

Proper maps of balls and annuli and the general hyperplane rank

Jiří Lebl

(collaboration with Abdullal Al Helal and Achinta Nandi)

Department of Mathematics, Oklahoma State University

Let $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}$ be the unit ball.

Goal: Classify all proper holomorphic maps $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ up to automorphisms.

Let $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}$ be the unit ball.

Goal: Classify all proper holomorphic maps $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ up to automorphisms.

Theorem (Alexander, Pinchuk circa '77 (complicated history...))

If $f: \mathbb{B}_n \rightarrow \mathbb{B}_n$ ($n \geq 2$) is a proper holomorphic map, then $f \in \text{Aut}(\mathbb{B}_n)$.

Let $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}$ be the unit ball.

Goal: Classify all proper holomorphic maps $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ up to automorphisms.

Theorem (Alexander, Pinchuk circa '77 (complicated history...))

If $f: \mathbb{B}_n \rightarrow \mathbb{B}_n$ ($n \geq 2$) is a proper holomorphic map, then $f \in \text{Aut}(\mathbb{B}_n)$.

Theorem (Dor '90)

For every n , there exists a proper holomorphic $f: \mathbb{B}_n \rightarrow \mathbb{B}_{n+1}$ extending continuously up to the boundary that is not rational.

Let $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}$ be the unit ball.

Goal: Classify all proper holomorphic maps $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ up to automorphisms.

Theorem (Alexander, Pinchuk circa '77 (complicated history...))

If $f: \mathbb{B}_n \rightarrow \mathbb{B}_n$ ($n \geq 2$) is a proper holomorphic map, then $f \in \text{Aut}(\mathbb{B}_n)$.

Theorem (Dor '90)

For every n , there exists a proper holomorphic $f: \mathbb{B}_n \rightarrow \mathbb{B}_{n+1}$ extending continuously up to the boundary that is not rational.

Theorem (Forstnerič '89)

Suppose $2 \leq n \leq N$. If a proper holomorphic $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N .

Homogeneous maps:

$z^{\otimes d}$ takes the unit sphere to the sphere

Homogeneous maps:

$z^{\otimes d}$ takes the unit sphere to the sphere

Proof: $\|z^{\otimes d}\|^2 = \|z\|^{2d} = 1$ if $\|z\|^2 = 1$.

Homogeneous maps:

$z^{\otimes d}$ takes the unit sphere to the sphere

Proof: $\|z^{\otimes d}\|^2 = \|z\|^{2d} = 1$ if $\|z\|^2 = 1$.

$z^{\otimes d}$ has too many components, e.g. $(z_1, z_2)^{\otimes 2} = (z_1^2, z_1 z_2, z_2 z_1, z_2^2)$.

\exists a unitary U so that $Uz^{\otimes d} = H_d(z) \oplus 0$ and H_d has $\binom{n+d-1}{d}$ lin. ind. components.

Homogeneous maps:

$z^{\otimes d}$ takes the unit sphere to the sphere

Proof: $\|z^{\otimes d}\|^2 = \|z\|^{2d} = 1$ if $\|z\|^2 = 1$.

$z^{\otimes d}$ has too many components, e.g. $(z_1, z_2)^{\otimes 2} = (z_1^2, z_1 z_2, z_2 z_1, z_2^2)$.

\exists a unitary U so that $Uz^{\otimes d} = H_d(z) \oplus 0$ and H_d has $\binom{n+d-1}{d}$ lin. ind. components.

Example: $H_2(z_1, z_2) = (z_1^2, \sqrt{2}z_1 z_2, z_2^2)$.

Homogeneous maps:

$z^{\otimes d}$ takes the unit sphere to the sphere

Proof: $\|z^{\otimes d}\|^2 = \|z\|^{2d} = 1$ if $\|z\|^2 = 1$.

$z^{\otimes d}$ has too many components, e.g. $(z_1, z_2)^{\otimes 2} = (z_1^2, z_1 z_2, z_2 z_1, z_2^2)$.

\exists a unitary U so that $Uz^{\otimes d} = H_d(z) \oplus 0$ and H_d has $\binom{n+d-1}{d}$ lin. ind. components.

Example: $H_2(z_1, z_2) = (z_1^2, \sqrt{2}z_1 z_2, z_2^2)$.

H_d doesn't just take the unit sphere to unit sphere.

If $N = \binom{n+d-1}{d}$ is the target dimension, then for all $r > 0$,

$$H_d(rS^{2n-1}) \subset r^d S^{2N-1}$$

Theorem (Rudin '84)

Suppose $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper map that is homogeneous of degree $d \geq 1$, then there is a unitary U so that $f = UH_d$.

Theorem (Rudin '84)

Suppose $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper map that is homogeneous of degree $d \geq 1$, then there is a unitary U so that $f = UH_d$.

Here is an ingenious proof by D'Angelo '88:

Theorem (Rudin '84)

Suppose $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper map that is homogeneous of degree $d \geq 1$, then there is a unitary U so that $f = UH_d$.

Here is an ingenious proof by D'Angelo '88:

$$\text{For } z \in S^{2n-1}, \quad \|f(z)\|^2 = 1 = \|H_d(z)\|^2.$$

Theorem (Rudin '84)

Suppose $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper map that is homogeneous of degree $d \geq 1$, then there is a unitary U so that $f = UH_d$.

Here is an ingenious proof by D'Angelo '88:

$$\text{For } z \in S^{2n-1}, \quad \|f(z)\|^2 = 1 = \|H_d(z)\|^2.$$

$$\text{For } z \in S^{2n-1} \text{ and } t \geq 0, \quad \|f(tz)\|^2 = t^{2d} \|f(z)\|^2 = t^{2d} \|H_d(z)\|^2 = \|H_d(tz)\|^2.$$

Theorem (Rudin '84)

Suppose $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper map that is homogeneous of degree $d \geq 1$, then there is a unitary U so that $f = UH_d$.

Here is an ingenious proof by D'Angelo '88:

For $z \in S^{2n-1}$, $\|f(z)\|^2 = 1 = \|H_d(z)\|^2$.

For $z \in S^{2n-1}$ and $t \geq 0$, $\|f(tz)\|^2 = t^{2d} \|f(z)\|^2 = t^{2d} \|H_d(z)\|^2 = \|H_d(tz)\|^2$.

So $\|f(z)\|^2 = \|H_d(z)\|^2$ for all $z \in \mathbb{C}^n$.

Theorem (Rudin '84)

Suppose $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper map that is homogeneous of degree $d \geq 1$, then there is a unitary U so that $f = UH_d$.

Here is an ingenious proof by D'Angelo '88:

For $z \in S^{2n-1}$, $\|f(z)\|^2 = 1 = \|H_d(z)\|^2$.

For $z \in S^{2n-1}$ and $t \geq 0$, $\|f(tz)\|^2 = t^{2d}\|f(z)\|^2 = t^{2d}\|H_d(z)\|^2 = \|H_d(tz)\|^2$.

So $\|f(z)\|^2 = \|H_d(z)\|^2$ for all $z \in \mathbb{C}^n$.

Thus there exists a unitary U so that $f = UH_d$.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \left\{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \right\}.$$

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Goes back long time.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Goes back long time. Used by Faran in classifying proper maps of $\mathbb{B}_2 \rightarrow \mathbb{B}_3$.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Go back long time. Used by Faran in classifying proper maps of $\mathbb{B}_2 \rightarrow \mathbb{B}_3$.

Dor used it to show his map is not rational.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Goes back long time. Used by Faran in classifying proper maps of $\mathbb{B}_2 \rightarrow \mathbb{B}_3$.
Dor used it to show his map is not rational. For rational maps, it is related to the dimension of the fibers of the X -variety.

Let $f: U \subset \mathbb{C}^n \rightarrow \mathbb{C}^N$ be a map.

Let $\text{aff}(X)$ denote the affine span of X .

Define the *general hyperplane rank*:

$$k_f \stackrel{\text{def}}{=} \max \{ \dim \text{aff}(f(H \cap U)) : H \subset \mathbb{C}^n \text{ is an affine hyperplane} \}.$$

One expects $k_f = N$ in general.

If $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational and $f(S^{2n-1}) \subset S^{2N-1}$, then $k_f \leq N - 1$.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Goes back long time. Used by Faran in classifying proper maps of $\mathbb{B}_2 \rightarrow \mathbb{B}_3$. Dor used it to show his map is not rational. For rational maps, it is related to the dimension of the fibers of the X -variety.

There exist maps where $k_f < N - 1$ even if the embedding dimension is N .

Example: If g, h are rational proper maps of balls, then the *juxtaposition* $f = \sqrt{1-t}g \oplus \sqrt{t}h$ is a proper map of balls with $k_f \leq N - 2$.

Homogeneous maps H_d take all spheres centered at zero to spheres centered at zero. They are the only such holomorphic maps up to scaling, direct sums, and composing with unitaries.

Homogeneous maps H_d take all spheres centered at zero to spheres centered at zero. They are the only such holomorphic maps up to scaling, direct sums, and composing with unitaries.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper holomorphic map such that $k_f = N - 1$ and $f(rS^{2n-1}) \subset RS^{2N-1}$ for some $r, R \in (0, 1)$. Then there exists a unitary map U and an integer d such that $f = UH_d$.

Homogeneous maps H_d take all spheres centered at zero to spheres centered at zero. They are the only such holomorphic maps up to scaling, direct sums, and composing with unitaries.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper holomorphic map such that $k_f = N - 1$ and $f(rS^{2n-1}) \subset RS^{2N-1}$ for some $r, R \in (0, 1)$. Then there exists a unitary map U and an integer d such that $f = UH_d$.

$\sqrt{1-t}H_d \oplus \sqrt{t}H_m$, $t \in (0, 1)$, also takes spheres to spheres, but $k_f = N - 2$.

Homogeneous maps H_d take all spheres centered at zero to spheres centered at zero. They are the only such holomorphic maps up to scaling, direct sums, and composing with unitaries.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{B}_n \rightarrow \mathbb{B}_N$ is a proper holomorphic map such that $k_f = N - 1$ and $f(rS^{2n-1}) \subset RS^{2N-1}$ for some $r, R \in (0, 1)$. Then there exists a unitary map U and an integer d such that $f = UH_d$.

$\sqrt{1-t}H_d \oplus \sqrt{t}H_m$, $t \in (0, 1)$, also takes spheres to spheres, but $k_f = N - 2$.

There exist degree 2 rational proper ball maps that take a sphere to a sphere as above and are not constructed out of homogeneous maps.

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi '25)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.
Then f is a rational map of degree bounded in terms of n and N .

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi '25)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then f is a rational map of degree bounded in terms of n and N .

Moreover, $f(S^{2n-1}) \subset S^{2N-1}$ and $f(rS^{2n-1}) \subset RS^{2N-1}$

(so f extends to a proper map of $\mathbb{B}_n \rightarrow \mathbb{B}_N$ and also $r\mathbb{B}_n \rightarrow R\mathbb{B}_N$).

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi '25)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then f is a rational map of degree bounded in terms of n and N .

Moreover, $f(S^{2n-1}) \subset S^{2N-1}$ and $f(rS^{2n-1}) \subset RS^{2N-1}$

(so f extends to a proper map of $\mathbb{B}_n \rightarrow \mathbb{B}_N$ and also $r\mathbb{B}_n \rightarrow R\mathbb{B}_N$).

Conversely, if $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational, $f(S^{2n-1}) \subset S^{2N-1}$, and $f(rS^{2n-1}) \subset RS^{2N-1}$, then f gives a proper map $\mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$.

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi '25)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then f is a rational map of degree bounded in terms of n and N .

Moreover, $f(S^{2n-1}) \subset S^{2N-1}$ and $f(rS^{2n-1}) \subset RS^{2N-1}$

(so f extends to a proper map of $\mathbb{B}_n \rightarrow \mathbb{B}_N$ and also $r\mathbb{B}_n \rightarrow R\mathbb{B}_N$).

Conversely, if $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational, $f(S^{2n-1}) \subset S^{2N-1}$, and $f(rS^{2n-1}) \subset RS^{2N-1}$, then f gives a proper map $\mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$.

Remark: Not true if $n = 1$ and $N > 1$.

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi '25)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then f is a rational map of degree bounded in terms of n and N .

Moreover, $f(S^{2n-1}) \subset S^{2N-1}$ and $f(rS^{2n-1}) \subset RS^{2N-1}$

(so f extends to a proper map of $\mathbb{B}_n \rightarrow \mathbb{B}_N$ and also $r\mathbb{B}_n \rightarrow R\mathbb{B}_N$).

Conversely, if $f: \mathbb{C}^n \rightarrow \mathbb{C}^N$ is rational, $f(S^{2n-1}) \subset S^{2N-1}$, and $f(rS^{2n-1}) \subset RS^{2N-1}$, then f gives a proper map $\mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$.

Remark: Not true if $n = 1$ and $N > 1$.

Fun 1D fact: If $n = N = 1$, then proper maps of annuli are $e^{i\theta}z^d$ or $r^d e^{i\theta}z^{-d}$.

We are led to proper maps of annuli:

$$\mathbb{A}_{n,r} = \{z \in \mathbb{C}^n : r < \|z\| < 1\}.$$

Automorphism group of $\mathbb{A}_{n,r}$ is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi '25)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then f is a rational map of degree bounded in terms of n and N .

Moreover, $f(S^{2n-1}) \subset S^{2N-1}$ and $f(rS^{2n-1}) \subset RS^{2N-1}$

(so f extends to a proper map of $\mathbb{B}_n \rightarrow \mathbb{B}_N$ and also $r\mathbb{B}_n \rightarrow R\mathbb{B}_N$).

Conversely, if $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is rational, $f(S^{2n-1}) \subset S^{2N-1}$, and $f(rS^{2n-1}) \subset RS^{2N-1}$, then f gives a proper map $\mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$.

Remark: Not true if $n = 1$ and $N > 1$.

Fun 1D fact: If $n = N = 1$, then proper maps of annuli are $e^{i\theta}z^d$ or $r^d e^{i\theta}z^{-d}$.

Proof hint: $\log |f(z)|$ is harmonic and extends to the boundary.

Our theorem on homogeneous maps can be restated for maps of annuli.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then $k_f = N - 1$ if and only if $N = \binom{n+d-1}{d}$, $R = r^d$, and

$$f = UH_d,$$

for some $d \in \mathbb{N}$ and a unitary $U \in U(N)$.

Our theorem on homogeneous maps can be restated for maps of annuli.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then $k_f = N - 1$ if and only if $N = \binom{n+d-1}{d}$, $R = r^d$, and

$$f = UH_d,$$

for some $d \in \mathbb{N}$ and a unitary $U \in U(N)$.

For H_d , we have $R = r^d$.

Our theorem on homogeneous maps can be restated for maps of annuli.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then $k_f = N - 1$ if and only if $N = \binom{n+d-1}{d}$, $R = r^d$, and

$$f = UH_d,$$

for some $d \in \mathbb{N}$ and a unitary $U \in U(N)$.

For H_d , we have $R = r^d$.

$\sqrt{\frac{1-R^2}{1-r^2}} H_d \oplus \sqrt{\frac{R^2-r^2}{1-r^2}}$ is a proper annulus map for any $R \geq r^d$.

Our theorem on homogeneous maps can be restated for maps of annuli.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then $k_f = N - 1$ if and only if $N = \binom{n+d-1}{d}$, $R = r^d$, and

$$f = UH_d,$$

for some $d \in \mathbb{N}$ and a unitary $U \in U(N)$.

For H_d , we have $R = r^d$.

$$\sqrt{\frac{1-R^2}{1-r^2}} H_d \oplus \sqrt{\frac{R^2-r^2}{1-r^2}} \quad \text{is a proper annulus map for any } R \geq r^d.$$

Note that proper maps of annuli other than homogeneous maps or their juxtapositions do exist. (And hence those satisfy $k_f \leq N - 2$.)

Our theorem on homogeneous maps can be restated for maps of annuli.

Theorem (Helal-L.-Nandi)

Suppose $n \geq 2$ and $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper holomorphic map.

Then $k_f = N - 1$ if and only if $N = \binom{n+d-1}{d}$, $R = r^d$, and

$$f = UH_d,$$

for some $d \in \mathbb{N}$ and a unitary $U \in U(N)$.

For H_d , we have $R = r^d$.

$\sqrt{\frac{1-R^2}{1-r^2}} H_d \oplus \sqrt{\frac{R^2-r^2}{1-r^2}}$ is a proper annulus map for any $R \geq r^d$.

Note that proper maps of annuli other than homogeneous maps or their juxtapositions do exist. (And hence those satisfy $k_f \leq N - 2$.)

Conjecture: For map of degree d , it seems that $R \geq r^d$.

Combining with Faran's classification of proper maps from $\mathbb{B}_2 \rightarrow \mathbb{B}_3$ gets:

Theorem (Helal-L.-Nandi)

Suppose $f: \mathbb{A}_{2,r} \rightarrow \mathbb{A}_{3,R}$ is a proper holomorphic map. Then f is unitarily equivalent to exactly one of the following two maps:

1. The affine embedding

$$(z_1, z_2) \mapsto \left(\sqrt{\frac{1-R^2}{1-r^2}} z_1, \sqrt{\frac{1-R^2}{1-r^2}} z_2, \sqrt{\frac{R^2-r^2}{1-r^2}} \right),$$

where $R \geq r$ and $k_f = 1$.

2. The homogeneous map H_2

$$(z_1, z_2) \mapsto (z_1^2, \sqrt{2} z_1 z_2, z_2^2),$$

where $R = r^2$ and $k_f = 2$.

Up to unitaries, the only degree 1 maps are the identity if $N = n$,
or the affine embedding if $N > n$: $\sqrt{\frac{1-R^2}{1-r^2}} \text{id} \oplus \sqrt{\frac{R^2-r^2}{1-r^2}} \oplus 0$

Up to unitaries, the only degree 1 maps are the identity if $N = n$,
or the affine embedding if $N > n$: $\sqrt{\frac{1-R^2}{1-r^2}} \text{id} \oplus \sqrt{\frac{R^2-r^2}{1-r^2}} \oplus 0$

For degree 2, we get the following complete normal form:

Suppose $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper rational map of degree 2, $n \geq 2$, such that
the image is not contained in any affine subspace.

Up to unitaries, the only degree 1 maps are the identity if $N = n$,
or the affine embedding if $N > n$: $\sqrt{\frac{1-R^2}{1-r^2}} \text{id} \oplus \sqrt{\frac{R^2-r^2}{1-r^2}} \oplus 0$

For degree 2, we get the following complete normal form:

Suppose $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper rational map of degree 2, $n \geq 2$, such that the image is not contained in any affine subspace.

Then $R \geq r^2$ and:

Up to unitaries, the only degree 1 maps are the identity if $N = n$,
or the affine embedding if $N > n$: $\sqrt{\frac{1-R^2}{1-r^2}} \text{id} \oplus \sqrt{\frac{R^2-r^2}{1-r^2}} \oplus 0$

For degree 2, we get the following complete normal form:

Suppose $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper rational map of degree 2, $n \geq 2$, such that the image is not contained in any affine subspace.

Then $R \geq r^2$ and:

1) If $R = r^2$, then $N = \binom{n+1}{2}$ and f is unitarily equivalent to H_2 .

Up to unitaries, the only degree 1 maps are the identity if $N = n$,
or the affine embedding if $N > n$: $\sqrt{\frac{1-R^2}{1-r^2}} \text{id} \oplus \sqrt{\frac{R^2-r^2}{1-r^2}} \oplus 0$

For degree 2, we get the following complete normal form:

Suppose $f: \mathbb{A}_{n,r} \rightarrow \mathbb{A}_{N,R}$ is a proper rational map of degree 2, $n \geq 2$, such that the image is not contained in any affine subspace.

Then $R \geq r^2$ and:

- 1) If $R = r^2$, then $N = \binom{n+1}{2}$ and f is unitarily equivalent to H_2 .
- 2) If $r^2 < R < r$ and f is polynomial, then $N = \binom{n+1}{2} + n$ and f is unitarily equivalent to a map of the form $\sqrt{1-t} H_1 \oplus \sqrt{t} H_2$ for exactly one $t \in (0, 1)$.

...

3) If $r^2 < R < r$ and f is not polynomial, then $N = \binom{n+1}{2} + n$ and f is unitarily equivalent to a map of the form (where $b = \frac{1-R^2}{1-r^2}$)

$$\left(\frac{\sqrt{1-b+Qr^2} + \frac{(1-b)a}{\sqrt{1-b+Qr^2}} z_1}{1+az_1}, \frac{\sqrt{ba^2+Q} z_1^2 + \frac{ba}{\sqrt{ba^2+Q}} z_1}{1+az_1}, \frac{\sqrt{b-Q(1+r^2)} + \frac{ba}{\sqrt{b-Q(1+r^2)}} z_1}{1+az_1} \otimes (z_2, \dots, z_n), \right. \\ \left. \frac{\sqrt{ba^2+2Q - \frac{b^2a^2}{ba^2+2Q}} z_1}{1+az_1} \otimes (z_2, \dots, z_n), \frac{\sqrt{Q}}{1+az_1} H'_2(z_2, \dots, z_n) \right) \quad (1)$$

for exactly one pair a and Q , where $a > 0$,

$$a \leq \sqrt{\frac{br^4 + (b^2 - b + 1)r^2 - b + 1 - 2r\sqrt{(b-1)b(1+r^2)(br^2-b+1)}}{b^2r^6 + 2br^4 + r^2}} \quad (2)$$

and Q is either one of

$$Q = \frac{-a^2br^4 + (2(1-a^2)b + a^2 - 1)r^2 + b - 1 \pm \sqrt{a^4r^4(br^2+1)^2 - 2a^2r^2(br^2(r^2+b-1) + 1 + r^2 - b) + (1 + r^2 - b)^2}}{2(r^4 + r^2)}. \quad (3)$$

Moreover, for each such pair a and Q , a map exists.

4) If $R = r$, then $N = \binom{n+1}{2} + n$ and f is unitarily equivalent to a map of the form (1) for exactly one $a \in \left(0, \frac{1}{\sqrt{1+r^2}}\right)$ and $Q = \frac{1}{1+r^2} - a^2$. Moreover, for each such a , a map exists.

4) If $R = r$, then $N = \binom{n+1}{2} + n$ and f is unitarily equivalent to a map of the form (1) for exactly one $a \in \left(0, \frac{1}{\sqrt{1+r^2}}\right)$ and $Q = \frac{1}{1+r^2} - a^2$. Moreover, for each such a , a map exists.

5) If $r < R < 1$, then $N = \binom{n+1}{2} + n$ and f is unitarily equivalent to a map of the form (1) for exactly one $a \in (0, 1)$ where Q is the larger value of (3). Moreover, for each such a , a map exists.

Thanks for listening!