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Let 𝔹n = {z ∈ ℂn : ∥z∥ < 1} be the unit ball.

Goal: Classify all proper holomorphic maps f : 𝔹n → 𝔹N up to
automorphisms.

Theorem (Alexander, Pinchuk circa ’77 (complicated history. . . ))
If f : 𝔹n → 𝔹n (n ≥ 2) is a proper holomorphic map, then f ∈ Aut(𝔹n).

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary that is not rational.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.
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Homogeneous maps:

z⊗d takes the unit sphere to the sphere

Proof: ∥z⊗d∥2 = ∥z∥2d = 1 if ∥z∥2 = 1.

z⊗d has too many components, e.g. (z1 , z2)⊗2 = (z2
1 , z1z2 , z2z1 , z2

2).

∃ a unitary U so that Uz⊗d = Hd(z)⊕ 0 and Hd has
(n+d−1

d
)

lin. ind. components.

Example: H2(z1 , z2) = (z2
1 ,
√

2z1z2 , z2
2).

Hd doesn’t just take the unit sphere to unit sphere.

If N =
(n+d−1

d
)

is the target dimension, then for all r > 0,

Hd(rS2n−1) ⊂ rdS2N−1
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Theorem (Rudin ’84)
Suppose f : 𝔹n → 𝔹N is a proper map that is homogeneous of degree d ≥ 1, then
there is a unitary U so that f = UHd.

Here is an ingenious proof by D’Angelo ’88:

For z ∈ S2n−1, ∥f (z)∥2 = 1 = ∥Hd(z)∥2.

For z ∈ S2n−1 and t ≥ 0, ∥f (tz)∥2 = t2d∥f (z)∥2 = t2d∥Hd(z)∥2 = ∥Hd(tz)∥2.

So ∥f (z)∥2 = ∥Hd(z)∥2 for all z ∈ ℂn.

Thus there exists a unitary U so that f = UHd.
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Let f : U ⊂ ℂn → ℂN be a map.

Let aff(X) denote the affine span of X.

Define the general hyperplane rank:

kf
def
= max

{
dim aff

(
f (H ∩ U)

)
: H ⊂ ℂn is an affine hyperplane

}
.

One expects kf = N in general.

If f : ℂn d ℂN is rational and f (S2n−1) ⊂ S2N−1, then kf ≤ N − 1.

Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Goes back long time. Used by Faran in classifying proper maps of 𝔹2 → 𝔹3.
Dor used it to show his map is not rational. For rational maps, it is related to
the dimension of the fibers of the X-variety.

There exist maps where kf < N − 1 even if the embedding dimension is N.

Example: If g, h are rational proper maps of balls, then the juxtaposition
f =

√
1 − t g ⊕

√
t h is a proper map of balls with kf ≤ N − 2.
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Homogeneous maps Hd take all spheres centered at zero to spheres centered
at zero. They are the only such holomorphic maps up to scaling, direct sums,
and composing with unitaries.

Theorem (Helal-L.-Nandi)
Suppose n ≥ 2 and f : 𝔹n → 𝔹N is a proper holomorphic map such that kf = N − 1
and f (rS2n−1) ⊂ RS2N−1 for some r,R ∈ (0, 1). Then there exists a unitary map U
and an integer d such that f = UHd.

√
1 − t Hd ⊕

√
t Hm, t ∈ (0, 1), also takes spheres to spheres, but kf = N − 2.

There exist degree 2 rational proper ball maps that take a sphere to a sphere
as above and are not constructed out of homogeneous maps.
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We are led to proper maps of annuli:

𝔸n,r = {z ∈ ℂn : r < ∥z∥ < 1}.

Automorphism group of 𝔸n,r is the unitary group.

Hartogs phenomenon, Forstnerič, and some work gives:

Theorem (see Helal-L.-Nandi ’25)
Suppose n ≥ 2 and f : 𝔸n,r → 𝔸N,R is a proper holomorphic map.
Then f is a rational map of degree bounded in terms of n and N.

Moreover, f (S2n−1) ⊂ S2N−1 and f (rS2n−1) ⊂ RS2N−1

(so f extends to a proper map of 𝔹n → 𝔹N and also r𝔹n → R𝔹N).

Conversely, if f : ℂn d ℂN is rational, f (S2n−1) ⊂ S2N−1, and f (rS2n−1) ⊂ RS2N−1,
then f gives a proper map 𝔸n,r → 𝔸N,R.

Remark: Not true if n = 1 and N > 1.

Fun 1D fact: If n = N = 1, then proper maps of annuli are ei𝜃zd or rdei𝜃z−d.
Proof hint: log

��f (z)�� is harmonic and extends to the boundary.
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Our theorem on homogeneous maps can be restated for maps of annuli.

Theorem (Helal-L.-Nandi)
Suppose n ≥ 2 and f : 𝔸n,r → 𝔸N,R is a proper holomorphic map.
Then kf = N − 1 if and only if N =

(n+d−1
d

)
, R = rd, and

f = UHd ,

for some d ∈ ℕ and a unitary U ∈ U(N).

For Hd, we have R = rd.√
1−R2

1−r2 Hd ⊕
√

R2−r2

1−r2 is a proper annulus map for any R ≥ rd.

Note that proper maps of annuli other than homogeneous maps or their
juxtapositions do exist. (And hence those satisfy kf ≤ N − 2.)

Conjecture: For map of degree d, is seems that R ≥ rd.
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Combining with Faran’s classification of proper maps from 𝔹2 → 𝔹3 gets:

Theorem (Helal-L.-Nandi)
Suppose f : 𝔸2,r → 𝔸3,R is a proper holomorphic map. Then f is unitarily equivalent
to exactly one of the following two maps:

1. The affine embedding

(z1 , z2) ↦→
(√

1 − R2

1 − r2 z1 ,

√
1 − R2

1 − r2 z2 ,

√
R2 − r2

1 − r2

)
,

where R ≥ r and kf = 1.
2. The homogeneous map H2

(z1 , z2) ↦→
(
z2

1 ,
√

2 z1z2 , z2
2

)
,

where R = r2 and kf = 2.
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Up to unitaries, the only degree 1 maps are the identity if N = n,

or the affine embedding if N > n:
√

1−R2

1−r2 id⊕
√

R2−r2

1−r2 ⊕ 0

For degree 2, we get the following complete normal form:

Suppose f : 𝔸n,r → 𝔸N,R is a proper rational map of degree 2, n ≥ 2, such that
the image is not contained in any affine subspace.

Then R ≥ r2 and:

1) If R = r2, then N =
(n+1

2
)

and f is unitarily equivalent to H2.

2) If r2 < R < r and f is polynomial, then N =
(n+1

2
)
+ n and f is unitarily

equivalent to a map of the form
√

1 − t H1 ⊕
√

t H2 for exactly one t ∈ (0, 1).
. . .
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3) If r2 < R < r and f is not polynomial, then N =
(n+1

2
)
+ n and f is unitarily

equivalent to a map of the form (where b = 1−R2

1−r2 )(√
1−b+Qr2+ (1−b)a√

1−b+Qr2
z1

1+az1
,

√
ba2+Q z2

1+
ba√

ba2+Q
z1

1+az1
,

√
b−Q(1+r2)+ ba√

b−Q(1+r2)
z1

1+az1
⊗ (z2 , . . . , zn),√

ba2+2Q− b2a2
ba2+2Q

z1

1+az1
⊗ (z2 , . . . , zn),

√
Q

1+az1
H′

2(z2 , . . . , zn)
) (1)

for exactly one pair a and Q, where a > 0,

a ≤
√

br4+(b2−b+1)r2−b+1−2r
√

(b−1)b(1+r2)(br2−b+1)
b2r6+2br4+r2 (2)

and Q is either one of

Q =
−a2br4+(2(1−a2)b+a2−1)r2+b−1±

√
a4r4(br2+1)2−2a2r2(br2(r2+b−1)+1+r2−b)+(1+r2−b)2

2(r4+r2) . (3)

Moreover, for each such pair a and Q, a map exists.
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4) If R = r, then N =
(n+1

2
)
+ n and f is unitarily equivalent to a map of the

form (1) for exactly one a ∈
(
0, 1√

1+r2

)
and Q = 1

1+r2 − a2. Moreover, for each
such a, a map exists.

5) If r < R < 1, then N =
(n+1

2
)
+ n and f is unitarily equivalent to a map of the

form (1) for exactly one a ∈ (0, 1) where Q is the larger value of (3). Moreover,
for each such a, a map exists.
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Thanks for listening!


