Homotopy equivalence for proper holomorphic mappings

John D'Angelo ${ }^{1}$, Jiří Lebl ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Illinois at Urbana-Champaign
${ }^{2}$ Department of Mathematics, Oklahoma State University

March 2015

Proper maps

Let

$$
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}
$$

be the coordinates. Let

$$
\mathbb{B}_{n}=\text { unit ball in } \mathbb{C}^{n}=\{z:\|z\|<1\} .
$$

Question

Classify proper holomorphic maps from \mathbb{B}_{n} to \mathbb{B}_{N} up to some natural equivalence.

Proper means that f^{-1} takes compacts to compacts. If f is proper and extends to the boundary, then f takes the boundary to the boundary (CR map of spheres).

Spherical equivalence

The first obvious choice: spherical equivalence
$F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ and $G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ are spherically equivalent if there exist $\chi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that

$$
F=\tau \circ G \circ \chi
$$

Spherical equivalence

The first obvious choice: spherical equivalence
$F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ and $G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ are spherically equivalent if there exist $\chi \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ such that

$$
F=\tau \circ G \circ \chi
$$

Lots known in low-codimension $(N-n)$ (Alexander, Pinchuk, Faran, Huang, Ji, D'Angelo, L., etc...). E.g.

Theorem (Alexander '77 (complicated history))
If $F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}$ is proper, holomorphic, and $n \geq 2$, then $F \in \operatorname{Aut}\left(\mathbb{B}_{n}\right)$ (spherically equivalent to identity).

Theorem (Faran '82)
If $F: \mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ is proper, holomorphic, and smooth up to the boundary, then F is (spherically) equivalent to
$(z, w) \mapsto(z, w, 0)$
$(z, w) \mapsto\left(z, z w, w^{2}\right)$
$(z, w) \mapsto\left(z^{2}, \sqrt{2} z w, w^{2}\right)$
$(z, w) \mapsto\left(z^{3}, \sqrt{3} z w, w^{3}\right)$

Spherical equivalence

Theorem (Faran '82)
If $F: \mathbb{B}_{2} \rightarrow \mathbb{B}_{3}$ is proper, holomorphic, and smooth up to the boundary, then F is (spherically) equivalent to
$(z, w) \mapsto(z, w, 0)$
$(z, w) \mapsto\left(z, z w, w^{2}\right)$
$(z, w) \mapsto\left(z^{2}, \sqrt{2} z w, w^{2}\right)$
$(z, w) \mapsto\left(z^{3}, \sqrt{3} z w, w^{3}\right)$
For higher codimension, there are ∞ many equivalence classes. An example found by D'Angelo:

$$
(z, w) \mapsto\left(z, t w, \sqrt{1-t^{2}} z w, \sqrt{1-t^{2}} z^{2}\right)
$$

for $t \in[0,1]$ are all spherically inequivalent proper maps.

One dimension

Exercise

If $F: \mathbb{B}_{1} \rightarrow \mathbb{B}_{1}$ is proper then F is a finite Blaschke product:

$$
F(z)=e^{i \theta} \prod_{j=1}^{k} \frac{z-a_{j}}{1-\bar{a}_{j} z}
$$

$\left|a_{j}\right|<1$ for all j.

One dimension

Exercise

If $F: \mathbb{B}_{1} \rightarrow \mathbb{B}_{1}$ is proper then F is a finite Blaschke product:

$$
F(z)=e^{i \theta} \prod_{j=1}^{k} \frac{z-a_{j}}{1-\bar{a}_{j} z}
$$

$\left|a_{j}\right|<1$ for all j.

If $k=2$ then F is spherically equivalent to z^{2}. But if $k \geq 3$, there are already infinitely many inequivalent maps because $3 \times 2+1>2 \times(2+1)$.

However,

One dimension

Exercise

If $F: \mathbb{B}_{1} \rightarrow \mathbb{B}_{1}$ is proper then F is a finite Blaschke product:

$$
F(z)=e^{i \theta} \prod_{j=1}^{k} \frac{z-a_{j}}{1-\bar{a}_{j} z}
$$

$\left|a_{j}\right|<1$ for all j.

If $k=2$ then F is spherically equivalent to z^{2}. But if $k \geq 3$, there are already infinitely many inequivalent maps because $3 \times 2+1>2 \times(2+1)$.
However, we can continuously deform F to z^{k} :
Let $a_{j} \rightarrow 0$, and $\theta \rightarrow 0$.

Definition

Let $F, G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ be proper holomorphic maps.

Definition

F and G are homotopic if, for each $t \in[0,1]$ there is a proper holomorphic mapping $H_{t}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ such that
($H_{0}=f$ and $H_{1}=g$.
(H_{t} is a continuous family.

Definition

Let $F, G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ be proper holomorphic maps.

Definition

F and G are homotopic if, for each $t \in[0,1]$ there is a proper holomorphic mapping $H_{t}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ such that
($H_{0}=f$ and $H_{1}=g$.
(H_{t} is a continuous family.
Spherical equivalence \Rightarrow homotopy equivalence (Aut $\left(\mathbb{B}_{n}\right)$ connected).

Definition

Let $F, G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ be proper holomorphic maps.

Definition

F and G are homotopic if, for each $t \in[0,1]$ there is a proper holomorphic mapping $H_{t}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ such that
($H_{0}=f$ and $H_{1}=g$.
(H_{t} is a continuous family.
Spherical equivalence \Rightarrow homotopy equivalence (Aut(\mathbb{B}_{n}) connected).

If H_{t} is rational $\forall t$, then
F and G are homotopic through rational maps.

Definition

Let $F, G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ be proper holomorphic maps.

Definition

F and G are homotopic if, for each $t \in[0,1]$ there is a proper holomorphic mapping $H_{t}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ such that
(-) $H_{0}=f$ and $H_{1}=g$.
(H_{t} is a continuous family.
Spherical equivalence \Rightarrow homotopy equivalence (Aut $\left(\mathbb{B}_{n}\right)$ connected).

If H_{t} is rational $\forall t$, then
F and G are homotopic through rational maps.

Proposition

If $n=N=1$ and $F: \mathbb{B}_{1} \rightarrow \mathbb{B}_{1}$ is a proper holomorphic map, then there exists a unique k such that F is homotopic (through rational maps) to z^{k}.

Different dimensions

Adding a few zero components does not a new map make.
Let

$$
\begin{aligned}
& F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N_{1}} \\
& G: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N_{2}}
\end{aligned}
$$

be proper holomorphic maps.

Definition

F and G are homotopic in target dimension k if, for each $t \in[0,1]$ there is a proper holomorphic mapping $H_{t}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{k}$ such that
(H_{0} is spherically equivalent to $F \oplus 0$
(H_{1} is spherically equivalent to $G \oplus 0$
(H_{t} is a continuous family.

Everything is homotopic

Proposition (D'Angelo)
Given any proper F and G, there exists a large enough k such that F and G are homotopic in dimension k.

Proof: $t F \oplus \sqrt{1-t^{2}} G$

Everything is homotopic

Proposition (D'Angelo)
Given any proper F and G, there exists a large enough k such that F and G are homotopic in dimension k.

Proof: $t F \oplus \sqrt{1-t^{2}} G$
Hmmmmm ... OK so we're done ... let's go home ...

Everything is homotopic

Proposition (D'Angelo)

Given any proper F and G, there exists a large enough k such that F and G are homotopic in dimension k.

Proof: $t F \oplus \sqrt{1-t^{2}} G$
Hmmmmm ... OK so we're done ... let's go home ...

Theorem (L., D'Angelo)

$(z, w) \mapsto(z, w, 0)$
$(z, w) \mapsto\left(z, z w, w^{2}\right)$
$(z, w) \mapsto\left(z^{2}, \sqrt{2} z w, w^{2}\right)$
$(z, w) \mapsto\left(z^{3}, \sqrt{3} z w, w^{3}\right)$
are mutually not homotopy equivalent (through rational maps) in dimension 3. They are all homotopy equivalent in dimension 5.

Rational maps

Theorem (Forstnerič '89)
 Let $F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}(n \geq 2)$ be a proper holomorphic map, C^{∞} up to the boundary.
 Then F is rational of degree bounded by a constant $D(n, N)$.

Rational maps

> Theorem (Forstnerič '89)
> Let $F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}(n \geq 2)$ be a proper holomorphic map, C^{∞} up to the boundary.
> Then F is rational of degree bounded by a constant $D(n, N)$.

Theorem (L., D'Angelo)

Suppose $n \geq 2$. Let S be the set of homotopy classes (of rational mappings and in target dimension N) of proper rational mappings $F: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$.
Then S is a finite set.
S is countable if $n=1$.

Closedness of spherical equivalence

A general version of the D'Angelo example is the following:

```
Theorem (L., D'Angelo)
If F,G:\mp@subsup{\mathbb{B}}{n}{}->\mp@subsup{\mathbb{B}}{N}{}\mathrm{ are spherically inequivalent, and }\mp@subsup{H}{t}{}\mathrm{ is a} homotopy of \(F\) and \(G\), then there exist uncountably many mutually spherically inequivalent maps in \(H_{t}\).
```


Closedness of spherical equivalence

A general version of the D'Angelo example is the following:

```
Theorem (L., D'Angelo)
If F,G:\mp@subsup{\mathbb{B}}{n}{}->\mp@subsup{\mathbb{B}}{N}{}\mathrm{ are spherically inequivalent, and }\mp@subsup{H}{t}{}\mathrm{ is a} homotopy of \(F\) and \(G\), then there exist uncountably many mutually spherically inequivalent maps in \(H_{t}\).
```

The theorem is a corollary of the following lemma and the classical theorem of Sierpinski:

Lemma (L., D'Angelo)
Assume $n \geq 2$. Let $H_{t}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{N}$ be a homotopy of rational proper maps. Fix $t_{0} \in[0,1]$. The set

$$
\left\{t \in[0,1]: H_{t} \text { is spherically equivalent to } H_{t_{0}}\right\}
$$

is closed in $[0,1]$.

Degree is not an invariant no matter what the target dimension.
Example:

$$
\begin{aligned}
H_{\theta}(z, w)= & \left(c z-s w^{2}, z w,\left(c z-s w^{2}\right)\left(s z+c w^{2}\right)\right. \\
& \left.z w\left(s z+c w^{2}\right),\left(s z+c w^{2}\right)^{2}\right)
\end{aligned}
$$

where $c=\cos \theta$ and $s=\sin \theta$.

$$
\begin{gathered}
H_{0}=\left(z, z w, z w^{2}, z w^{3}, w^{4}\right) \\
H_{\pi / 2}=\left(-w^{2}, z w,-z w^{2}, z^{2} w, z^{2}\right)
\end{gathered}
$$

The topology

What is the natural topology for the setup?

What is the natural topology for the setup?
Write

$$
\begin{aligned}
F(z) & =\sum_{\alpha} \mathbf{c}_{\alpha} z^{\alpha} \\
\|F(z)\|^{2} & =\sum_{\alpha, \beta} a_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}
\end{aligned}
$$

where $a_{\alpha, \beta}=\left\langle\mathbf{c}_{\alpha}, \mathbf{c}_{\beta}\right\rangle$.

What is the natural topology for the setup?
Write

$$
\begin{aligned}
F(z) & =\sum_{\alpha} \mathbf{c}_{\alpha} z^{\alpha} \\
\|F(z)\|^{2} & =\sum_{\alpha, \beta} a_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}
\end{aligned}
$$

where $a_{\alpha, \beta}=\left\langle\mathbf{c}_{\alpha}, \mathbf{c}_{\beta}\right\rangle$.
The sequence $\left\{a_{\alpha, \beta}\right\}$ belongs to (a weighted) ℓ^{1}.

What is the natural topology for the setup?
Write

$$
\begin{aligned}
F(z) & =\sum_{\alpha} \mathbf{c}_{\alpha} z^{\alpha} \\
\|F(z)\|^{2} & =\sum_{\alpha, \beta} a_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}
\end{aligned}
$$

where $a_{\alpha, \beta}=\left\langle\mathbf{c}_{\alpha}, \mathbf{c}_{\beta}\right\rangle$.
The sequence $\left\{a_{\alpha, \beta}\right\}$ belongs to (a weighted) ℓ^{1}.
Cauchy formula shows that the map $[0,1] \rightarrow \ell^{1}$, that takes t to the $\left\{a_{\alpha, \beta}\right\}$ corresponding to H_{t}, is continuous.
So a homotopy H_{t} is a connected path in ℓ^{1}.

The topology

What is the natural topology for the setup?
Write

$$
\begin{gathered}
F(z)=\sum_{\alpha} \mathbf{c}_{\alpha} z^{\alpha} \\
\|F(z)\|^{2}=\sum_{\alpha, \beta} a_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}
\end{gathered}
$$

where $a_{\alpha, \beta}=\left\langle\mathbf{c}_{\alpha}, \mathbf{c}_{\beta}\right\rangle$.
The sequence $\left\{a_{\alpha, \beta}\right\}$ belongs to (a weighted) ℓ^{1}.
Cauchy formula shows that the map $[0,1] \rightarrow \ell^{1}$, that takes t to the $\left\{a_{\alpha, \beta}\right\}$ corresponding to H_{t}, is continuous.

So a homotopy H_{t} is a connected path in ℓ^{1}.
The question is: are orbits under spherical equivalence closed in the subset of ℓ^{1} corresponding to proper maps. This is nontrivial: Reiter (PhD thesis '14) shows this is not true in the similar hyperqudric case.

But rational maps $F=\frac{p}{q}$ have a different natural topology. One has to look at the pairs (p, q) in the space of polynomials.
We prove that if H_{t} is a homotopy of rational maps of some bounded degree, then there exist another homotopy of polynomials $p_{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N}$ and $q_{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that

$$
\frac{p_{0}}{q_{0}}=H_{0} \quad \frac{p_{1}}{q_{1}}=H_{1}
$$

Rational maps

But rational maps $F=\frac{p}{q}$ have a different natural topology. One has to look at the pairs (p, q) in the space of polynomials.

We prove that if H_{t} is a homotopy of rational maps of some bounded degree, then there exist another homotopy of polynomials $p_{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N}$ and $q_{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that

$$
\frac{p_{0}}{q_{0}}=H_{0} \quad \frac{p_{1}}{q_{1}}=H_{1}
$$

The key problem is that for a rational map F the choice of p and q such that $F=\frac{p}{q}$ is not unique.

Rational maps

But rational maps $F=\frac{p}{q}$ have a different natural topology. One has to look at the pairs (p, q) in the space of polynomials.
We prove that if H_{t} is a homotopy of rational maps of some bounded degree, then there exist another homotopy of polynomials $p_{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N}$ and $q_{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that

$$
\frac{p_{0}}{q_{0}}=H_{0} \quad \frac{p_{1}}{q_{1}}=H_{1}
$$

The key problem is that for a rational map F the choice of p and q such that $F=\frac{p}{q}$ is not unique.
We then work in a finite dimensional space by Forstnerič's theorem. We prove that p and q are bounded (once normalized by $q(0)=1)$, so the set is also bounded.

