Homotopy equivalence for proper holomorphic mappings

John D'Angelo¹, Jiří Lebl²

¹Department of Mathematics, University of Illinois at Urbana-Champaign ²Department of Mathematics, Oklahoma State University

March 2015

Let

$$z=(\mathit{z}_1,\mathit{z}_2,\ldots,\mathit{z}_n)\in\mathbb{C}^n$$

be the coordinates. Let

$$\mathbb{B}_n = ext{unit ball in } \mathbb{C}^n = \{z : \|z\| < 1\}.$$

Question

Classify proper holomorphic maps from \mathbb{B}_n to \mathbb{B}_N up to some natural equivalence.

Proper means that f^{-1} takes compacts to compacts. If f is proper and extends to the boundary, then f takes the boundary to the boundary (CR map of spheres).

The first obvious choice: spherical equivalence $F: \mathbb{B}_n \to \mathbb{B}_N$ and $G: \mathbb{B}_n \to \mathbb{B}_N$ are spherically equivalent if there exist $\chi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that

 $F = \tau \circ G \circ \chi$

The first obvious choice: spherical equivalence $F: \mathbb{B}_n \to \mathbb{B}_N$ and $G: \mathbb{B}_n \to \mathbb{B}_N$ are spherically equivalent if there exist $\chi \in \operatorname{Aut}(\mathbb{B}_n)$ and $\tau \in \operatorname{Aut}(\mathbb{B}_N)$ such that

 $F = au \circ G \circ \chi$

Lots known in low-codimension (N - n) (Alexander, Pinchuk, Faran, Huang, Ji, D'Angelo, L., etc...). E.g.

Theorem (Alexander '77 (complicated history)) If $F : \mathbb{B}_n \to \mathbb{B}_n$ is proper, holomorphic, and $n \ge 2$, then $F \in \operatorname{Aut}(\mathbb{B}_n)$ (spherically equivalent to identity).

Theorem (Faran '82)

If $F: \mathbb{B}_2 \to \mathbb{B}_3$ is proper, holomorphic, and smooth up to the boundary, then F is (spherically) equivalent to

$$igstar{} igstar{} (z,w)\mapsto (z,w,0)$$

$$igstar{}$$
 ($z,w)\mapsto (z^2,\sqrt{2}\,zw,w^2)$

$$igsquigarrow$$
 $(z,w)\mapsto (z^3,\sqrt{3}\,zw,w^3)$

Theorem (Faran '82)

If $F: \mathbb{B}_2 \to \mathbb{B}_3$ is proper, holomorphic, and smooth up to the boundary, then F is (spherically) equivalent to ($(z, w) \mapsto (z, w, 0)$ ($(z, w) \mapsto (z, zw, w^2)$ ($(z, w) \mapsto (z^2, \sqrt{2} zw, w^2)$ ($(z, w) \mapsto (z^3, \sqrt{3} zw, w^3)$

For higher codimension, there are ∞ many equivalence classes. An example found by D'Angelo:

$$(z,w)\mapsto (z,tw,\sqrt{1-t^2}\,zw,\sqrt{1-t^2}\,z^2)$$

for $t \in [0, 1]$ are all spherically inequivalent proper maps.

Exercise

If $F \colon \mathbb{B}_1 \to \mathbb{B}_1$ is proper then F is a finite Blaschke product:

$$F(z)=e^{i heta}\prod_{j=1}^krac{z-a_j}{1-ar a_j z}$$

$$|a_j| < 1$$
 for all j .

Exercise

If $F : \mathbb{B}_1 \to \mathbb{B}_1$ is proper then F is a finite Blaschke product:

$$F(z)=e^{i heta}\prod_{j=1}^krac{z-a_j}{1-ar a_j z}$$

 $|a_j| < 1$ for all j.

If k = 2 then F is spherically equivalent to z^2 . But if $k \ge 3$, there are already infinitely many inequivalent maps because $3 \times 2 + 1 > 2 \times (2 + 1)$.

However,

Exercise

If $F \colon \mathbb{B}_1 \to \mathbb{B}_1$ is proper then F is a finite Blaschke product:

$$F(z)=e^{i heta}\prod_{j=1}^krac{z-a_j}{1-ar a_j z}$$

 $|a_j| < 1$ for all j.

If k = 2 then F is spherically equivalent to z^2 . But if $k \ge 3$, there are already infinitely many inequivalent maps because $3 \times 2 + 1 > 2 \times (2 + 1)$.

However, we can continuously deform F to z^k : Let $a_j \to 0$, and $\theta \to 0$.

(

Let $F, G: \mathbb{B}_n \to \mathbb{B}_N$ be proper holomorphic maps.

Definition

F and G are *homotopic* if, for each $t \in [0, 1]$ there is a proper holomorphic mapping $H_t \colon \mathbb{B}_n \to \mathbb{B}_N$ such that

•
$$H_0 = f$$
 and $H_1 = g$.

 $(H_t$ is a continuous family.

(

Let $F, G: \mathbb{B}_n \to \mathbb{B}_N$ be proper holomorphic maps.

Definition

F and G are *homotopic* if, for each $t \in [0, 1]$ there is a proper holomorphic mapping $H_t \colon \mathbb{B}_n \to \mathbb{B}_N$ such that

•
$$H_0 = f$$
 and $H_1 = g$.

 $(H_t$ is a continuous family.

```
Spherical equivalence \Rightarrow homotopy equivalence (Aut(\mathbb{B}_n) connected).
```

(

Let $F, G: \mathbb{B}_n \to \mathbb{B}_N$ be proper holomorphic maps.

Definition

F and G are *homotopic* if, for each $t \in [0, 1]$ there is a proper holomorphic mapping $H_t \colon \mathbb{B}_n \to \mathbb{B}_N$ such that

$$\blacksquare H_0 = f \text{ and } H_1 = g.$$

 $(H_t is a continuous family.$

```
Spherical equivalence \Rightarrow homotopy equivalence (Aut(\mathbb{B}_n) connected).
```

If H_t is rational $\forall t$, then F and G are homotopic through rational maps.

(

Let $F, G: \mathbb{B}_n \to \mathbb{B}_N$ be proper holomorphic maps.

Definition

F and G are *homotopic* if, for each $t \in [0, 1]$ there is a proper holomorphic mapping $H_t \colon \mathbb{B}_n \to \mathbb{B}_N$ such that

$$\blacksquare H_0 = f \text{ and } H_1 = g.$$

 $(H_t$ is a continuous family.

Spherical equivalence \Rightarrow homotopy equivalence (Aut(\mathbb{B}_n) connected).

If H_t is rational $\forall t$, then F and G are homotopic through rational maps.

Proposition

If n = N = 1 and $F : \mathbb{B}_1 \to \mathbb{B}_1$ is a proper holomorphic map, then there exists a unique k such that F is homotopic (through rational maps) to z^k .

Different dimensions

Adding a few zero components does not a new map make. Let

$$F: \mathbb{B}_n \to \mathbb{B}_{N_1}$$
$$G: \mathbb{B}_n \to \mathbb{B}_{N_2}$$

be proper holomorphic maps.

Definition

F and G are homotopic in target dimension k if, for each $t \in [0, 1]$ there is a proper holomorphic mapping $H_t \colon \mathbb{B}_n \to \mathbb{B}_k$ such that

 $(H_0$ is spherically equivalent to $F \oplus 0$

- $(H_1$ is spherically equivalent to $G \oplus 0$
- $(H_t$ is a continuous family.

Proposition (D'Angelo)

Given any proper F and G, there exists a large enough k such that F and G are homotopic in dimension k.

Proof: $tF \oplus \sqrt{1-t^2}G$

Proposition (D'Angelo)

Given any proper F and G, there exists a large enough k such that F and G are homotopic in dimension k.

Proof: $tF \oplus \sqrt{1-t^2}G$ Hmmmmm ... OK so we're done ... let's go home ...

Proposition (D'Angelo)

Given any proper F and G, there exists a large enough k such that F and G are homotopic in dimension k.

Proof: $tF \oplus \sqrt{1-t^2}G$ Hmmmmm ... OK so we're done ... let's go home ...

Theorem (L., D'Angelo) ($(z, w) \mapsto (z, w, 0)$ ($(z, w) \mapsto (z, zw, w^2)$ ($(z, w) \mapsto (z^2, \sqrt{2} zw, w^2)$ ($(z, w) \mapsto (z^3, \sqrt{3} zw, w^3)$

are mutually not homotopy equivalent (through rational maps) in dimension 3. They are all homotopy equivalent in dimension 5.

Theorem (Forstnerič '89)

Let $F \colon \mathbb{B}_n \to \mathbb{B}_N$ $(n \ge 2)$ be a proper holomorphic map, C^{∞} up to the boundary.

Then F is rational of degree bounded by a constant D(n, N).

Theorem (Forstnerič '89)

Let $F: \mathbb{B}_n \to \mathbb{B}_N$ $(n \ge 2)$ be a proper holomorphic map, C^{∞} up to the boundary. Then F is rational of degree bounded by a constant D(n, N).

Theorem (L., D'Angelo)

Suppose $n \geq 2$. Let S be the set of homotopy classes (of rational mappings and in target dimension N) of proper rational mappings $F : \mathbb{B}_n \to \mathbb{B}_N$. Then S is a finite set.

S is countable if n = 1.

Closedness of spherical equivalence

A general version of the D'Angelo example is the following:

Theorem (L., D'Angelo)

If $F, G: \mathbb{B}_n \to \mathbb{B}_N$ are spherically inequivalent, and H_t is a homotopy of F and G, then there exist uncountably many mutually spherically inequivalent maps in H_t .

Closedness of spherical equivalence

A general version of the D'Angelo example is the following:

Theorem (L., D'Angelo)

If $F, G: \mathbb{B}_n \to \mathbb{B}_N$ are spherically inequivalent, and H_t is a homotopy of F and G, then there exist uncountably many mutually spherically inequivalent maps in H_t .

The theorem is a corollary of the following lemma and the classical theorem of Sierpinski:

Lemma (L., D'Angelo)

Assume $n \geq 2$. Let $H_t \colon \mathbb{B}_n \to \mathbb{B}_N$ be a homotopy of rational proper maps. Fix $t_0 \in [0, 1]$. The set

 $\{t \in [0,1]: H_t \text{ is spherically equivalent to } H_{t_0}\}$

is closed in [0, 1].

Degree is not an invariant no matter what the target dimension. Example:

$$egin{aligned} H_{ heta}(z,w) &= ig(cz-sw^2,zw,(cz-sw^2)(sz+cw^2),\ zw(sz+cw^2),(sz+cw^2)^2ig). \end{aligned}$$

where $c = \cos \theta$ and $s = \sin \theta$.

$$H_0 = (z, zw, zw^2, zw^3, w^4)$$

$$H_{\pi/2} = (-w^2, zw, -zw^2, z^2w, z^2)$$

What is the natural topology for the setup?

What is the natural topology for the setup?

Write

$$egin{aligned} F(z) &= \sum_lpha \mathbf{c}_lpha z^lpha \ \|F(z)\|^2 &= \sum_{lpha,eta} a_{lpha,eta} z^lpha ar{z}^eta \end{aligned}$$

where $a_{\alpha,\beta} = \langle \mathbf{c}_{\alpha}, \mathbf{c}_{\beta} \rangle$.

What is the natural topology for the setup?

Write

$$egin{aligned} F(z) &= \sum_lpha \mathbf{c}_lpha z^lpha \ \|F(z)\|^2 &= \sum_{lpha,eta} a_{lpha,eta} z^lpha ar{z}^eta \end{aligned}$$

where $a_{\alpha,\beta} = \langle \mathbf{c}_{\alpha}, \mathbf{c}_{\beta} \rangle$.

The sequence $\{a_{\alpha,\beta}\}$ belongs to (a weighted) ℓ^1 .

What is the natural topology for the setup?

Write

$$egin{aligned} F(z) &= \sum_lpha \mathbf{c}_lpha z^lpha \ \|F(z)\|^2 &= \sum_{lpha,eta} a_{lpha,eta} z^lpha ar{z}^eta \end{aligned}$$

where $a_{\alpha,\beta} = \langle \mathbf{c}_{\alpha}, \mathbf{c}_{\beta} \rangle$.

The sequence $\{a_{\alpha,\beta}\}$ belongs to (a weighted) ℓ^1 .

Cauchy formula shows that the map $[0, 1] \rightarrow \ell^1$, that takes t to the $\{a_{\alpha,\beta}\}$ corresponding to H_t , is continuous.

So a homotopy H_t is a connected path in ℓ^1 .

What is the natural topology for the setup?

Write

$$egin{aligned} F(z) &= \sum_lpha \mathbf{c}_lpha z^lpha \ \|F(z)\|^2 &= \sum_{lpha,eta} a_{lpha,eta} z^lpha ar{z}^eta \end{aligned}$$

where $a_{\alpha,\beta} = \langle \mathbf{c}_{\alpha}, \mathbf{c}_{\beta} \rangle$.

The sequence $\{a_{\alpha,\beta}\}$ belongs to (a weighted) ℓ^1 .

Cauchy formula shows that the map $[0, 1] \rightarrow \ell^1$, that takes t to the $\{a_{\alpha,\beta}\}$ corresponding to H_t , is continuous.

So a homotopy H_t is a connected path in ℓ^1 .

The question is: are orbits under spherical equivalence closed in the subset of ℓ^1 corresponding to proper maps. This is nontrivial: Reiter (PhD thesis '14) shows this is not true in the similar hyperqudric case.

Rational maps

But rational maps $F = \frac{p}{q}$ have a different natural topology. One has to look at the pairs (p, q) in the space of polynomials.

We prove that if H_t is a homotopy of rational maps of some bounded degree, then there exist another homotopy of polynomials $p_t : \mathbb{C}^n \to \mathbb{C}^N$ and $q_t : \mathbb{C}^n \to \mathbb{C}$ such that

$$rac{p_0}{q_0} = H_0 \qquad rac{p_1}{q_1} = H_1$$

Rational maps

But rational maps $F = \frac{p}{q}$ have a different natural topology. One has to look at the pairs (p, q) in the space of polynomials.

We prove that if H_t is a homotopy of rational maps of some bounded degree, then there exist another homotopy of polynomials $p_t : \mathbb{C}^n \to \mathbb{C}^N$ and $q_t : \mathbb{C}^n \to \mathbb{C}$ such that

$$rac{p_0}{q_0} = H_0 \qquad rac{p_1}{q_1} = H_1$$

The key problem is that for a rational map F the choice of p and q such that $F = \frac{p}{q}$ is not unique.

Rational maps

But rational maps $F = \frac{p}{q}$ have a different natural topology. One has to look at the pairs (p, q) in the space of polynomials.

We prove that if H_t is a homotopy of rational maps of some bounded degree, then there exist another homotopy of polynomials $p_t : \mathbb{C}^n \to \mathbb{C}^N$ and $q_t : \mathbb{C}^n \to \mathbb{C}$ such that

$$rac{p_0}{q_0} = H_0 \qquad rac{p_1}{q_1} = H_1$$

The key problem is that for a rational map F the choice of p and q such that $F = \frac{p}{q}$ is not unique.

We then work in a finite dimensional space by Forstnerič's theorem. We prove that p and q are bounded (once normalized by q(0) = 1), so the set is also bounded.