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Plan for the talk
The plan for the percentage of the audience that is still awake is the following:
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For z ∈ ℂn write
√
−1 = i and z = (z1 , . . . , zn) = (x1 + iy1 , . . . , xn + iyn) = x + iy

Holomorphic functions in ℂn are solutions to Cauchy–Riemann equations

𝜕

𝜕z̄j
f = 1

2

(
𝜕

𝜕xj
+ i 𝜕

𝜕yj

)
f = 0.

Let T(0,1)ℂn = span
{

𝜕
𝜕z̄1

, . . . , 𝜕
𝜕z̄n

}
. Then f is holomorphic whenever

Lf ≡ 0 for all L ∈ Γ(T(0,1)ℂn).

Roughly, holomorphic functions “depend on z but not z̄”

Holomorphic functions are analytic:

f (z) =
∑
𝛼

c𝛼(z − p)𝛼 =

∑
𝛼

c𝛼(z1 − p1)𝛼1 · · · (zn − pn)𝛼n near any point p
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ℂn = ℝ2n so consider a smooth real submanifold M ⊂ ℝ2n = ℂn

Question: When is f : M → ℂ a restriction to M of a holomorphic function, or
at least a boundary value of one.

Necessary condition: Satisfies the Cauchy–Riemann equations tangent to M.

Fix p. Tpℂ
n = Tpℝ

2n = spanℝ

{
𝜕

𝜕x1

����
p
,

𝜕

𝜕y1

����
p
, . . . ,

𝜕

𝜕xn

����
p
,

𝜕

𝜕yn

����
p

}
.

Now “complexify” (really, tensor with ℂ):

ℂTpℂ
n = spanℂ

{
𝜕

𝜕x1

����
p
,

𝜕

𝜕y1

����
p
, . . . ,

𝜕

𝜕xn

����
p
,

𝜕

𝜕yn

����
p

}
= spanℂ

{
𝜕

𝜕z1

����
p
, . . . ,

𝜕

𝜕zn

����
p
,

𝜕

𝜕z̄1

����
p
, . . . ,

𝜕

𝜕z̄n

����
p

}
where 𝜕

𝜕zj
=

1
2

(
𝜕

𝜕xj
− i 𝜕

𝜕yj

)
and 𝜕

𝜕z̄j
=

1
2

(
𝜕

𝜕xj
+ i 𝜕

𝜕yj

)
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Write

ℂTpℂ
n = T(1,0)

p ℂn⊕T(0,1)
p ℂn = spanℂ

{
𝜕

𝜕z1

����
p
, . . . ,

𝜕

𝜕zn

����
p

}
⊕spanℂ

{
𝜕

𝜕z̄1

����
p
, . . . ,

𝜕

𝜕z̄n

����
p

}

Now let ℂTpM be the complexified TpM and T(0,1)
p M = ℂTpM ∩ T(0,1)

p ℂn.

Stop celebrating . . . the CR dimension dim T(0,1)
p M, may not be constant in p.

If dim T(0,1)
p M is constant in some neighborhood of q ∈ M, say q is a CR point.

Otherwise, q is a CR singular point.

M is a CR submanifold if all its points are CR, and CR singular otherwise.

Every dim M = 2n − 1 is CR, but not for higher codimension.

If M is CR, then we have a vector bundle T(0,1)M and
f : M → ℂ is a CR function if Lf = 0 for all L ∈ Γ(T(0,1)M)
Question: Is every CR function a restriction of a holomorphic function?
Answer: Yes if real-analytic, Not quite if smooth. (Just think n = 1)
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Theorem (Severi ’31)
Suppose M ⊂ ℂn is a real-analytic CR submanifold and f : M → ℂ is a real-analytic
CR function. ⇒ f extends holomorphically to some neighborhood of M.

Idea of proof:
Step 1) Write everything in sight in terms of z and z̄

(both f and the defining functions for M).
Step 2) Use the defining functions of M to solve for as many of the z̄s as possible,

and plug that into the expression for f .
Step 3) That f is killed by the CR vector fields magically means that f does not

depend on the remaining z̄s.
Step 4) ...
Step 5) Profit!
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Example: Suppose M ⊂ ℂ2 is a real-analytic real hypersurface.

Write M as
w̄ = Φ(z, z̄,w),

and consider a real-analytic CR function f (z, z̄,w, w̄).

Treat z̄ and w̄ as independent. (z̄ ≠ z̄, w̄ ≠ w̄ )

Write
F(z, z̄,w) = f

(
z, z̄,w,Φ(z, z̄,w)

)
Find CR vector field:

L =
𝜕

𝜕z̄
+ 𝜕Φ

𝜕z̄
𝜕

𝜕w̄
LF = 0 ⇒

𝜕

𝜕z̄
F = 0.

Done! (there’s a technicality or two in there, but overall that’s the idea)
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A neat technique for extension is to first approximate by polynomials.

Theorem (Baouendi–Trèves ’81)
Suppose M ⊂ ℂn is a smooth CR submanifold, p ∈ M.
⇒ ∃ a compact neighborhood K ⊂ M of p, such that for each continuous CR
function f : M → ℂ, ∃ a sequence {pℓ} of polynomials in z such that

pℓ → f uniformly in K.

Example: K depends only on M but may have to be a proper subset.
E.g., M = S1 and f = z̄.

Based on the standard Weierstrass: If f : [0, 1] → ℝ is continuous, then it is
approximated on [0, 1] by the entire functions

fℓ (z) =
∫ 1

0
cℓ e−ℓ (z−t)2 f (t) dt

for properly chosen cℓ . Then just take partial sums of the power series.
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An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . .

nothing



9 / 23

An analytic disc attached to M is
a continuous 𝜑 : 𝔻 → ℂn, 𝜑|𝔻 holomorphic, 𝜑(𝜕𝔻) ⊂ M.

Key feature: If f is holomorphic in a neighborhood of M ∪ 𝜑(𝔻), then

|f (z0)| ≤ sup
z∈M

|f (z)| for any z0 ∈ 𝜑(𝔻).

⇒ If pℓ converges uniformly on M, it converges uniformly on⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to M

}
.

⇒ If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M.

Example: For Im z2 = |z1|2 we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1|2 − |z2|2 we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Im zn = 0, i.e. M = ℂn−1 ×ℝ, we can fill . . . nothing



10 / 23

CR singularities come up naturally. E.g., Lai ’72 gives a topological formula
for counting CR singularities of compact real submanifolds.

Consider codimension 2. A lot of results to find normal forms:
ℂ2: Bishop ’65, Moser–Webster ’83, Moser ’85, Kenig–Webster ’82, Gong ’94,
Huang–Krantz ’95, Huang–Yin ’09, Slapar ’16, etc...
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Table 1. Normal forms for Theorem 7.1
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Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



12 / 23

Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



12 / 23

Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



12 / 23

Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



12 / 23

Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



12 / 23

Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



12 / 23

Let M ⊂ ℂ2 be given by w = |z|2. Bishop elliptic.

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄

����
0

}
, T(0,1)

p M = {0} for all p ≠ 0.

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then z̄ is CR and does not extend holomorphically.

Try 3: All functions such that L0f = 0 if L0 ∈ T(0,1)
0 M. But then z̄2 is CR and

will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z,w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w ∈ ℝ, w ≥ |z|2 for smooth.



13 / 23

Let M ⊂ ℂn be a smooth (CR singular) submanifold.

Let MCR ⊂ M be the set of CR points.

Define CRH(M) as the set of functions on M that are locally restrictions of
holomorphic functions.

Define CRk(M) as the set of Ck functions, which are CR on MCR. Equivalently,
f ∈ CRk(M) ⇔ Lf = 0 for all L ∈ Γ(ℂTM) such that Lp ∈ T(0,1)

p M for all p.

Define CRk
P(M) as the set of Ck functions that are locally uniform limit of

holomorphic polynomials. That is, f ∈ CRk
P(M) if f ∈ ℂk and for each p ∈ M,

∃ nbhd K ⊂ M of p and a sequence of hol. polynomials pℓ so that
pℓ → f uniformly on U.

The order of quantifiers differs from Baouendi–Trèves: K depends on f .

Other definitions are possible too. See e.g., Nacinovich–Porten ’24 for a class
sitting somewhere between CRH and CRP.
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Harris (’78) gave a complete (but difficult to apply) criterion for f ∈ C𝜔(M) on
an arbitrary CR singular M to be a restriction of a holomorphic function.

L.–Minor–Shroff–Son–Zhang (’11): If a real-analytic CR singular manifold
M = 𝜑(N) for a real-analytic CR map

𝜑 : N ⊂ ℂn → ℂn

of a CR submanifold N, and 𝜑 is a diffeomorphism onto 𝜑(N) = M, then
there exists f ∈ CR𝜔(M) that does not extend holomorphically.
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Suppose M ⊂ ℂn+1, n ≥ 2, is real codimension 2.
In particular, (z,w) ∈ ℂn ×ℂ and w = z∗Az + ztBz + ztCz + E(z, z̄)

Theorem (L.–Noell–Ravisankar ’21)
Suppose

rank
[
A∗

B

]
≥ 2.

If f (z, z̄) is real-analytic CR function defined near the origin (CR𝜔(M)), then f
extends holomorphically near the origin.
That is, every f ∈ CR𝜔(M) is in CRH(M).

It is an “if and only if” when E ≡ 0.

w = z̄2z2 does not have this extension property, but w = z̄2z2 + z̄3
2 does.

In both cases, rank
[
A∗

B

]
= 1.
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Following is L.–Noell–Ravisankar ’24.

In general CRk(M) ⊃ CRk
P(M) ⊃ CRH(M), for k = 1, 2, . . . ,∞, 𝜔.

Theorem: For w = z2 + z̄2 + 𝜆(z2 + z̄2) + E(z, z̄), E ∈ ℝ, 0 ≤ 𝜆 < 1
2 ,

CRk(M) ⊋ CRk
P(M) for all k.

CRH(M) functions do not all extend to a fixed neighborhood.

CR𝜔
P (M) = CRH(M) and CR𝜔

P (M) functions can be approximated on a fixed K
(like Baouendi–Trèves).

CR∞
P (M) ⊋ CRH(M) and CR∞

P (M) functions can not be approximated on a
fixed K.
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Theorem: For w = z2 + z̄2 + 𝜆(z2 + z̄2) + E(z, z̄), E ∈ ℝ, 𝜆 > 1
2 ,

CR0(M) = C0(M) can be approximated on a fixed K (like Baouendi–Trèves)

CRk(M) = CRk
P(M) for all k.

CRk
P(M) ⊋ CRH(M) for all k.

CRH(M) functions do not all extend to a fixed neighborhood.
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Theorem: For w = |z1|2 − |z2|2,

CR𝜔(M) = CR𝜔
P (M) = CRH(M)

CR𝜔(M) can be approximated on a fixed K.

CRH(M) do not all extend to a fixed neighborhood.

CR∞(M) ⊋ CR∞
P (M) ⊋ CRH(M)

CR∞
P (M) can not be approximated on a fixed K.
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Theorem: For w = z̄1z2,

Note that M is image of ℂ ×ℝ under a holomorphic map.

CRk
P(M) = CRH(M) for all k.

M is “terrible” at CR points, we use Hanges–Trèves (’83) to move extension
property from the CR singularity to the CR points along the complex curves.

CRH(M) all extend to a fixed neighborhood
(and hence can be approximated on a fixed K).

CRk(M) ⊋ CRk
P(M) for every k.
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Attaching discs can (and sometimes must) be iterated.

Define DH(X) = ⋃{
𝜑(𝔻) : 𝜑 analytic discs attached to X

}
DHℓ (X) = DH(DH(· · ·DH(X) · · · ))
Say M ⊂ ℂn satisfies the DH condition at p if for every neighborhood U ⊂ M of
p, there is an ℓ such that DHℓ (U) is a neighborhood of p in ℂn.

Theorem: If M ⊂ ℂn satisfies the DH condition at p, then every function
f ∈ CRk

P(M) is a restriction of a holomorphic F at p.

Via Severi:
Corollary: If M ⊂ ℂn satisfies the DH condition at all CR singular points,
then CR𝜔

P (M) = CRH(M).
E.g., for M given by w = z̄1z2, using DH3 works.
In fact for M, CRk

P(M) = CRH(M) for all k.
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If our discs come in families, we can use Kontinuitätssatz:
Suppose U ⊂ ℂn is open and there exists a sequence of analytic discs 𝜑k converging
(pointwise) to an analytic disc 𝜑 such that 𝜑k(𝔻) ⊂ U and 𝜑(𝜕𝔻) ⊂ U. Then every
f holomorphic in U can be analytically continued to every point of 𝜑(𝔻).

For 𝜖 > 0 let X𝜖 denote the 𝜖-neighborhood of X. Define

SADHq(X) = {z ∈ ℂn : for each 𝜖 > 0, ∃ a continuous family of discs 𝜑t : 𝔻 → ℂn ,

t ∈ [0, 1], z = 𝜑1(0), 𝜑t(𝜕𝔻) ⊂ X𝜖 ∀t ∈ [0, 1], 𝜑0 ≡ q, and
∥𝜑t(0) − q∥ is a strictly increasing function of t},

We call SADHq(X) the shrinking approximate disc hull of X at q.

Theorem: If SADHq(M) contains an open set U, then there is some ball B
centered at q so that every f ∈ CRH(M) extends to B.

Remark: It is not just possible to iterate SADH.

Remark: Without the shrinking hypothesis the result fails.
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Fun little fact (appeared in Minsker ’76):
Every continuous function on the closed unit disc 𝔻 can be written as a
uniform limit of polynomials in z and z̄2, that is, Pℓ (z, z̄2).
In particular, z̄ is such a limit.

This is like showing that CR = CRP on w = z̄2.

On the other hand, z̄ is not the limit of polynomials of the form Pℓ (z, zz̄).
(CR ≠ CRP on w = |z|2).
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Thanks for listening!


