Tasty Bits of Several Complex Variables (3)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Štata Universitato
Complexification (traditional):

If \(U \subset \mathbb{C}^n \) is a domain, \(U \cap \mathbb{R}^n \neq \emptyset \), \(f, g \in \mathcal{O}(U) \), and \(f = g \) on \(U \cap \mathbb{R}^n \).

\(\Rightarrow \ f \equiv g \)
Complexification (traditional):

If $U \subset \mathbb{C}^n$ is a domain, $U \cap \mathbb{R}^n \neq \emptyset$, $f, g \in \mathcal{O}(U)$, and $f = g$ on $U \cap \mathbb{R}^n$.

$\Rightarrow f \equiv g$

Goes the other way too: If $V \subset \mathbb{R}^n, f : V \to \mathbb{R}$ is real-analytic,

$\Rightarrow \exists U \subset \mathbb{C}^n$ open, $V \subset U, F \in \mathcal{O}(U), F|_V = f$.

Proof: Given real power series $\sum_{\alpha} c_n (x - p)^n$, plug in complex numbers: $\sum_{\alpha} c_n (z - p)^n$.
More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f : U \to \mathbb{C}$ is real-analytic.
More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f : U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)$$
More SCVish complexification:

Suppose \(U \subset \mathbb{C}^n \cong \mathbb{R}^{2n} \) and \(f: U \to \mathbb{C} \) is real-analytic. Write (at 0 for simplicity)

\[
f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)
\]

So (at any point) \(f \) equals

\[
\sum_{\alpha, \beta} c_{\alpha, \beta} (z - a)^\alpha (\bar{z} - \bar{a})^\beta.
\]
More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)$$

So (at any point) f equals

$$\sum_{\alpha, \beta} c_{\alpha, \beta} (z - a)^\alpha (\bar{z} - \bar{a})^\beta.$$

So write $f(z, \bar{z})$.

More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f : U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)$$

So (at any point) f equals

$$\sum_{\alpha, \beta} c_{\alpha, \beta} (z - a)^\alpha (\bar{z} - \bar{a})^\beta.$$

So write $f(z, \bar{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f = g$ on the diagonal

$$U \cap D = U \cap \{ (z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \bar{z} \}.$$
More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f : U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)$$

So (at any point) f equals

$$\sum_{\alpha, \beta} c_{\alpha, \beta} (z - a)^{\alpha} (\bar{z} - \bar{a})^{\beta}.$$

So write $f(z, \bar{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f = g$ on the diagonal

$$U \cap D = U \cap \{(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \bar{z}\},$$

$\Rightarrow \ f \equiv g.$
More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)$$

So (at any point) f equals

$$\sum_{\alpha, \beta} c_{\alpha, \beta} (z - a)^\alpha (\bar{z} - \bar{a})^\beta.$$

So write $f(z, \bar{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f = g$ on the diagonal

$$U \cap D = U \cap \{(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \bar{z}\},$$

$$\Rightarrow f \equiv g.$$

Also goes the other way, if $f: V \subset D \to \mathbb{C}$ is real-analytic, then f extends to a neighborhood of V in \mathbb{C}^{2n}.
More SCVish complexification:

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f : U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x, y) = \sum_{m=0}^{\infty} f_m(x, y) = \sum_{m=0}^{\infty} f_m \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right)$$

So (at any point) f equals

$$\sum_{\alpha, \beta} c_{\alpha, \beta} (z - a)^{\alpha} (\bar{z} - \bar{a})^{\beta}.$$

So write $f(z, \bar{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f = g$ on the diagonal

$$U \cap D = U \cap \{(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \bar{z}\},$$

$\Rightarrow f \equiv g$.

Also goes the other way, if $f : V \subset D \to \mathbb{C}$ is real-analytic, then f extends to a neighborhood of V in \mathbb{C}^{2n}.

We identify \mathbb{C}^n and $D \subset \mathbb{C}^n \times \mathbb{C}^n$ with $\iota(z) = (z, \bar{z})$.
Example: \(f(z, \bar{z}) = \frac{1}{1 + |z|^2} = \frac{1}{1 + z \bar{z}} \) is real-analytic in \(\mathbb{C} \).
Example: $f(z, \bar{z}) = \frac{1}{1 + |z|^2} = \frac{1}{1 + z\bar{z}}$ is real-analytic in \mathbb{C}.

The extension $f(z, \zeta) = \frac{1}{1 + z\zeta}$ is holomorphic in $\mathbb{C}^2 \setminus \{z\zeta = -1\}$.
Example: \(f(z, \bar{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\bar{z}} \) is real-analytic in \(\mathbb{C} \).

The extension \(f(z, \zeta) = \frac{1}{1+z\zeta} \) is holomorphic in \(\mathbb{C}^2 \setminus \{z\zeta = -1\} \).

Example: If \(u(z, \bar{z}) \) is (pluri)harmonic, then \(u(z, \bar{z}) = \text{Re}f(z) \).

How to find \(f \)?
Example: \(f(z, \bar{z}) = \frac{1}{1 + |z|^2} = \frac{1}{1 + z\bar{z}} \) is real-analytic in \(\mathbb{C} \).

The extension \(f(z, \zeta) = \frac{1}{1 + z\zeta} \) is holomorphic in \(\mathbb{C}^2 \setminus \{z\zeta = -1\} \).

Example: If \(u(z, \bar{z}) \) is (pluri)harmonic, then \(u(z, \bar{z}) = \text{Re} f(z) \).

How to find \(f \)?

\[
 u(z, \bar{z}) = \frac{f(z) + \bar{f}(\bar{z})}{2}, \quad \text{WLOG } f(0) = 0 \quad \Rightarrow \quad f(z) = 2u(z, 0).
\]
Example: $f(z, \bar{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\bar{z}}$ is real-analytic in \mathbb{C}.

The extension $f(z, \zeta) = \frac{1}{1+z\zeta}$ is holomorphic in $\mathbb{C}^2 \setminus \{z\zeta = -1\}$.

Example: If $u(z, \bar{z})$ is (pluri)harmonic, then $u(z, \bar{z}) = \text{Re} f(z)$.

How to find f?

$$u(z, \bar{z}) = \frac{f(z) + \bar{f}(\bar{z})}{2}, \quad \text{WLOG } f(0) = 0 \quad \Rightarrow \quad f(z) = 2u(z, 0).$$

Remark: There is no good control of the neighborhood to which f extends. Even in 1D: Given any interval (a, b) and any neighborhood U of (a, b), there is an $F \in \mathcal{O}(U)$ that does not extend past any boundary point of U. So $f = F|_{(a, b)}$ also cannot extend further.
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f : M \to \mathbb{C}$ is a CR function if $X_pf = 0$ for all $X_p \in T_p^{(0,1)}M$ for all $p \in M$.
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f : M \to \mathbb{C}$ is a CR function if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f : M \to \mathbb{C}$ is a CR function if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse.
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f : M \rightarrow \mathbb{C}$ is a CR function if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if M is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR f on M is such a restriction.
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f : M \to \mathbb{C}$ is a CR function if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if M is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR f on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f extends holomorphically to a neighborhood.
OK, but what about more complicated submanifolds than $\mathbb{R}^n \subset \mathbb{C}^n$?

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a CR function if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if M is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR f on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f extends holomorphically to a neighborhood.

The proof feels like cheating so let’s do it.
OK, but what about more complicated submanifolds than \(\mathbb{R}^n \subset \mathbb{C}^n \)?

Suppose \(M \subset \mathbb{C}^n \) is a hypersurface, then \(f : M \to \mathbb{C} \) is a CR function if
\[
X_p f = 0 \text{ for all } X_p \in T_p^{(0,1)} M \text{ for all } p \in M.
\]

If \(M \subset U \subset \mathbb{C}^n \) and \(F \in \mathcal{O}(U) \), then \(F|_M \) is a CR function.

Question is the reverse. Not always true, if \(M \) is real-analytic, \(F|_M \) is real-analytic, so no smooth-only CR \(f \) on \(M \) is such a restriction.

Theorem (Severi): If \(M \) and \(f \) are real-analytic and \(f \) CR, then \(f \) extends holomorphically to a neighborhood.

The proof feels like cheating so let’s do it. Suppose \(0 \in M \) and \(M \) is real-analytic, then there is a holomorphic \(\Phi(z, \zbar, w) \) in a nbhd of \(0 \) in \(\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C} \), such that \(M \) is

\[
\zbar = \Phi(z, \zbar, w),
\]

\(\Phi, \frac{\partial \Phi}{\partial z_k}, \frac{\partial \Phi}{\partial \zbar_k} \) vanish at \(0 \) and \(w = \bar{\Phi}(\zbar, z, \Phi(z, \zbar, w)) \).
OK, but what about more complicated submanifolds than \(\mathbb{R}^n \subset \mathbb{C}^n \)?

Suppose \(M \subset \mathbb{C}^n \) is a hypersurface, then \(f : M \to \mathbb{C} \) is a CR function if \(X_pf = 0 \) for all \(X_p \in T^{(0,1)}_p M \) for all \(p \in M \).

If \(M \subset U \subset \mathbb{C}^n \) and \(F \in \mathcal{O}(U) \), then \(F|_M \) is a CR function.

Question is the reverse. Not always true, if \(M \) is real-analytic, \(F|_M \) is real-analytic, so no smooth-only CR \(f \) on \(M \) is such a restriction.

Theorem (Severi): If \(M \) and \(f \) are real-analytic and \(f \) CR, then \(f \) extends holomorphically to a neighborhood.

The proof feels like cheating so let’s do it. Suppose \(0 \in M \) and \(M \) is real-analytic, then there is a holomorphic \(\Phi(z, \zeta, w) \) in a nbhd of 0 in \(\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C} \), such that \(M \) is

\[
\bar{w} = \Phi(z, \bar{z}, w),
\]

\(\Phi, \frac{\partial \Phi}{\partial z_k}, \frac{\partial \Phi}{\partial \zeta_k} \) vanish at 0 and \(w = \bar{\Phi}(\zeta, z, \Phi(z, \zeta, w)) \). A basis for \(T^{(0,1)} M \):

\[
\left(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \right) = \left(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{\zeta}_k} \frac{\partial}{\partial \bar{w}} \right), \quad k = 1, \ldots, n - 1.
\]
So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$.

Example: Consider $M \subset \mathbb{C}^2$ given by $\text{Im} w = |z|^2$, that is, $w - \bar{w} = 2iz\bar{z}$, or in other words, M is given by $\omega = -2iz\bar{z} + w$, and the CR vector field by $\frac{\partial}{\partial \bar{z}} - 2iz \frac{\partial}{\partial \bar{w}}$.

If $f(z, w, \bar{z}, \bar{w})$ is a CR function, the holomorphic extension is $f(z, w, \bar{z}, -2iz\bar{z} + w)$, the \bar{z} will cancel.
So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$.

Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$.
So: \(M \) is \(\bar{w} = \Phi(z, \bar{z}, w) \), \(T^{(0,1)}M \) is given by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \).

Define the complexification \(\mathcal{M} \subset \mathbb{C}^{2n} \) by \(\omega = \Phi(z, \zeta, w) \)

Complexify \(f(z, w, \bar{z}, \bar{w}) \) to \(f(z, w, \zeta, \omega) \).
So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$.

Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$.

Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).$$
So: \(M \) is \(\bar{w} = \Phi(z, \bar{z}, w) \), \(T^{(0,1)} M \) is given by \(\frac{\partial}{\partial z_k} + \frac{\partial \Phi}{\partial z_k} \frac{\partial}{\partial \bar{w}} \).

Define the complexification \(M \subset \mathbb{C}^{2n} \) by \(\omega = \Phi(z, \zeta, w) \)

Complexify \(f(z, w, \bar{z}, \bar{w}) \) to \(f(z, w, \zeta, \omega) \). Now the trick: Define

\[
F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).
\]

As \(f \) is a CR function, it is killed by \(\frac{\partial}{\partial z_k} + \frac{\partial \Phi}{\partial z_k} \frac{\partial}{\partial \bar{w}} \) on \(M \). So

\[
\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.
\]
So: \(M = \bar{w} = \Phi(z, \bar{z}, w), \ T^{(0,1)}M \) is given by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \).

Define the complexification \(\mathcal{M} \subset \mathbb{C}^{2n} \) by \(\omega = \Phi(z, \zeta, w) \)

Complexify \(f(z, w, \bar{z}, \bar{w}) \) to \(f(z, w, \zeta, \omega) \). Now the trick: Define

\[
F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).
\]

As \(f \) is a CR function, it is killed by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \) on \(M \). So

\[
\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.
\]

This is true everywhere by complexification.
So: \(M \) is \(\bar{w} = \Phi(z, \bar{z}, w) \), \(T^{(0,1)}M \) is given by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \).

Define the complexification \(M \subset \mathbb{C}^{2n} \) by \(\omega = \Phi(z, \zeta, w) \)

Complexify \(f(z, w, \bar{z}, \bar{w}) \) to \(f(z, w, \zeta, \omega) \). Now the trick: Define

\[
F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).
\]

As \(f \) is a CR function, it is killed by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \) on \(M \). So

\[
\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.
\]

This is true everywhere by complexification.

So \(F \) is a function of \(z \) and \(w \) only \(\Rightarrow \) \(F \) is holomorphic in \(\mathbb{C}^n \). \(\square \)
So: \(M \) is \(\bar{w} = \Phi(z, \bar{z}, w) \), \(T^{(0,1)}M \) is given by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \).

Define the complexification \(\mathcal{M} \subset \mathbb{C}^{2n} \) by \(\omega = \Phi(z, \zeta, w) \)

Complexify \(f(z, w, \bar{z}, \bar{w}) \) to \(f(z, w, \zeta, \omega) \). Now the trick: Define
\[
F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).
\]

As \(f \) is a CR function, it is killed by \(\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \) on \(M \). So
\[
\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.
\]

This is true everywhere by complexification.

So \(F \) is a function of \(z \) and \(w \) only \(\Rightarrow \) \(F \) is holomorphic in \(\mathbb{C}^n \). \(\square \)

Example: Consider \(M \subset \mathbb{C}^2 \) given by \(\text{Im} \ w = |z|^2 \), that is, \(\frac{w-\bar{w}}{2i} = z\bar{z} \), or in other words, \(\mathcal{M} \) is given by \(\omega = -2iz\zeta + w \), and the CR vector field by \(\frac{\partial}{\partial z} - 2iz \frac{\partial}{\partial \bar{w}} \).
So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$.

Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$

Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).$$

As f is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$ on M. So

$$\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.$$

This is true everywhere by complexification.

So F is a function of z and w only \Rightarrow F is holomorphic in \mathbb{C}^n. □

Example: Consider $M \subset \mathbb{C}^2$ given by $\text{Im } w = |z|^2$, that is, $\frac{w - \bar{w}}{2i} = z \bar{z}$, or in other words, \mathcal{M} is given by $\omega = -2iz\bar{z} + w$, and the CR vector field by $\frac{\partial}{\partial \bar{z}} - 2iz \frac{\partial}{\partial \bar{w}}$.

If $f(z, w, \bar{z}, \bar{w})$ is a CR function, the holomorphic extension is $f(z, w, \bar{z}, -2iz\bar{z} + w)$, the \bar{z} will cancel.
What if f is only smooth?

Proposition:
Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f: U \rightarrow \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function.

Proof:
Each $X_p \in T(0,1)_p \partial U$ is a limit of $T(0,1)_\mathbb{C}^n$ vectors from inside.

□

Proposition:
Suppose $U \subset \mathbb{C}^n$ is a domain with smooth boundary and $f: U \rightarrow \mathbb{C}$ is smooth, holomorphic on U and $f|_{\partial U}$ is zero on a nonempty open subset. Then $f \equiv 0$.

Proof:
Use Radó's theorem to extend $as 0 outside ($g$ in the picture), then use identity.

□

Theorem (Radó):
If $U \subset \mathbb{C}^n$ is open and $g: U \rightarrow \mathbb{C}$ continuous and holomorphic on U', then $g \in O(U)$.
What if f is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f : \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function.

Theorem (Radó): If $U \subset \mathbb{C}^n$ is open and $g : U \to \mathbb{C}$ continuous and holomorphic on U, then $g \in O(U)$.
What if \(f \) is only smooth?

Proposition: Suppose \(U \subset \mathbb{C}^n \) is open with smooth boundary and \(f : \overline{U} \to \mathbb{C} \) is smooth, holomorphic on \(U \). Then \(f \mid_{\partial U} \) is a smooth CR function.

Proof: Each \(X_p \in T^{(0,1)}_p \partial U \) is a limit of \(T^{(0,1)} \mathbb{C}^n \) vectors from inside. \(\square \)
What if f is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f : \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function.

Proof: Each $X_p \in T_p^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^n$ vectors from inside. □

Proposition: Suppose $U \subset \mathbb{C}^n$ is a domain with smooth boundary and $f : \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U and $f|_{\partial U}$ is zero on a nonempty open subset. Then $f \equiv 0$.

Theorem (Radó): If $U \subset \mathbb{C}^n$ is open and $g : U \to \mathbb{C}$ continuous and holomorphic on U', then $g \in \mathcal{O}(U)$.
What if f is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f : \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function.

Proof: Each $X_p \in T_p^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^n$ vectors from inside. □

Proposition: Suppose $U \subset \mathbb{C}^n$ is a domain with smooth boundary and $f : \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U and $f|_{\partial U}$ is zero on a nonempty open subset. Then $f \equiv 0$.

Proof: Use Radó’s theorem to extend as 0 outside (g in the picture), then use identity. □

Theorem (Radó): If $U \subset \mathbb{C}^n$ is open and $g : U \to \mathbb{C}$ continuous and holomorphic on

$$U' = \{z \in U : g(z) \neq 0\}.$$

Then $g \in \mathcal{O}(U)$.
But can we extend (to at least one side)?
But can we extend (to at least one side)?

Example: Suppose $M = \mathbb{R} \subset \mathbb{C}$. Define $f : M \to \mathbb{C}$:

$$f(x) = \begin{cases}
 e^{-x^2} & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases}$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0.
But can we extend (to at least one side)?

Example: Suppose \(M = \mathbb{R} \subset \mathbb{C} \). Define \(f : M \rightarrow \mathbb{C} \):

\[
f(x) = \begin{cases}
e^{-x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}
\]

Then \(f \) is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0.

(Make it a several variable example by \(M = \mathbb{R} \times \mathbb{C} \).)
But can we extend (to at least one side)?

Example: Suppose $M = \mathbb{R} \subset \mathbb{C}$. Define $f : M \to \mathbb{C}$:

$$f(x) = \begin{cases} e^{-x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0.

(Make it a several variable example by $M = \mathbb{R} \times \mathbb{C}$.)

Example: Define the function $f \in \overline{\mathbb{B}}_2 \to \mathbb{C}$ by

$$f(z_1, z_2) = \begin{cases} e^{-1/\sqrt{z_1+1}} & \text{if } z_1 \neq -1, \\ 0 & \text{if } z_1 = -1. \end{cases}$$

Then f is smooth on $\overline{\mathbb{B}}_2$, holomorphic on \mathbb{B}_2, but near $(-1, 0)$ is not a restriction of a holomorphic function (only one sided extension).
A neat technique for extension is to approximate by polynomials.

Theorem (Baouendi–Trèves):
Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_\ell\}$ of polynomials in z such that $p_\ell(z) \to f(z)$ uniformly in K.

Example: The K depends only on M, but can't always be all of M: E.g., $M = S^1$ and $f = \bar{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f : [0, 1] \to \mathbb{R}$ is continuous, then it is approximated on $[0, 1]$ by the entire functions $f_\ell(z) = \int_0^1 c_\ell e^{-\ell(z-t)^2} f(t) \, dt$ for properly chosen c_ℓ. Then just take partial sums of the powers series.

Baouendi–Trèves uses the same idea on a totally real subset of M and slightly modified version of the above.
A neat technique for extension is to approximate by polynomials.

There is a lot more general version, but let’s just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell(z) \to f(z) \quad \text{uniformly in } K.$$
A neat technique for extension is to approximate by polynomials. There is a lot more general version, but let’s just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell(z) \to f(z) \quad \text{uniformly in } K.$$

Example: The K depends only on M, but can’t always be all of M: E.g., $M = S^1$ and $f = \bar{z}$.
A neat technique for extension is to approximate by polynomials.

There is a lot more general version, but let’s just state the easy one.

Theorem (Baouendi–Trèves): *Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \rightarrow \mathbb{C}$, there exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell(z) \rightarrow f(z) \quad \text{uniformly in } K.$$

Example: The K depends only on M, but can’t always be all of M: E.g., $M = S^1$ and $f = \bar{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f : [0, 1] \rightarrow \mathbb{R}$ is continuous, then it is approximated on $[0, 1]$ by the entire functions

$$f_\ell(z) = \int_0^1 c_\ell e^{-\ell(z-t)^2} f(t) \, dt$$

for properly chosen c_ℓ. Then just take partial sums of the power series.
A neat technique for extension is to approximate by polynomials. There is a lot more general version, but let’s just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell(z) \to f(z) \quad \text{uniformly in } K.$$

Example: The K depends only on M, but can’t always be all of M: E.g., $M = S^1$ and $f = \bar{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f : [0, 1] \to \mathbb{R}$ is continuous, then it is approximated on $[0, 1]$ by the entire functions

$$f_\ell(z) = \int_0^1 c_\ell e^{-\ell(z-t)^2} f(t) \, dt$$

for properly chosen c_ℓ. Then just take partial sums of the power series. Baouendi–Trèves uses the same idea on a totally real subset of M and slightly modified version of the above.
The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \rightarrow \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f : M \rightarrow \mathbb{R}$ be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_- continuous up to M.

(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_+ continuous up to M.

(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then f extends to a function holomorphic on U.

Remark: So if the Levi-form has eigenvalues of both signs, then every CR function is a restriction of a holomorphic function.
The following is called the Lewy extension theorem, but goes back to Helmut Kneser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r : U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f : M \to \mathbb{R}$ be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_- continuous up to M.
The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r : U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f : M \to \mathbb{R}$ be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_- continuous up to M

(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_+ continuous up to M
The following is called the Lewy extension theorem, but goes back to Helmut Kneser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r : U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f : M \to \mathbb{R}$ be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_- continuous up to M

(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_+ continuous up to M

(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then f extends to a function holomorphic on U.

Remark: So if the Levi-form has eigenvalues of both signs, then every CR function is a restriction of a holomorphic function.
The following is called the Lewy extension theorem, but goes back to Helmut Kneser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r : U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f : M \to \mathbb{R}$ be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_- continuous up to M

(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_+ continuous up to M

(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then f extends to a function holomorphic on U.

Remark: So if the Levi-form has eigenvalues of both signs, then every CR function is a restriction of a holomorphic function.
"Proof of (i):" Write M as

$$\text{Im } w = |z_1|^2 + \sum_{k=2}^{n-1} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \text{Re } w),$$

where $z' = (z_2, \ldots, z_{n-1})$, $\epsilon_k = -1, 0, 1$, and E is $O(3)$. And apply Bauoendi–Trèves to find a K.

we find an analytic disc Δ "attached" to $K \subset M$ (i.e., $\partial \Delta \subset K$).

One can fill a one-sided neighborhood by such discs.
“Proof of (i):” Write M as

$$\text{Im } w = |z_1|^2 + \sum_{k=2}^{n-1} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \text{Re } w),$$

where $z' = (z_2, \ldots, z_{n-1})$, $\epsilon_k = -1, 0, 1$, and E is $O(3)$. And apply Bauoendi–Trèves to find a K.

$$z_1 \mapsto |z_1|^2 + E(z_1, 0, \bar{z}_1, 0, 0)$$

has a strict minimum at the origin, and so does

$$z_1 \mapsto |z_1|^2 + \sum_{k=2}^{n} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \text{Re } w) - \text{Im } w \quad \text{for small } z', w.$$
“Proof of (i):” Write M as

$$\text{Im } w = |z_1|^2 + \sum_{k=2}^{n-1} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \text{Re } w),$$

where $z' = (z_2, \ldots, z_{n-1})$, $\epsilon_k = -1, 0, 1$, and E is $O(3)$. And apply Bauoendi–Trèves to find a K.

$$z_1 \mapsto |z_1|^2 + E(z_1, 0, \bar{z}_1, 0, 0)$$

has a strict minimum at the origin, and so does

$$z_1 \mapsto |z_1|^2 + \sum_{k=2}^{n} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \text{Re } w) - \text{Im } w$$

for small z', w.

we find an analytic disc Δ “attached” to $K \subset M$ (i.e., $\partial \Delta \subset K$).

One can fill a one-sided neighborhood by such discs.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

\[\{p_\ell\} \text{ is (uniformly) Cauchy on } \partial \Delta \text{ for each disc.} \]

By maximum principle, \[\{p_\ell\} \text{ is (uniformly) Cauchy on } \Delta. \]

$\Rightarrow \{p_\ell\} \text{ is (uniformly) Cauchy on } U \setminus K \Rightarrow \{p_\ell\} \text{ converges to a holomorphic function on } U \text{ continuous up to the boundary.}$

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side. □

Example:
Every CR function on $\text{Im } w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example:
Every CR function on $\text{Im } w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im } w \geq |z_1|^2 + |z_2|^2$, but not necessarily below.

Example:
There exist CR functions on $\text{Im } w = 0$ that extend to neither side.

Remark:
These ideas led Lewy to find the example of the unsolvable PDE.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial\Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

Example:

Every CR function on $\text{Im} \, w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example:

Every CR function on $\text{Im} \, w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im} \, w \geq |z_1|^2 + |z_2|^2$, but not necessarily below.

Example:

There exist CR functions on $\text{Im} \, w = 0$ that extend to neither side.

Remark:

These ideas led Lewy to find the example of the unsolvable PDE.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

\(\{p_\ell\} \) is (uniformly) Cauchy on $\partial \Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

\(\Rightarrow \) $\{p_\ell\}$ is (uniformly) Cauchy on $U_- \cup K$

"Example:

Every CR function on $\text{Im} w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

"Example:

Every CR function on $\text{Im} w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im} w \geq |z_1|^2 + |z_2|^2$, but not necessarily below.

"Example:

There exist CR functions on $\text{Im} w = 0$ that extend to neither side.

Remark:

These ideas led Lewy to find the example of the unsolvable PDE.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.
By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

\Rightarrow $\{p_\ell\}$ is (uniformly) Cauchy on $U_- \cup K$

\Rightarrow $\{p_\ell\}$ converges to a holomorphic function on U_- continuous up to the boundary.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

\Rightarrow $\{p_\ell\}$ is (uniformly) Cauchy on $U_- \cup K$

\Rightarrow $\{p_\ell\}$ converges to a holomorphic function on U_- continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

□
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

\Rightarrow $\{p_\ell\}$ is (uniformly) Cauchy on $U_\leq \cup K$

\Rightarrow $\{p_\ell\}$ converges to a holomorphic function on U_\leq continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

□

Example: Every CR function on $\text{Im } w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

$\Rightarrow \quad \{p_\ell\}$ is (uniformly) Cauchy on $U_- \cup K$

$\Rightarrow \quad \{p_\ell\}$ converges to a holomorphic function on U_- continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side. □

Example: Every CR function on $\text{Im } w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example: Every CR function on $\text{Im } w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im } w \geq |z_1|^2 + |z_2|^2$, but not necessarily below.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

$\Rightarrow \quad \{p_\ell\}$ is (uniformly) Cauchy on $U_- \cup K$

$\Rightarrow \quad \{p_\ell\}$ converges to a holomorphic function on U_- continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side. \square

Example: Every CR function on $\text{Im} \, w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example: Every CR function on $\text{Im} \, w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im} \, w \geq |z_1|^2 + |z_2|^2$, but not necessarily below.

Example: There exist CR functions on $\text{Im} \, w = 0$ that extend to neither side.
Apply Baouendi–Trèves to find p_ℓ that approximate f uniformly on K.

$\{p_\ell\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.

By maximum principle, $\{p_\ell\}$ is (uniformly) Cauchy on Δ.

$\Rightarrow \quad \{p_\ell\}$ is (uniformly) Cauchy on $U_- \cup K$

$\Rightarrow \quad \{p_\ell\}$ converges to a holomorphic function on U_- continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Example: Every CR function on $\text{Im } w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example: Every CR function on $\text{Im } w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im } w \geq |z_1|^2 + |z_2|^2$, but not necessarily below.

Example: There exist CR functions on $\text{Im } w = 0$ that extend to neither side.

Remark: These ideas led Lewy to find the example of the unsolvable PDE.
Another application is a special case of the following theorem:

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \geq 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : U \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S_2^{n-1} \subset \mathbb{C}^n$, $n \geq 2$, is the boundary value of a continuous $F : \mathbb{D}_n \to \mathbb{C}$ that is holomorphic in \mathbb{D}_n.

Example: The function \overline{z} on $S_1 \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Example: Similarly, not true in general if U is unbounded. If $U = \mathbb{D} \times \mathbb{C} \subset \mathbb{C}^2$, then \overline{z}_1 is a CR function, but does not extend inside for the same reason.
Another application is a special case of the following theorem:

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \geq 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).
Another application is a special case of the following theorem:

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \geq 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.
Another application is a special case of the following theorem:

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \geq 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S^{2n-1} \subset \mathbb{C}^n$, $n \geq 2$, is the boundary value of a continuous $F : \overline{B}_n \to \mathbb{C}$ that is holomorphic in B_n.

The function \overline{z} on $S^1 \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Example: Similarly, not true in general if U is unbounded. If $U = \mathbb{D} \times \mathbb{C} \subset \mathbb{C}^2$, then \overline{z}_1 is a CR function, but does not extend inside for the same reason.
Another application is a special case of the following theorem:

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a CR function. Then there exists a continuous $F: \overline{U} \rightarrow \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S^{2n-1} \subset \mathbb{C}^n$, $n \geq 2$, is the boundary value of a continuous $F: \overline{\mathbb{B}_n} \rightarrow \mathbb{C}$ that is holomorphic in \mathbb{B}_n.

Example: The function \bar{z} on $S^1 \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.
Another application is a special case of the following theorem:

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \geq 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S^{2n-1} \subset \mathbb{C}^n$, $n \geq 2$, is the boundary value of a continuous $F : \overline{B}_n \to \mathbb{C}$ that is holomorphic in B_n.

Example: The function \bar{z} on $S^1 \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Example: Similarly, not true in general if U is unbounded. If $U = \mathbb{D} \times \mathbb{C} \subset \mathbb{C}^2$, then \bar{z}_1 is a CR function, but does not extend inside for the same reason.