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Theorem (Forstneri¢ '89)

Suppose 2 < n < N. If a proper holomorphic f : B, — By extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.
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Homogeneous maps:

z%?  takes the unit sphere to the sphere
Proof: [|227]1% = ||zI|** = 1if ||z]|* = 1.

28 has too many components, e.g. (z1,22)%? = (21,2122,2221, 2)

Ja unitary U so that Uz®! = Hy(z) ® 0 and H, has ("*47") lin. ind. components.
Example: H»(z1,22) = (zl, \/Qzlzz,zz).

H,; doesn’t just take the unit sphere to unit sphere.

IfN = (”+d 1) is the target dimension, then for all r > 0,

Hd(rsﬁ’lfl) c I’dSZN71
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One expects kf = N in general.
Iff: C" --> CN is rational and f(S*'~1) c $>N~!, then ks < N - 1.
Relatively easy to compute spherical (up to automorphisms of balls) invariant.

Goes back long time. Used by Faran in classifying proper maps of B, — Bs.
Dor used it to show his map is not rational. For rational maps, it is related to
the dimension of the fibers of the X-variety.

There exist maps where kf < N — 1 even if the embedding dimension is N.

Example: If g, i are rational proper maps of balls, then the juxtaposition
f=V1—-tge Vthisa proper map of balls with kr < N - 2.
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Homogeneous maps H, take all spheres centered at zero to spheres centered
at zero. They are the only such holomorphic maps up to scaling, direct sums,
and composing with unitaries.

Theorem (Helal-L.-Nandi)

Suppose n > 2 and f: B, — By is a proper holomorphic map such that ky = N — 1
and f(r$*"=1) c RS™ ! for some r, R € (0, 1). Then there exists a unitary map U
and an integer d such that f = UH,.

V1-tH;® VtH,, te(0,1), alsotakes spheres to spheres, but ks = N — 2.

There exist degree 2 rational proper ball maps that take a sphere to a sphere
as above and are not constructed out of homogeneous maps.
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Remark: Not trueif n =1and N > 1.
Fun 1D fact: If n = N = 1, then proper maps of annuli are ¢’z or ¢z,
Proof hint: log |f(z)| is harmonic and extends to the boundary.
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Theorem (Helal-L.-Nandi)

Suppose n > 2 and f: Ap, — AN R is a proper holomorphic map.
Then ks = N — 1 ifand only if N = ("*%1), R =, and

f=UHy,

for some d € N and a unitary U € U(N).

For H;, we have R = 7.

N 11‘_1522 Hi® 4 ﬁz_;gz is a proper annulus map for any R > .

Note that proper maps of annuli other than homogeneous maps or their
juxtapositions do exist. (And hence those satisfy kf < N —2.)

Conjecture: For map of degree d, is seems that R > 7.



Combining with Faran’s classification of proper maps from B, — B3 gets:

Theorem (Helal-L.-Nandi)

Suppose f: Ay, — Ag R is a proper holomorphic map. Then f is unitarily equivalent
to exactly one of the following two maps:

1. The affine embedding

(1,23) o \/1—R2Z \/1—RZZ \/R2—r2
1,42 1_72 1, 1—1’2 2 1_7’2 s

where R > r and kf =1.

2. The homogeneous map Hp
(le 22) = (Z%/ \/52122/ Z%) ’

where R = 1% and kf = 2.
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or the affine embedding if N > n: 4/ 11__1522 ide Rlz__rzz &0
For degree 2, we get the following complete normal form:

Suppose f: A, , — An R is a proper rational map of degree 2, n > 2, such that
the image is not contained in any affine subspace.

Then R > 7? and:
1)IfR = 2, then N = ("}') and f is unitarily equivalent to H,.

2)If r* < R < r and f is polynomial, then N = ("3') + n and f is unitarily

equivalent to a map of the form V1 —t H; ® V't H, for exactly one t € (0, 1).



3)If > < R < r and f is not polynomial, then N = ("}!) + n and f is unitarily

1-R?
1-12

(\/l—b+Qr2+(1_b)”221 \/ba2+Qz%+7bb%zl \/b—Q(l+r2)+7L)zl

equivalent to a map of the form (where b =

1-b+Qr" a2 +Q b-Q(1+r2
1+az; 4 1+az, 4 1+az; ® (Zz, L an)/

0 @
ba?+2Q— baszQ z1 3

— T ® (22, zn), 1}/;1 Hj(z2, .- ,2n)

for exactly one pair 2 and Q, where a > 0,

4L (2 21 W
o< \/br +(BP=b+1)P—b+1=2 (= 1)b(1+r2) (br2—b+1) )

b2ro+2br+r2

and Q is either one of

a2+ (1)@ 1) b1\ a4 (012 +1)2 20212 (br2 (2 +b—1) + 1472 —b)+(1+72—b)? 3
Q - 2(r4+72) . ( )

Moreover, for each such pair a and Q, a map exists.



4)If R =, then N = ("3') + n and f is unitarily equivalent to a map of the

form (1) for exactly onea € (0 ‘/7) and Q = m — a®. Moreover, for each

such 4, a map exists.



4)If R =, then N = ("3') + n and f is unitarily equivalent to a map of the

form (1) for exactly onea € (O \/7) and Q = m — a®. Moreover, for each

such 4, a map exists.

5 1fr <R < 1,then N = (";') + n and f is unitarily equivalent to a map of the
form (1) for exactly one a € (0, 1) where Q is the larger value of (3). Moreover,
for each such 4, a map exists.



Thanks for listening!

13/13



