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Plan for the talk

The plan for the percentage of the audience that is still awake is the following:
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Holomorphic functions in C" are solutions to Cauchy-Riemann equations

9. 1 ( J )

- Z— f 0.

z; 2\ 0x

Let TOVC" = span {%, e } Then f is holomorphic whenever
Lf=0 forallL e r(roher.

Roughly, holomorphic functions “depend on z but not z”

Holomorphic functions are analytic:

flz) = Z Calz—p)° = Z Ca(z1 —p1)*' -+ (2n — pn)™ near any point p
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C" = R?" g0 consider a smooth real submanifold M c R%* = C"

Question: When is f: M — C a restriction to M of a holomorphic function, or
at least a boundary value of one.

Necessary condition: Satisfies the Cauchy-Riemann equations tangent to M.

J J d J
Fix p. T,C" = T,R?" = — =, =], =]}
X p PC p Spang { axl p/ ayl pr ’ &xn pr ayn p}
Now “complexify” (really, tensor with C):
- J 0 0 0
CTPC —Spanc{axlpraylp,-..,axnpr aynp}
= span i i i i
TN Gz, Gz, PE, T 2,
where i—l i—ii and i—l i+ii
8Zj 2 ax]- 8y]~ 8,2]- T2 8x]' 3%‘
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If dim T;O’l)M is constant in some neighborhood of g € M, say g is a CR point.
Otherwise, g is a CR singular point.

M is a CR submanifold if all its points are CR, and CR singular otherwise.
Every dim M = 2n — 1 is CR, but not for higher codimension.

If M is CR, then we have a vector bundle TOVM and
f: M — Cis a CR function if Lf = 0 for all L € T(T*-VM)

Question: Is every CR function a restriction of a holomorphic function?
Answer: Yes if real-analytic, Not quite if smooth. (Just think n = 1)
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Suppose M C C" is a real-analytic CR submanifold and f: M — C is a real-analytic
CR function. = f extends holomorphically to some neighborhood of M.

Idea of proof:

Step 1) Write everything in sight in terms of z and z
(both f and the defining functions for M).

Step 2) Use the defining functions of M to solve for as many of the Zs as possible,
and plug that into the expression for f.

Step 3) That f is killed by the CR vector fields magically means that f does not
depend on the remaining Zs.

Step 4) ...
Step 5) Profit!
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Example: Suppose M C C? is a real-analytic real hypersurface.

Write M as
w = (D(Z/ Zl w)/

and consider a real-analytic CR function f(z, Z, w, @).

Treat Z and @ as independent. (Z #z, @ # @)

Write
F(z,z,w) =f(z,z,w, D(z,z,w))
Find CR vector field:
29, 909
T 9z 9z dw
LF=0 = 5
—F=0.
0z 0

DOne! (there’s a technicality or two in there, but overall that’s the idea)
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A neat technique for extension is to first approximate by polynomials.

Theorem (Baouendi—Treves '81)

Suppose M c C" is a smooth CR submanifold, p € M.
= Jacompact neighborhood K C M of p, such that for each continuous CR
function f: M — C, 3 a sequence {p;} of polynomials in z such that

pe—f uniformly in K.

Example: K depends only on M but may have to be a proper subset.
Eg,M=S'andf =2z

Based on the standard Weierstrass: If f: [0,1] — R is continuous, then it is
approximated on [0, 1] by the entire functions

1
folz) = /0 cee G f(p) dt

for properly chosen c;. Then just take partial sums of the power series.
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An analytic disc attached to M is
a continuous ¢: D — C", ¢|p holomorphic, (dD) c M.

Key feature: If f is holomorphic in a neighborhood of M U ¢(D), then

|f(z0)] < sulg|f(z)| for any zg € (p(ﬁ).

=  If py converges uniformly on M, it converges uniformly on
U {(p(ﬁ) : @ analytic discs attached to M}

= If we fill an open set with attached discs, limit is holomorphic there.
Often overlooked fact: This open set does not depend on f, only on M.

Example: For Im z; = |z;|? we can fill one side: CR functions are boundary
values of holomorphic functions.

Example: For Im z3 = |z1]|? — |z2|? we can fill both sides, CR functions are
restrictions of holomorphic functions

Example: For Imz, =0,i.e. M = C" 1 xR, wecan fill .. .nothing
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CR singularities come up naturally. E.g., Lai ‘72 gives a topological formula
for counting CR singularities of compact real submanifolds.

Consider codimension 2. A lot of results to find normal forms:
C2: Bishop '65, Moser—Webster ‘83, Moser '85, Kenig—Webster '82, Gong "94,
Huang-Krantz '95, Huang-Yin '09, Slapar 16, etc...

C" (n = 3) Dolbeault-Tomassini—Zaitsev ‘05, '11, Coffman ‘09, Huang-Yin
’09, '16, '17, Burcea "13, Gong-L. "15, Fang-Huang "18, etc...

Bishop ('65) shows that in C2, we can normalize up to quadratic part as
w =2z + A(z* + 22) + E(z, 2).

A > 0 is the Bishop invariant.

0< A< :elliptic A =1:parabolic 1 <A < oo: hyperbolic

Coffman ('09) normalizes codim-2 M in C3 to
w = z*Nz + Re(z'Pz) + E(z,Z) where N and P are:



A. COFFMAN
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d

TY""M = span { —_’ } , TOYM={0} forallp£0.
9z,

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That’s not an intrinsic notion.

Try 2: All functions. But then Z is CR and does not extend holomorphically.

Try 3: All functions such that Lof = 01if Lo € T(()O’l)M. But then 22 is CR and
will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z, w.
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in w € R, w > |z|? for smooth.



Let M c C" be a smooth (CR singular) submanifold.
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Let M c C" be a smooth (CR singular) submanifold.
Let Mcr € M be the set of CR points.

Define CRy(M) as the set of functions on M that are locally restrictions of
holomorphic functions.

Define CRF(M) as the set of C¥ functions, which are CR on Mcg. Equivalently,
feCRNM) & Lf=0forallL e IT(CTM)such thatL, € Ty"M for all p.

Define CR’I‘J(M) as the set of C¥ functions that are locally uniform limit of
holomorphic polynomials. That is, f € CRE(M) if f € CF and for eachp € M,
dnbhd K ¢ M of p and a sequence of hol. polynomials p; so that

pe — f uniformly on U.

The order of quantifiers differs from Baouendi-Treves: K depends on f.

Other definitions are possible too. See e.g., Nacinovich—Porten "24 for a class
sitting somewhere between CRy and CRp.
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Harris ('78) gave a complete (but difficult to apply) criterion for f € C*(M) on
an arbitrary CR singular M to be a restriction of a holomorphic function.

L.-Minor-Shroff-Son-Zhang ('11): If a real-analytic CR singular manifold
M = @(N) for a real-analytic CR map

p:NcC'—->C"

of a CR submanifold N, and ¢ is a diffeomorphism onto ¢(N) = M, then
there exists f € CR”(M) that does not extend holomorphically.
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Suppose M € C"!, n > 2, is real codimension 2.
In particular, (z, w) € C" X C and w = z*Az + z!Bz + z'/Cz + E(z, Z)

Theorem (L.—Noell-Ravisankar "21)

Suppose

rank 1‘;] > 2.
If f(z, 2) is real-analytic CR function defined near the origin (CR“(M)), then f
extends holomorphically near the origin.
That is, every f € CR(M) is in CRy(M).

It is an “if and only if” when E = 0.
w = Zpzo does not have this extension property, but w = zpz, + Zg does.

In both cases, rank [[1‘3 ] =1.
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In general CR¥(M) > CR’I‘)(M) D> CRyg(M), fork=1,2,...,00,w.
Theorem: For w =22 + 22 + A(z> +2%) + E(z,2), E€ R, 0< A < 1,
CRK(M) 2 CRE(M) for all k.

CRy (M) functions do not all extend to a fixed neighborhood.

CR{(M) = CRy(M) and CRy (M) functions can be approximated on a fixed K
(like Baouendi-Treves).

CRy (M) 2 CRy(M) and CRy(M) functions can not be approximated on a
fixed K.
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CRY(M) = C°(M) can be approximated on a fixed K (like Baouendi-Treves)
CRK(M) = CRE(M) for all k.
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Theorem: For w = |z;1|? — |2/,

CR?(M) = CRE (M) = CRy(M)
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Theorem: For w = z1z5,
Note that M is image of C X R under a holomorphic map.
CRE(M) = CRu(M) for all k.

M is “terrible” at CR points, we use Hanges—Treves ('83) to move extension
property from the CR singularity to the CR points along the complex curves.

CRy (M) all extend to a fixed neighborhood
(and hence can be approximated on a fixed K).

CRK(M) 2 CRE(M) for every k.
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Attaching discs can (and sometimes must) be iterated.
Define DH(X) = |J {(p(ﬁ) : @ analytic discs attached to X}
DH!(X) = DH(DH(: - - DH(X) - - -))

Say M c C" satisfies the DH condition at p if for every neighborhood U € M of
p, there is an ¢ such that DH!(U) is a neighborhood of p in C".

Theorem: If M C C" satisfies the DH condition at p, then every function
fe CRﬂ‘,(M) is a restriction of a holomorphic F at p.

Via Severi:
Corollary: If M c C" satisfies the DH condition at all CR singular points,
then CR (M) = CRy(M).

E.g., for M given by w = Z1zp, using DH3 works.
In fact for M, CR’;,(M) = CRy(M) for all k.
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If our discs come in families, we can use Kontinuitatssatz:

Suppose U c C" is open and there exists a sequence of analytic discs @y converging
(pointwise) to an analytic disc ¢ such that pr(D) c U and ¢(dD) c U. Then every
f holomorphic in U can be analytically continued to every point of ¢ (D).

For € > 0 let X, denote the e-neighborhood of X. Define

SADH4(X) = {z € C" : for each € > 0,3 a continuous family of discs ¢;: D — C",
te[0,1], z=91(0), p1(dD) C Xe Vt € [0,1], po =9, and
|l@+(0) — gl| is a strictly increasing function of ¢},

We call SADH,(X) the shrinking approximate disc hull of X at q.

Theorem: If SADH,;(M) contains an open set U, then there is some ball B
centered at g so that every f € CRy(M) extends to B.

Remark: It is not just possible to iterate SADH.
Remark: Without the shrinking hypothesis the result fails.



Fun little fact (appeared in Minsker '76):

Every continuous function on the closed unit disc D can be written as a
uniform limit of polynomials in z and z2, that is, Py(z, 22).

In particular, Z is such a limit.

This is like showing that CR = CRp on w = z2.



Fun little fact (appeared in Minsker '76):

Every continuous function on the closed unit disc D can be written as a
uniform limit of polynomials in z and z2, that is, Py(z, 22).

In particular, Z is such a limit.

This is like showing that CR = CRp on w = z2.

On the other hand, Z is not the limit of polynomials of the form P(z, zZ).
(CR # CRp on w = |z|?).



Thanks for listening!
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