Signature pairs of positive polynomials

Jiří Lebl

Department of Mathematics, University of Wisconsin-Madison

January 11th, 2013

Joint work with Jennifer Halfpap

Jiří Lebl (UW)

Signature pairs of positive polynomials

January 11th, 2013 1 / 12

Positivity in \mathbb{R}^n

Let $p: \mathbb{R}^n \to \mathbb{R}$ be a polynomial.

Question: How can we tell if $p(x) \ge 0$ for all $x \in \mathbb{R}^n$?

- 31

글 > - + 글 >

< 4 → <

Positivity in \mathbb{R}^n

Let $p: \mathbb{R}^n \to \mathbb{R}$ be a polynomial.

Question: How can we tell if $p(x) \ge 0$ for all $x \in \mathbb{R}^n$?

If we can write

$$p(x) = (p_1(x))^2 + \cdots + (p_k(x))^2$$

for real polynomials p_j , then $p \ge 0$.

A 1

- 31

Positivity in \mathbb{R}^n

Let $p: \mathbb{R}^n \to \mathbb{R}$ be a polynomial.

Question: How can we tell if $p(x) \ge 0$ for all $x \in \mathbb{R}^n$?

If we can write

$$p(x) = (p_1(x))^2 + \cdots + (p_k(x))^2$$

for real polynomials p_j , then $p \ge 0$.

Artin's 1927 solution to Hilbert 17th problem says that if $p \ge 0$, then there is a polynomial g such that pg^2 is a sum of squares.

In 1967 Pfister showed that you need at most 2^n squares!

Hermitian squares in \mathbb{C}^n

Let $p: \mathbb{C}^n \to \mathbb{R}$ be a real polynomial.

Question: How can we tell if $p(z, \overline{z}) \ge 0$ for all $z \in \mathbb{C}^n$?

< 4 → <

- 3

Hermitian squares in \mathbb{C}^n

Let $p: \mathbb{C}^n \to \mathbb{R}$ be a real polynomial.

Question: How can we tell if $p(z, \overline{z}) \ge 0$ for all $z \in \mathbb{C}^n$?

If we can write

$$p(z, \bar{z}) = |p_1(z)|^2 + \cdots + |p_k(z)|^2$$

for holomorphic polynomials p_j , then $p \ge 0$. In other words:

$$p(z,\bar{z}) = \|F(z)\|^2$$

for a holomorphic mapping $F : \mathbb{C}^n \to \mathbb{C}^k$.

- 31

Hermitian squares in \mathbb{C}^n

Let $p: \mathbb{C}^n \to \mathbb{R}$ be a real polynomial.

Question: How can we tell if $p(z, \overline{z}) \ge 0$ for all $z \in \mathbb{C}^n$?

If we can write

$$p(z, \bar{z}) = |p_1(z)|^2 + \cdots + |p_k(z)|^2$$

for holomorphic polynomials p_j , then $p \ge 0$. In other words:

$$p(z,\bar{z}) = \|F(z)\|^2$$

for a holomorphic mapping $F \colon \mathbb{C}^n \to \mathbb{C}^k$.

But e.g.

$$p(z, \bar{z}) = (|z_1|^2 - |z_2|^2)^2$$

is not a squared norm. It is not even a quotient of squared norms $\frac{||F(z)||^2}{||G(z)||^2}$. The zero set is too large!

Quillen's theorem

Quillen in 1968 proved that if $p(z, \bar{z})$ is bihomogeneous (that is, $p(tz, \bar{z}) = p(z, t\bar{z}) = t^d p(z, \bar{z})$), and positive on the sphere, then

$$p(z, \bar{z}) = \frac{\|F(z)\|^2}{\|G(z)\|^2}$$

Although there is no bound on the number of squares needed (no Pfister-like theorem), D'Angelo-Lebl (2012).

Quillen's theorem

Quillen in 1968 proved that if $p(z, \bar{z})$ is bihomogeneous (that is, $p(tz, \bar{z}) = p(z, t\bar{z}) = t^d p(z, \bar{z})$), and positive on the sphere, then

$$p(z, \bar{z}) = \frac{\|F(z)\|^2}{\|G(z)\|^2}$$

Although there is no bound on the number of squares needed (no Pfister-like theorem), D'Angelo-Lebl (2012).

There is also a more recent independent proof of Quillen's theorem by Catlin-D'Angelo (using Bergman kernel on \mathbb{B}_n and compact operators).

Quillen's theorem

Quillen in 1968 proved that if $p(z, \bar{z})$ is bihomogeneous (that is, $p(tz, \bar{z}) = p(z, t\bar{z}) = t^d p(z, \bar{z})$), and positive on the sphere, then

$$p(z, \bar{z}) = \frac{\|F(z)\|^2}{\|G(z)\|^2}$$

Although there is no bound on the number of squares needed (no Pfister-like theorem), D'Angelo-Lebl (2012).

There is also a more recent independent proof of Quillen's theorem by Catlin-D'Angelo (using Bergman kernel on \mathbb{B}_n and compact operators).

We can take the denominator G to be $z^{\otimes d}$, that is

$$\|G(z)\|^2 = \|z^{\otimes d}\|^2 = \|z\|^{2d} = \sum_{|\alpha|=d} \left|\sqrt{\binom{d}{\alpha}} z^{\alpha}\right|^2$$

Positivity classes Ψ_d

So we say that $p \in \Psi_d$ if $||z||^{2d}p(z, \overline{z})$ is a squared norm.

 Ψ_d then interpolate between positive polynomials and squared norms

$$\Psi_0 \subsetneq \Psi_1 \subsetneq \Psi_2 \subsetneq \cdots \subset \Psi_\infty = \bigcup_d \Psi_d$$

3

Positivity classes Ψ_d

So we say that $p \in \Psi_d$ if $||z||^{2d}p(z,\bar{z})$ is a squared norm.

 Ψ_d then interpolate between positive polynomials and squared norms

$$\Psi_0 \subsetneq \Psi_1 \subsetneq \Psi_2 \subsetneq \cdots \subset \Psi_\infty = \bigcup_d \Psi_d$$

D'Angelo-Varolin showed that while

$$p(z, \overline{z}) = (|z_1|^2 + |z_2|^2)^4 - \lambda |z_1 z_2|^4.$$

is in Ψ_d for $\lambda < 16$, as $\lambda \rightarrow 16$, one requires larger and larger d.

Differences of squared norms

Any polynomial $p(z, \bar{z})$ can be written as

$$p(z, \bar{z}) = \|F(z)\|^2 - \|G(z)\|^2$$

for some mappings $F : \mathbb{C}^n \to \mathbb{C}^{N_+}$ and $G : \mathbb{C}^n \to \mathbb{C}^{N_-}$.

- 31

Differences of squared norms

Any polynomial $p(z, \bar{z})$ can be written as

$$p(z,\bar{z}) = \|F(z)\|^2 - \|G(z)\|^2$$

for some mappings $F : \mathbb{C}^n \to \mathbb{C}^{N_+}$ and $G : \mathbb{C}^n \to \mathbb{C}^{N_-}$.

The mappings F and G are not unique, but the minimal numbers N_+ and N_- are. We say p has N_+ positive eigenvalues, N_- negative eigenvalues, and rank $N_+ + N_-$. We say p has signature pair (N_+, N_-) .

Differences of squared norms

Any polynomial $p(z, \bar{z})$ can be written as

$$p(z, \bar{z}) = \|F(z)\|^2 - \|G(z)\|^2$$

for some mappings $F : \mathbb{C}^n \to \mathbb{C}^{N_+}$ and $G : \mathbb{C}^n \to \mathbb{C}^{N_-}$.

The mappings F and G are not unique, but the minimal numbers N_+ and N_- are. We say p has N_+ positive eigenvalues, N_- negative eigenvalues, and rank $N_+ + N_-$. We say p has signature pair (N_+, N_-) .

Same for real-analytic functions if we allow ℓ^2 -valued F and G.

(See D'Angelo's book for many applications of this idea to CR geometry)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Where the terminology comes from

If we let
$$\mathcal{Z} = (1, z_1, z_2, \dots, z_n, z_1^2, z_1 z_2, \dots, z^{\alpha}, \dots)^t$$
, then we can write $p(z, \bar{z}) = \mathcal{Z}^* C \mathcal{Z}$

where C is finite rank when p is a polynomial. In general, if p is real-analytic, and convergent on a neighbourhood of the closed unit polydisc, then C is a trace-class operator.

Where the terminology comes from

If we let
$$\mathcal{Z} = (1, z_1, z_2, \dots, z_n, z_1^2, z_1 z_2, \dots, z^{\alpha}, \dots)^t$$
, then we can write $p(z, \bar{z}) = \mathcal{Z}^* C \mathcal{Z}$

where C is finite rank when p is a polynomial. In general, if p is real-analytic, and convergent on a neighbourhood of the closed unit polydisc, then C is a trace-class operator.

$$p(z, \overline{z}) = \|F(z)\|^2 - \|G(z)\|^2$$

is obtained by diagonalizing C, and signature and rank have their usual meanings.

Class Ψ_1

What most commonly comes up in CR geometry is Ψ_1 .

3

- 4 週 1 - 4 三 1 - 4 三 1

Class Ψ_1

What most commonly comes up in CR geometry is Ψ_1 .

Question: If p is in Ψ_1 , how many positive eigenvalues are needed to cancel each negative eigenvalue? That is, if

$$\begin{split} \|z\|^2 p(z,\bar{z}) &= \|z\|^2 (\|F(z)\|^2 - \|G(z)\|^2) \\ &= \|z \otimes F(z)\|^2 - \|z \otimes G(z)\|^2 = \|H(z)\|^2, \end{split}$$

and N_+ is the # of components of F and N_- is the # of components of G. What can we say about the ratio

$$\frac{N_{-}}{N_{+}}$$

- 31

- 4 同 6 4 日 6 4 日 6

Class Ψ_1

What most commonly comes up in CR geometry is Ψ_1 .

Question: If p is in Ψ_1 , how many positive eigenvalues are needed to cancel each negative eigenvalue? That is, if

$$\begin{split} \|z\|^2 p(z,\bar{z}) &= \|z\|^2 (\|F(z)\|^2 - \|G(z)\|^2) \\ &= \|z \otimes F(z)\|^2 - \|z \otimes G(z)\|^2 = \|H(z)\|^2, \end{split}$$

and N_+ is the # of components of F and N_- is the # of components of G. What can we say about the ratio

$\frac{N_{-}}{N_{+}}$

By playing around, one might come to a conclusion that many positive eigenvalues are needed for every negative eigenvalue.

- 31

Theorem in Ψ_1

But!

Theorem

Let $r(z, \bar{z})$ be a real polynomial on \mathbb{C}^n , $n \ge 2$, and suppose that $r(z, \bar{z}) ||z||^2$ is a squared norm. Let (N_+, N_-) be the signature pair of r. Then

(i)

$$\frac{N_-}{N_+} < n - 1.$$

(ii) The above inequality is sharp, i.e., for every $\varepsilon > 0$ there exists r with $\frac{N_-}{N_+} \ge n - 1 - \varepsilon$.

Theorem in Ψ_1

But!

Theorem

Let $r(z, \bar{z})$ be a real polynomial on \mathbb{C}^n , $n \geq 2$, and suppose that $r(z, \bar{z}) ||z||^2$ is a squared norm. Let (N_+, N_-) be the signature pair of r. Then

(i)

$$\frac{N_-}{N_+} < n - 1.$$

(ii) The above inequality is sharp, i.e., for every $\varepsilon > 0$ there exists r with $\frac{N_-}{N_+} \ge n - 1 - \varepsilon$.

You can have (almost) n-1 negatives for every positive! But to get close you need very large degree.

Theorem in Ψ_d

Theorem

Let $r(z, \bar{z})$ be a real polynomial on \mathbb{C}^n , $n \ge 2$, $d \ge 1$, and suppose that $r(z, \bar{z}) ||z||^{2d}$ is a squared norm. Let (N_+, N_-) be the signature pair of r. Then

(i)

$$\frac{N_-}{N_+} \le \binom{n-1+d}{d} - 1.$$

(ii) For each fixed n, there exists a constant C_n such that for each d there is a polynomial $r \in \Psi_d$ with $\frac{N_-}{N_+} \ge C_n d^{n-1}$.

Note $\binom{n-1+d}{d}$ is a polynomial in d of degree n-1. So (ii) says that the bound in (i) is of the correct order.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem in Ψ_d

Theorem

Let $r(z, \overline{z})$ be a real polynomial on \mathbb{C}^n , $n \ge 2$, $d \ge 1$, and suppose that $r(z, \overline{z}) ||z||^{2d}$ is a squared norm. Let (N_+, N_-) be the signature pair of r. Then

(i)

$$\frac{N_-}{N_+} \le \binom{n-1+d}{d} - 1.$$

(ii) For each fixed n, there exists a constant C_n such that for each d there is a polynomial $r \in \Psi_d$ with $\frac{N_-}{N_+} \ge C_n d^{n-1}$.

Note $\binom{n-1+d}{d}$ is a polynomial in d of degree n-1. So (ii) says that the bound in (i) is of the correct order.

It is possible to construct an example with just n positives, and an arbitrarily high number of negatives, if d is large enough.

Easier setting, similar question

Suppose d = 1 for simplicity. A similar question that is easier to play around with is the following:

If $p(x_1, \ldots, x_n)(x_1 + \cdots + x_n)$ has only positive coefficients, and p has N_+ positive coefficients and N_- negative coefficients, then we have the sharp bound

$$\frac{N_-}{N_+} < n-1$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Easier setting, similar question

Suppose d = 1 for simplicity. A similar question that is easier to play around with is the following:

If $p(x_1, \ldots, x_n)(x_1 + \cdots + x_n)$ has only positive coefficients, and p has N_+ positive coefficients and N_- negative coefficients, then we have the sharp bound

$$\frac{N_-}{N_+} < n-1$$

The degrees required to get close to the bound are large. E.g. in degree 6 the largest ratio is for

$$p(x, y, z) = 2xyz^{4} + 2x^{3}z^{3} + 2y^{3}z^{3} + 2x^{2}y^{2}z^{2} + 2x^{4}yz + 2xy^{4}z + 2x^{3}y^{3} - x^{2}yz^{3} - xy^{2}z^{3} - x^{3}yz^{2} - xy^{3}z^{2} - x^{3}y^{2}z - x^{2}y^{3}z.$$

p(x, y, z)(x + y + z) has only, positive coefficients. Here $N_+ = 7$, $N_- = 6$, and 6/7 is still much less than n - 1 = 2.

イロト 不得 トイヨト イヨト 二日

Thank you!

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯