x3z3 + 2y 3z3 + 2x2y 2z2 + 2x4yz + 2xy 4z + 2x3y 3

− x2yz3 − xy 2z3 − x3yz2 − xy 3z2 − x3y 2z − x2y 3z .

p(x , y , z)(x + y + z) has only, positive coefficients. Here N+ = 7, N− = 6,
and 6/7 is still much less than n − 1 = 2.
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Thank you!
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