

CR functions at CR singularities: approximation, extension, and hulls

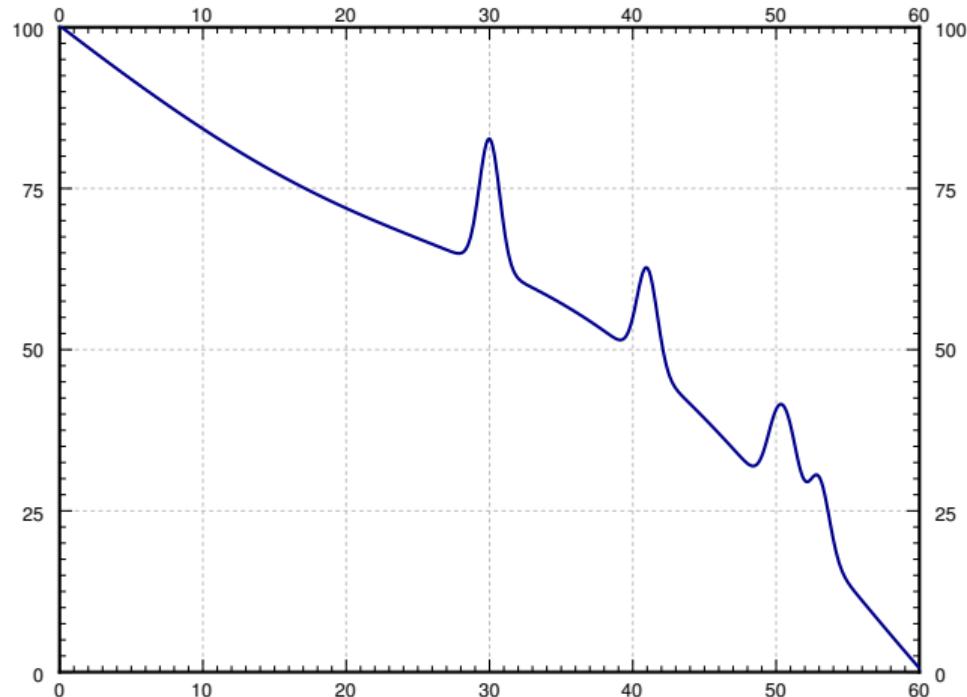
Jiří Lebl

joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Plan for the talk

The plan for the percentage of the audience that is still awake is the following:



For $z \in \mathbb{C}^n$ write $\sqrt{-1} = i$ and $z = (z_1, \dots, z_n) = (x_1 + iy_1, \dots, x_n + iy_n) = x + iy$

For $z \in \mathbb{C}^n$ write $\sqrt{-1} = i$ and $z = (z_1, \dots, z_n) = (x_1 + iy_1, \dots, x_n + iy_n) = x + iy$

Holomorphic functions in \mathbb{C}^n are solutions to Cauchy–Riemann equations

$$\frac{\partial}{\partial \bar{z}_j} f = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) f = 0.$$

For $z \in \mathbb{C}^n$ write $\sqrt{-1} = i$ and $z = (z_1, \dots, z_n) = (x_1 + iy_1, \dots, x_n + iy_n) = x + iy$

Holomorphic functions in \mathbb{C}^n are solutions to Cauchy–Riemann equations

$$\frac{\partial}{\partial \bar{z}_j} f = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) f = 0.$$

Let $T^{(0,1)}\mathbb{C}^n = \text{span} \left\{ \frac{\partial}{\partial \bar{z}_1}, \dots, \frac{\partial}{\partial \bar{z}_n} \right\}$. Then f is holomorphic whenever

$$Lf \equiv 0 \quad \text{for all } L \in \Gamma(T^{(0,1)}\mathbb{C}^n).$$

For $z \in \mathbb{C}^n$ write $\sqrt{-1} = i$ and $z = (z_1, \dots, z_n) = (x_1 + iy_1, \dots, x_n + iy_n) = x + iy$

Holomorphic functions in \mathbb{C}^n are solutions to Cauchy–Riemann equations

$$\frac{\partial}{\partial \bar{z}_j} f = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) f = 0.$$

Let $T^{(0,1)}\mathbb{C}^n = \text{span} \left\{ \frac{\partial}{\partial \bar{z}_1}, \dots, \frac{\partial}{\partial \bar{z}_n} \right\}$. Then f is holomorphic whenever

$$Lf \equiv 0 \quad \text{for all } L \in \Gamma(T^{(0,1)}\mathbb{C}^n).$$

Roughly, holomorphic functions “depend on z but not \bar{z} ”

For $z \in \mathbb{C}^n$ write $\sqrt{-1} = i$ and $z = (z_1, \dots, z_n) = (x_1 + iy_1, \dots, x_n + iy_n) = x + iy$

Holomorphic functions in \mathbb{C}^n are solutions to Cauchy–Riemann equations

$$\frac{\partial}{\partial \bar{z}_j} f = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) f = 0.$$

Let $T^{(0,1)}\mathbb{C}^n = \text{span} \left\{ \frac{\partial}{\partial \bar{z}_1}, \dots, \frac{\partial}{\partial \bar{z}_n} \right\}$. Then f is holomorphic whenever

$$Lf \equiv 0 \quad \text{for all } L \in \Gamma(T^{(0,1)}\mathbb{C}^n).$$

Roughly, holomorphic functions “depend on z but not \bar{z} ”

Holomorphic functions are analytic:

$$f(z) = \sum_{\alpha} c_{\alpha} (z - p)^{\alpha} = \sum_{\alpha} c_{\alpha} (z_1 - p_1)^{\alpha_1} \cdots (z_n - p_n)^{\alpha_n} \quad \text{near any point } p$$

$\mathbb{C}^n = \mathbb{R}^{2n}$ so consider a smooth real submanifold $M \subset \mathbb{R}^{2n} = \mathbb{C}^n$

$\mathbb{C}^n = \mathbb{R}^{2n}$ so consider a smooth real submanifold $M \subset \mathbb{R}^{2n} = \mathbb{C}^n$

Question: When is $f: M \rightarrow \mathbb{C}$ a restriction to M of a holomorphic function, or at least a boundary value of one.

$\mathbb{C}^n = \mathbb{R}^{2n}$ so consider a smooth real submanifold $M \subset \mathbb{R}^{2n} = \mathbb{C}^n$

Question: When is $f: M \rightarrow \mathbb{C}$ a restriction to M of a holomorphic function, or at least a boundary value of one.

Necessary condition: Satisfies the Cauchy–Riemann equations tangent to M .

$\mathbb{C}^n = \mathbb{R}^{2n}$ so consider a smooth real submanifold $M \subset \mathbb{R}^{2n} = \mathbb{C}^n$

Question: When is $f: M \rightarrow \mathbb{C}$ a restriction to M of a holomorphic function, or at least a boundary value of one.

Necessary condition: Satisfies the Cauchy–Riemann equations tangent to M .

Fix p . $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n} = \text{span}_{\mathbb{R}} \left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \left. \frac{\partial}{\partial y_1} \right|_p, \dots, \left. \frac{\partial}{\partial x_n} \right|_p, \left. \frac{\partial}{\partial y_n} \right|_p \right\}$.

$\mathbb{C}^n = \mathbb{R}^{2n}$ so consider a smooth real submanifold $M \subset \mathbb{R}^{2n} = \mathbb{C}^n$

Question: When is $f: M \rightarrow \mathbb{C}$ a restriction to M of a holomorphic function, or at least a boundary value of one.

Necessary condition: Satisfies the Cauchy–Riemann equations tangent to M .

Fix p . $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n} = \text{span}_{\mathbb{R}} \left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \left. \frac{\partial}{\partial y_1} \right|_p, \dots, \left. \frac{\partial}{\partial x_n} \right|_p, \left. \frac{\partial}{\partial y_n} \right|_p \right\}$.

Now “complexify” (really, tensor with \mathbb{C}):

$\mathbb{C}T_p \mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \left. \frac{\partial}{\partial y_1} \right|_p, \dots, \left. \frac{\partial}{\partial x_n} \right|_p, \left. \frac{\partial}{\partial y_n} \right|_p \right\}$

$\mathbb{C}^n = \mathbb{R}^{2n}$ so consider a smooth real submanifold $M \subset \mathbb{R}^{2n} = \mathbb{C}^n$

Question: When is $f: M \rightarrow \mathbb{C}$ a restriction to M of a holomorphic function, or at least a boundary value of one.

Necessary condition: Satisfies the Cauchy–Riemann equations tangent to M .

Fix p . $T_p \mathbb{C}^n = T_p \mathbb{R}^{2n} = \text{span}_{\mathbb{R}} \left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial y_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p, \frac{\partial}{\partial y_n} \Big|_p \right\}$.

Now “complexify” (really, tensor with \mathbb{C}):

$$\begin{aligned} \mathbb{C}T_p \mathbb{C}^n &= \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial y_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p, \frac{\partial}{\partial y_n} \Big|_p \right\} \\ &= \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p, \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\} \end{aligned}$$

where $\frac{\partial}{\partial z_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right)$ and $\frac{\partial}{\partial \bar{z}_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right)$

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial z_1} \right|_p, \dots, \left. \frac{\partial}{\partial z_n} \right|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}_1} \right|_p, \dots, \left. \frac{\partial}{\partial \bar{z}_n} \right|_p \right\}$$

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_pM$ be the complexified T_pM and $T_p^{(0,1)}M = \mathbb{C}T_pM \cap T_p^{(0,1)}\mathbb{C}^n$.

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*.

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*.
Otherwise, q is a *CR singular point*.

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*.
Otherwise, q is a *CR singular point*.

M is a *CR submanifold* if all its points are CR, and *CR singular* otherwise.

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*.
Otherwise, q is a *CR singular point*.

M is a *CR submanifold* if all its points are CR, and *CR singular* otherwise.

Every $\dim M = 2n - 1$ is CR, but not for higher codimension.

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*. Otherwise, q is a *CR singular point*.

M is a *CR submanifold* if all its points are CR, and *CR singular* otherwise.

Every $\dim M = 2n - 1$ is CR, but not for higher codimension.

If M is CR, then we have a vector bundle $T^{(0,1)}M$ and
 $f: M \rightarrow \mathbb{C}$ is a *CR function* if $Lf = 0$ for all $L \in \Gamma(T^{(0,1)}M)$

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*.
Otherwise, q is a *CR singular point*.

M is a *CR submanifold* if all its points are CR, and *CR singular* otherwise.

Every $\dim M = 2n - 1$ is CR, but not for higher codimension.

If M is CR, then we have a vector bundle $T^{(0,1)}M$ and
 $f: M \rightarrow \mathbb{C}$ is a *CR function* if $Lf = 0$ for all $L \in \Gamma(T^{(0,1)}M)$

Question: Is every CR function a restriction of a holomorphic function?

Write

$$\mathbb{C}T_p\mathbb{C}^n = T_p^{(1,0)}\mathbb{C}^n \oplus T_p^{(0,1)}\mathbb{C}^n = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p \right\} \oplus \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_1} \Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n} \Big|_p \right\}$$

Now let $\mathbb{C}T_p M$ be the complexified $T_p M$ and $T_p^{(0,1)}M = \mathbb{C}T_p M \cap T_p^{(0,1)}\mathbb{C}^n$.

Stop celebrating ... the *CR dimension* $\dim T_p^{(0,1)}M$, may not be constant in p .

If $\dim T_p^{(0,1)}M$ is constant in some neighborhood of $q \in M$, say q is a *CR point*.
Otherwise, q is a *CR singular point*.

M is a *CR submanifold* if all its points are CR, and *CR singular* otherwise.

Every $\dim M = 2n - 1$ is CR, but not for higher codimension.

If M is CR, then we have a vector bundle $T^{(0,1)}M$ and
 $f: M \rightarrow \mathbb{C}$ is a *CR function* if $Lf = 0$ for all $L \in \Gamma(T^{(0,1)}M)$

Question: Is every CR function a restriction of a holomorphic function?
Answer: Yes if real-analytic, Not quite if smooth. (Just think $n = 1$)

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. \Rightarrow f extends holomorphically to some neighborhood of M .

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. \Rightarrow f extends holomorphically to some neighborhood of M .

Idea of proof:

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically to some neighborhood of M .

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z}
(both f and the defining functions for M).

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically to some neighborhood of M .

Idea of proof:

- Step 1) Write everything in sight in terms of z and \bar{z}
(both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the \bar{z} s as possible,
and plug that into the expression for f .

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically to some neighborhood of M .

Idea of proof:

- Step 1) Write everything in sight in terms of z and \bar{z}
(both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the \bar{z} s as possible, and plug that into the expression for f .
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining \bar{z} s.

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically to some neighborhood of M .

Idea of proof:

- Step 1) Write everything in sight in terms of z and \bar{z}
(both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the \bar{z} s as possible, and plug that into the expression for f .
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining \bar{z} s.
- Step 4) ...

Theorem (Severi '31)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \rightarrow \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically to some neighborhood of M .

Idea of proof:

- Step 1) Write everything in sight in terms of z and \bar{z}
(both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the \bar{z} s as possible, and plug that into the expression for f .
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining \bar{z} s.
- Step 4) ...
- Step 5) Profit!

Example: Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.

Example: Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.

Treat \bar{z} and \bar{w} as independent.

Example: Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.

Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq \bar{z}$, $\bar{w} \neq \bar{w}$)

Example: Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.

Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq \bar{z}$, $\bar{w} \neq \bar{w}$)

Write

$$F(z, \bar{z}, w) = f(z, \bar{z}, w, \Phi(z, \bar{z}, w))$$

Example: Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.

Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq \bar{z}$, $\bar{w} \neq \bar{w}$)

Write

$$F(z, \bar{z}, w) = f(z, \bar{z}, w, \Phi(z, \bar{z}, w))$$

Find CR vector field:

$$L = \frac{\partial}{\partial \bar{z}} + \frac{\partial \Phi}{\partial \bar{z}} \frac{\partial}{\partial \bar{w}}$$

$$LF = 0 \quad \Rightarrow$$

$$\frac{\partial}{\partial \bar{z}} F = 0.$$

Example: Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.

Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq \bar{z}$, $\bar{w} \neq \bar{w}$)

Write

$$F(z, \bar{z}, w) = f(z, \bar{z}, w, \Phi(z, \bar{z}, w))$$

Find CR vector field:

$$L = \frac{\partial}{\partial \bar{z}} + \frac{\partial \Phi}{\partial \bar{z}} \frac{\partial}{\partial \bar{w}}$$

$$LF = 0 \quad \Rightarrow$$

$$\frac{\partial}{\partial \bar{z}} F = 0.$$

Done! (there's a technicality or two in there, but overall that's the idea)

A neat technique for extension is to first approximate by polynomials.

A neat technique for extension is to first approximate by polynomials.

Theorem (Baouendi–Trèves '81)

Suppose $M \subset \mathbb{C}^n$ is a smooth CR submanifold, $p \in M$.

$\Rightarrow \exists$ a compact neighborhood $K \subset M$ of p , such that for each continuous CR function $f: M \rightarrow \mathbb{C}$, \exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell \rightarrow f \quad \text{uniformly in } K.$$

A neat technique for extension is to first approximate by polynomials.

Theorem (Baouendi–Trèves '81)

Suppose $M \subset \mathbb{C}^n$ is a smooth CR submanifold, $p \in M$.

$\Rightarrow \exists$ a compact neighborhood $K \subset M$ of p , such that for each continuous CR function $f: M \rightarrow \mathbb{C}$, \exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell \rightarrow f \quad \text{uniformly in } K.$$

Example: K depends only on M but may have to be a proper subset.

E.g., $M = S^1$ and $f = \bar{z}$.

A neat technique for extension is to first approximate by polynomials.

Theorem (Baouendi–Trèves '81)

Suppose $M \subset \mathbb{C}^n$ is a smooth CR submanifold, $p \in M$.

$\Rightarrow \exists$ a compact neighborhood $K \subset M$ of p , such that for each continuous CR function $f: M \rightarrow \mathbb{C}$, \exists a sequence $\{p_\ell\}$ of polynomials in z such that

$$p_\ell \rightarrow f \quad \text{uniformly in } K.$$

Example: K depends only on M but may have to be a proper subset.

E.g., $M = S^1$ and $f = \bar{z}$.

Based on the standard Weierstrass: If $f: [0, 1] \rightarrow \mathbb{R}$ is continuous, then it is approximated on $[0, 1]$ by the entire functions

$$f_\ell(z) = \int_0^1 c_\ell e^{-\ell(z-t)^2} f(t) dt$$

for properly chosen c_ℓ . Then just take partial sums of the power series.

An *analytic disc attached to M* is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

An *analytic disc attached to M* is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

An analytic disc attached to M is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

An *analytic disc attached to M* is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

\Rightarrow If we fill an open set with attached discs, limit is holomorphic there.

An analytic disc attached to M is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

\Rightarrow If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M .

An analytic disc attached to M is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

\Rightarrow If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M .

Example: For $\operatorname{Im} z_2 = |z_1|^2$ we can fill one side: CR functions are boundary values of holomorphic functions.

An analytic disc attached to M is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

\Rightarrow If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M .

Example: For $\operatorname{Im} z_2 = |z_1|^2$ we can fill one side: CR functions are boundary values of holomorphic functions.

Example: For $\operatorname{Im} z_3 = |z_1|^2 - |z_2|^2$ we can fill both sides, CR functions are restrictions of holomorphic functions

An analytic disc attached to M is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

\Rightarrow If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M .

Example: For $\operatorname{Im} z_2 = |z_1|^2$ we can fill one side: CR functions are boundary values of holomorphic functions.

Example: For $\operatorname{Im} z_3 = |z_1|^2 - |z_2|^2$ we can fill both sides, CR functions are restrictions of holomorphic functions

Example: For $\operatorname{Im} z_n = 0$, i.e. $M = \mathbb{C}^{n-1} \times \mathbb{R}$, we can fill ...

An analytic disc attached to M is

a continuous $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n$, $\varphi|_{\mathbb{D}}$ holomorphic, $\varphi(\partial\mathbb{D}) \subset M$.

Key feature: If f is holomorphic in a neighborhood of $M \cup \varphi(\overline{\mathbb{D}})$, then

$$|f(z_0)| \leq \sup_{z \in M} |f(z)| \quad \text{for any } z_0 \in \varphi(\overline{\mathbb{D}}).$$

\Rightarrow If p_ℓ converges uniformly on M , it converges uniformly on

$$\bigcup \left\{ \varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } M \right\}.$$

\Rightarrow If we fill an open set with attached discs, limit is holomorphic there.

Often overlooked fact: This open set does not depend on f , only on M .

Example: For $\operatorname{Im} z_2 = |z_1|^2$ we can fill one side: CR functions are boundary values of holomorphic functions.

Example: For $\operatorname{Im} z_3 = |z_1|^2 - |z_2|^2$ we can fill both sides, CR functions are restrictions of holomorphic functions

Example: For $\operatorname{Im} z_n = 0$, i.e. $M = \mathbb{C}^{n-1} \times \mathbb{R}$, we can fill ... nothing

CR singularities come up naturally. E.g., Lai '72 gives a topological formula for counting CR singularities of compact real submanifolds.

CR singularities come up naturally. E.g., Lai '72 gives a topological formula for counting CR singularities of compact real submanifolds.

Consider codimension 2. A lot of results to find normal forms:

\mathbb{C}^2 : Bishop '65, Moser–Webster '83, Moser '85, Kenig–Webster '82, Gong '94, Huang–Krantz '95, Huang–Yin '09, Slapar '16, etc...

\mathbb{C}^n ($n \geq 3$) Dolbeault–Tomassini–Zaitsev '05, '11, Coffman '09, Huang–Yin '09, '16, '17, Burcea '13, Gong–L. '15, Fang–Huang '18, etc...

CR singularities come up naturally. E.g., Lai '72 gives a topological formula for counting CR singularities of compact real submanifolds.

Consider codimension 2. A lot of results to find normal forms:

\mathbb{C}^2 : Bishop '65, Moser–Webster '83, Moser '85, Kenig–Webster '82, Gong '94, Huang–Krantz '95, Huang–Yin '09, Slapar '16, etc...

\mathbb{C}^n ($n \geq 3$) Dolbeault–Tomassini–Zaitsev '05, '11, Coffman '09, Huang–Yin '09, '16, '17, Burcea '13, Gong–L. '15, Fang–Huang '18, etc...

Bishop ('65) shows that in \mathbb{C}^2 , we can normalize up to quadratic part as

$$w = z\bar{z} + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z}).$$

$\lambda \geq 0$ is the Bishop invariant.

$0 \leq \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \leq \infty$: hyperbolic

CR singularities come up naturally. E.g., Lai '72 gives a topological formula for counting CR singularities of compact real submanifolds.

Consider codimension 2. A lot of results to find normal forms:

\mathbb{C}^2 : Bishop '65, Moser–Webster '83, Moser '85, Kenig–Webster '82, Gong '94, Huang–Krantz '95, Huang–Yin '09, Slapar '16, etc...

\mathbb{C}^n ($n \geq 3$) Dolbeault–Tomassini–Zaitsev '05, '11, Coffman '09, Huang–Yin '09, '16, '17, Burcea '13, Gong–L. '15, Fang–Huang '18, etc...

Bishop ('65) shows that in \mathbb{C}^2 , we can normalize up to quadratic part as

$$w = z\bar{z} + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z}).$$

$\lambda \geq 0$ is the Bishop invariant.

$0 \leq \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \leq \infty$: hyperbolic

Coffman ('09) normalizes codim-2 M in \mathbb{C}^3 to

$w = z^*Nz + \operatorname{Re}(z^t P z) + E(z, \bar{z})$ where N and P are:

TABLE 1. Normal forms for Theorem 7.1

N	P		
$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$ $0 < \theta < \pi$	$\begin{pmatrix} a & b \\ b & d \end{pmatrix}$	5	$a > 0, d > 0, b \sim -b \in \mathbb{C}$
	$\begin{pmatrix} 0 & b \\ b & d \end{pmatrix}$	3	$b \geq 0, d \geq 0$
	$\begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$	3	$a > 0, b \geq 0$
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	2	$0 \leq a \leq d$
$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	2	$0 \leq a \leq d$
	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	1	$b > 0$
	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	0	$+$
$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & b \\ b & 1 \end{pmatrix}$	1	$b > 0$
	$\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$	2	$\text{Im}(d) > 0$
	$\begin{pmatrix} a & b \\ b & d \end{pmatrix}$	5	$b > 0, a = 1, (a, d) \sim (-a, -d)$
$\begin{pmatrix} 0 & 1 \\ \tau & 0 \end{pmatrix}$ $0 < \tau < 1$	$\begin{pmatrix} 0 & b \\ b & d \end{pmatrix}$	3	$b > 0, d = 1, d \sim -d$
	$\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$	2	$b > 0$
	$\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$	3	$d \in \mathbb{C}$
	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	1	$+$
	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	1	$+$
	$\begin{pmatrix} a & b \\ b & 1 \end{pmatrix}$	3	$b > 0, a \in \mathbb{C}$
	$\begin{pmatrix} 1 & b \\ b & 0 \end{pmatrix}$	1	$b > 0$
$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	1	$b > 0$
	$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$	1	$a \geq 0$
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	0	0
	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	0	0
	$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	3	$a > 0, d \in \mathbb{C}$
	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	1	$b > 0$
	$\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$	1	$d \geq 0$
$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$	1	$a \geq 0$
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	0	$+$
	$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$	1	$a \geq 0$
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	0	0
	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	0	0

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

$$T_0^{(0,1)}M = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}} \right|_0 \right\}, \quad T_p^{(0,1)}M = \{0\} \quad \text{for all } p \neq 0.$$

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

$$T_0^{(0,1)}M = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}} \right|_0 \right\}, \quad T_p^{(0,1)}M = \{0\} \quad \text{for all } p \neq 0.$$

M is CR singular

Question: What should be the definition of “CR functions”?

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

$$T_0^{(0,1)}M = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}} \right|_0 \right\}, \quad T_p^{(0,1)}M = \{0\} \quad \text{for all } p \neq 0.$$

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That's not an intrinsic notion.

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

$$T_0^{(0,1)}M = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}} \right|_0 \right\}, \quad T_p^{(0,1)}M = \{0\} \quad \text{for all } p \neq 0.$$

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That's not an intrinsic notion.

Try 2: All functions. But then \bar{z} is CR and does not extend holomorphically.

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

$$T_0^{(0,1)}M = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}} \right|_0 \right\}, \quad T_p^{(0,1)}M = \{0\} \quad \text{for all } p \neq 0.$$

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That's not an intrinsic notion.

Try 2: All functions. But then \bar{z} is CR and does not extend holomorphically.

Try 3: All functions such that $L_0 f = 0$ if $L_0 \in T_0^{(0,1)}M$. But then \bar{z}^2 is CR and will not extend.

Let $M \subset \mathbb{C}^2$ be given by $w = |z|^2$. Bishop elliptic.

$$T_0^{(0,1)}M = \text{span}_{\mathbb{C}} \left\{ \left. \frac{\partial}{\partial \bar{z}} \right|_0 \right\}, \quad T_p^{(0,1)}M = \{0\} \quad \text{for all } p \neq 0.$$

M is CR singular

Question: What should be the definition of “CR functions”?

Try 1: Restrictions of holomorphic functions. That's not an intrinsic notion.

Try 2: All functions. But then \bar{z} is CR and does not extend holomorphically.

Try 3: All functions such that $L_0 f = 0$ if $L_0 \in T_0^{(0,1)}M$. But then \bar{z}^2 is CR and will not extend.

Try 4: Functions that are locally uniform limits of polynomials in z, w .
We get holomorphic extension for real-analytic CR functions,
and extensions to CR functions in $w \in \mathbb{R}, w \geq |z|^2$ for smooth.

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Define $CR^k(M)$ as the set of C^k functions, which are CR on M_{CR} .

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Define $CR^k(M)$ as the set of C^k functions, which are CR on M_{CR} . Equivalently,
 $f \in CR^k(M) \Leftrightarrow Lf = 0$ for all $L \in \Gamma(\mathbb{C}TM)$ such that $L_p \in T_p^{(0,1)}M$ for all p .

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Define $CR^k(M)$ as the set of C^k functions, which are CR on M_{CR} . Equivalently, $f \in CR^k(M) \Leftrightarrow Lf = 0$ for all $L \in \Gamma(\mathbb{C}TM)$ such that $L_p \in T_p^{(0,1)}M$ for all p .

Define $CR_p^k(M)$ as the set of C^k functions that are locally uniform limit of holomorphic polynomials.

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Define $CR^k(M)$ as the set of C^k functions, which are CR on M_{CR} . Equivalently, $f \in CR^k(M) \Leftrightarrow Lf = 0$ for all $L \in \Gamma(\mathbb{C}TM)$ such that $L_p \in T_p^{(0,1)}M$ for all p .

Define $CR_p^k(M)$ as the set of C^k functions that are locally uniform limit of holomorphic polynomials. That is, $f \in CR_p^k(M)$ if $f \in \mathbb{C}^k$ and for each $p \in M$, \exists nbhd $K \subset M$ of p and a sequence of hol. polynomials p_ℓ so that $p_\ell \rightarrow f$ uniformly on U .

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Define $CR^k(M)$ as the set of C^k functions, which are CR on M_{CR} . Equivalently, $f \in CR^k(M) \Leftrightarrow Lf = 0$ for all $L \in \Gamma(\mathbb{C}TM)$ such that $L_p \in T_p^{(0,1)}M$ for all p .

Define $CR_P^k(M)$ as the set of C^k functions that are locally uniform limit of holomorphic polynomials. That is, $f \in CR_P^k(M)$ if $f \in \mathbb{C}^k$ and for each $p \in M$, \exists nbhd $K \subset M$ of p and a sequence of hol. polynomials p_ℓ so that $p_\ell \rightarrow f$ uniformly on U .

The order of quantifiers differs from Baouendi–Trèves: K depends on f .

Let $M \subset \mathbb{C}^n$ be a smooth (CR singular) submanifold.

Let $M_{CR} \subset M$ be the set of CR points.

Define $CR_H(M)$ as the set of functions on M that are locally restrictions of holomorphic functions.

Define $CR^k(M)$ as the set of C^k functions, which are CR on M_{CR} . Equivalently, $f \in CR^k(M) \Leftrightarrow Lf = 0$ for all $L \in \Gamma(\mathbb{C}TM)$ such that $L_p \in T_p^{(0,1)}M$ for all p .

Define $CR_P^k(M)$ as the set of C^k functions that are locally uniform limit of holomorphic polynomials. That is, $f \in CR_P^k(M)$ if $f \in \mathbb{C}^k$ and for each $p \in M$, \exists nbhd $K \subset M$ of p and a sequence of hol. polynomials p_ℓ so that $p_\ell \rightarrow f$ uniformly on U .

The order of quantifiers differs from Baouendi–Trèves: K depends on f .

Other definitions are possible too. See e.g., Nacinovich–Porten '24 for a class sitting somewhere between CR_H and CR_P .

Harris ('78) gave a complete (but difficult to apply) criterion for $f \in C^\omega(M)$ on an arbitrary CR singular M to be a restriction of a holomorphic function.

Harris ('78) gave a complete (but difficult to apply) criterion for $f \in C^\omega(M)$ on an arbitrary CR singular M to be a restriction of a holomorphic function.

L.-Minor–Shroff–Son–Zhang ('11): If a real-analytic CR singular manifold $M = \varphi(N)$ for a real-analytic CR map

$$\varphi: N \subset \mathbb{C}^n \rightarrow \mathbb{C}^n$$

of a CR submanifold N , and φ is a diffeomorphism onto $\varphi(N) = M$, then there exists $f \in CR^\omega(M)$ that does not extend holomorphically.

Suppose $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, is real codimension 2.

In particular, $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ and $w = z^*Az + \overline{z^tBz} + z^tCz + E(z, \bar{z})$

Theorem (L.-Noell–Ravisankar '21)

Suppose

$$\text{rank} \begin{bmatrix} A^* \\ B \end{bmatrix} \geq 2.$$

If $f(z, \bar{z})$ is real-analytic CR function defined near the origin ($CR^\omega(M)$), then f extends holomorphically near the origin.

That is, every $f \in CR^\omega(M)$ is in $CR_H(M)$.

Suppose $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, is real codimension 2.

In particular, $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ and $w = z^*Az + \overline{z^tBz} + z^tCz + E(z, \bar{z})$

Theorem (L.-Noell–Ravisankar '21)

Suppose

$$\text{rank} \begin{bmatrix} A^* \\ B \end{bmatrix} \geq 2.$$

If $f(z, \bar{z})$ is real-analytic CR function defined near the origin ($CR^\omega(M)$), then f extends holomorphically near the origin.

That is, every $f \in CR^\omega(M)$ is in $CR_H(M)$.

It is an “if and only if” when $E \equiv 0$.

Suppose $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, is real codimension 2.

In particular, $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ and $w = z^* A z + \overline{z^t B z} + z^t C z + E(z, \bar{z})$

Theorem (L.-Noell–Ravisankar '21)

Suppose

$$\text{rank} \begin{bmatrix} A^* \\ B \end{bmatrix} \geq 2.$$

If $f(z, \bar{z})$ is real-analytic CR function defined near the origin ($CR^\omega(M)$), then f extends holomorphically near the origin.

That is, every $f \in CR^\omega(M)$ is in $CR_H(M)$.

It is an “if and only if” when $E \equiv 0$.

$w = \bar{z}_2 z_2$ does not have this extension property, but $w = \bar{z}_2 z_2 + \bar{z}_2^3$ does.

In both cases, $\text{rank} \begin{bmatrix} A^* \\ B \end{bmatrix} = 1$.

Following is L.-Noell–Ravisankar '24.

Following is L.-Noell–Ravisankar '24.

In general $CR^k(M) \supset CR_P^k(M) \supset CR_H(M)$, for $k = 1, 2, \dots, \infty, \omega$.

Following is L.-Noell–Ravisankar '24.

In general $CR^k(M) \supset CR_P^k(M) \supset CR_H(M)$, for $k = 1, 2, \dots, \infty, \omega$.

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $0 \leq \lambda < \frac{1}{2}$,

Following is L.-Noell–Ravisankar '24.

In general $CR^k(M) \supset CR_P^k(M) \supset CR_H(M)$, for $k = 1, 2, \dots, \infty, \omega$.

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $0 \leq \lambda < \frac{1}{2}$,

$CR^k(M) \supsetneq CR_P^k(M)$ for all k .

Following is L.-Noell–Ravisankar '24.

In general $CR^k(M) \supset CR_P^k(M) \supset CR_H(M)$, for $k = 1, 2, \dots, \infty, \omega$.

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $0 \leq \lambda < \frac{1}{2}$,

$CR^k(M) \supsetneq CR_P^k(M)$ for all k .

$CR_H(M)$ functions do **not** all extend to a fixed neighborhood.

Following is L.-Noell–Ravisankar '24.

In general $CR^k(M) \supset CR_P^k(M) \supset CR_H(M)$, for $k = 1, 2, \dots, \infty, \omega$.

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $0 \leq \lambda < \frac{1}{2}$,

$CR^k(M) \supsetneq CR_P^k(M)$ for all k .

$CR_H(M)$ functions do **not** all extend to a fixed neighborhood.

$CR_P^\omega(M) = CR_H(M)$ and $CR_P^\omega(M)$ functions can be approximated on a fixed K (like Baouendi–Trèves).

Following is L.-Noell–Ravisankar '24.

In general $CR^k(M) \supset CR_P^k(M) \supset CR_H(M)$, for $k = 1, 2, \dots, \infty, \omega$.

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $0 \leq \lambda < \frac{1}{2}$,

$CR^k(M) \supsetneq CR_P^k(M)$ for all k .

$CR_H(M)$ functions do **not** all extend to a fixed neighborhood.

$CR_P^\omega(M) = CR_H(M)$ and $CR_P^\omega(M)$ functions can be approximated on a fixed K (like Baouendi–Trèves).

$CR_P^\infty(M) \supsetneq CR_H(M)$ and $CR_P^\infty(M)$ functions can **not** be approximated on a fixed K .

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $\lambda > \frac{1}{2}$,

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $\lambda > \frac{1}{2}$,

$CR^0(M) = C^0(M)$ can be approximated on a fixed K (like Baouendi–Trèves)

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $\lambda > \frac{1}{2}$,

$CR^0(M) = C^0(M)$ can be approximated on a fixed K (like Baouendi–Trèves)

$CR^k(M) = CR_p^k(M)$ for all k .

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $\lambda > \frac{1}{2}$,

$CR^0(M) = C^0(M)$ can be approximated on a fixed K (like Baouendi–Trèves)

$CR^k(M) = CR_P^k(M)$ for all k .

$CR_P^k(M) \supsetneq CR_H(M)$ for all k .

Theorem: For $w = z^2 + \bar{z}^2 + \lambda(z^2 + \bar{z}^2) + E(z, \bar{z})$, $E \in \mathbb{R}$, $\lambda > \frac{1}{2}$,

$CR^0(M) = C^0(M)$ can be approximated on a fixed K (like Baouendi–Trèves)

$CR^k(M) = CR_P^k(M)$ for all k .

$CR_P^k(M) \supsetneq CR_H(M)$ for all k .

$CR_H(M)$ functions do **not** all extend to a fixed neighborhood.

Theorem: For $w = |z_1|^2 - |z_2|^2$,

Theorem: For $w = |z_1|^2 - |z_2|^2$,

$$CR^\omega(M) = CR_P^\omega(M) = CR_H(M)$$

Theorem: For $w = |z_1|^2 - |z_2|^2$,

$$CR^\omega(M) = CR_P^\omega(M) = CR_H(M)$$

$CR^\omega(M)$ can be approximated on a fixed K .

Theorem: For $w = |z_1|^2 - |z_2|^2$,

$$CR^\omega(M) = CR_P^\omega(M) = CR_H(M)$$

$CR^\omega(M)$ can be approximated on a fixed K .

$CR_H(M)$ do **not** all extend to a fixed neighborhood.

Theorem: For $w = |z_1|^2 - |z_2|^2$,

$$CR^\omega(M) = CR_P^\omega(M) = CR_H(M)$$

$CR^\omega(M)$ can be approximated on a fixed K .

$CR_H(M)$ do **not** all extend to a fixed neighborhood.

$$CR^\infty(M) \supsetneq CR_P^\infty(M) \supsetneq CR_H(M)$$

Theorem: For $w = |z_1|^2 - |z_2|^2$,

$$CR^\omega(M) = CR_P^\omega(M) = CR_H(M)$$

$CR^\omega(M)$ can be approximated on a fixed K .

$CR_H(M)$ do **not** all extend to a fixed neighborhood.

$$CR^\infty(M) \supsetneq CR_P^\infty(M) \supsetneq CR_H(M)$$

$CR_P^\infty(M)$ can **not** be approximated on a fixed K .

Theorem: For $w = \bar{z}_1 z_2$,

Theorem: For $w = \bar{z}_1 z_2$,

Note that M is image of $\mathbb{C} \times \mathbb{R}$ under a holomorphic map.

Theorem: For $w = \bar{z}_1 z_2$,

Note that M is image of $\mathbb{C} \times \mathbb{R}$ under a holomorphic map.

$CR_P^k(M) = CR_H(M)$ for all k .

Theorem: For $w = \bar{z}_1 z_2$,

Note that M is image of $\mathbb{C} \times \mathbb{R}$ under a holomorphic map.

$CR_P^k(M) = CR_H(M)$ for all k .

M is “terrible” at CR points, we use Hanges–Trèves ('83) to move extension property from the CR singularity to the CR points along the complex curves.

Theorem: For $w = \bar{z}_1 z_2$,

Note that M is image of $\mathbb{C} \times \mathbb{R}$ under a holomorphic map.

$CR_P^k(M) = CR_H(M)$ for all k .

M is “terrible” at CR points, we use Hanges–Trèves ('83) to move extension property from the CR singularity to the CR points along the complex curves.

$CR_H(M)$ all extend to a fixed neighborhood
(and hence can be approximated on a fixed K).

Theorem: For $w = \bar{z}_1 z_2$,

Note that M is image of $\mathbb{C} \times \mathbb{R}$ under a holomorphic map.

$CR_P^k(M) = CR_H(M)$ for all k .

M is “terrible” at CR points, we use Hanges–Trèves ('83) to move extension property from the CR singularity to the CR points along the complex curves.

$CR_H(M)$ all extend to a fixed neighborhood
(and hence can be approximated on a fixed K).

$CR^k(M) \supsetneq CR_P^k(M)$ for every k .

Attaching discs can (and sometimes must) be iterated.

Attaching discs can (and sometimes must) be iterated.

Define $DH(X) = \bigcup \{\varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } X\}$

$DH^\ell(X) = DH(DH(\cdots DH(X) \cdots))$

Attaching discs can (and sometimes must) be iterated.

Define $DH(X) = \bigcup \{\varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } X\}$

$DH^\ell(X) = DH(DH(\cdots DH(X) \cdots))$

Say $M \subset \mathbb{C}^n$ satisfies the *DH condition* at p if for every neighborhood $U \subset M$ of p , there is an ℓ such that $DH^\ell(U)$ is a neighborhood of p in \mathbb{C}^n .

Attaching discs can (and sometimes must) be iterated.

Define $DH(X) = \bigcup \{\varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } X\}$

$DH^\ell(X) = DH(DH(\cdots DH(X) \cdots))$

Say $M \subset \mathbb{C}^n$ satisfies the *DH condition* at p if for every neighborhood $U \subset M$ of p , there is an ℓ such that $DH^\ell(U)$ is a neighborhood of p in \mathbb{C}^n .

Theorem: If $M \subset \mathbb{C}^n$ satisfies the DH condition at p , then every function $f \in CR_p^k(M)$ is a restriction of a holomorphic F at p .

Attaching discs can (and sometimes must) be iterated.

Define $DH(X) = \bigcup \{\varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } X\}$

$DH^\ell(X) = DH(DH(\cdots DH(X) \cdots))$

Say $M \subset \mathbb{C}^n$ satisfies the *DH condition* at p if for every neighborhood $U \subset M$ of p , there is an ℓ such that $DH^\ell(U)$ is a neighborhood of p in \mathbb{C}^n .

Theorem: If $M \subset \mathbb{C}^n$ satisfies the DH condition at p , then every function $f \in CR_p^k(M)$ is a restriction of a holomorphic F at p .

Via Severi:

Corollary: If $M \subset \mathbb{C}^n$ satisfies the DH condition at all CR singular points, then $CR_P^\omega(M) = CR_H(M)$.

Attaching discs can (and sometimes must) be iterated.

Define $DH(X) = \bigcup \{\varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } X\}$

$DH^\ell(X) = DH(DH(\cdots DH(X) \cdots))$

Say $M \subset \mathbb{C}^n$ satisfies the *DH condition* at p if for every neighborhood $U \subset M$ of p , there is an ℓ such that $DH^\ell(U)$ is a neighborhood of p in \mathbb{C}^n .

Theorem: If $M \subset \mathbb{C}^n$ satisfies the DH condition at p , then every function $f \in CR_p^k(M)$ is a restriction of a holomorphic F at p .

Via Severi:

Corollary: If $M \subset \mathbb{C}^n$ satisfies the DH condition at all CR singular points, then $CR_P^\omega(M) = CR_H(M)$.

E.g., for M given by $w = \bar{z}_1 z_2$, using DH^3 works.

Attaching discs can (and sometimes must) be iterated.

Define $DH(X) = \bigcup \{\varphi(\overline{\mathbb{D}}) : \varphi \text{ analytic discs attached to } X\}$

$DH^\ell(X) = DH(DH(\cdots DH(X) \cdots))$

Say $M \subset \mathbb{C}^n$ satisfies the *DH condition* at p if for every neighborhood $U \subset M$ of p , there is an ℓ such that $DH^\ell(U)$ is a neighborhood of p in \mathbb{C}^n .

Theorem: If $M \subset \mathbb{C}^n$ satisfies the DH condition at p , then every function $f \in CR_p^k(M)$ is a restriction of a holomorphic F at p .

Via Severi:

Corollary: If $M \subset \mathbb{C}^n$ satisfies the DH condition at all CR singular points, then $CR_P^\omega(M) = CR_H(M)$.

E.g., for M given by $w = \bar{z}_1 z_2$, using DH^3 works.

In fact for M , $CR_p^k(M) = CR_H(M)$ for all k .

If our discs come in families, we can use Kontinuitätssatz:

Suppose $U \subset \mathbb{C}^n$ is open and there exists a sequence of analytic discs φ_k converging (pointwise) to an analytic disc φ such that $\varphi_k(\overline{\mathbb{D}}) \subset U$ and $\varphi(\partial\mathbb{D}) \subset U$. Then every f holomorphic in U can be analytically continued to every point of $\varphi(\mathbb{D})$.

If our discs come in families, we can use Kontinuitätssatz:

Suppose $U \subset \mathbb{C}^n$ is open and there exists a sequence of analytic discs φ_k converging (pointwise) to an analytic disc φ such that $\varphi_k(\overline{\mathbb{D}}) \subset U$ and $\varphi(\partial\mathbb{D}) \subset U$. Then every f holomorphic in U can be analytically continued to every point of $\varphi(\mathbb{D})$.

For $\epsilon > 0$ let X_ϵ denote the ϵ -neighborhood of X . Define

$$\begin{aligned} SADH_q(X) = \{z \in \mathbb{C}^n : \text{for each } \epsilon > 0, \exists \text{ a continuous family of discs } \varphi_t: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n, \\ t \in [0, 1], z = \varphi_1(0), \varphi_t(\partial\mathbb{D}) \subset X_\epsilon \ \forall t \in [0, 1], \varphi_0 \equiv q, \text{ and} \\ \|\varphi_t(0) - q\| \text{ is a strictly increasing function of } t\}, \end{aligned}$$

We call $SADH_q(X)$ the *shrinking approximate disc hull of X at q* .

If our discs come in families, we can use Kontinuitätssatz:

Suppose $U \subset \mathbb{C}^n$ is open and there exists a sequence of analytic discs φ_k converging (pointwise) to an analytic disc φ such that $\varphi_k(\overline{\mathbb{D}}) \subset U$ and $\varphi(\partial\mathbb{D}) \subset U$. Then every f holomorphic in U can be analytically continued to every point of $\varphi(\mathbb{D})$.

For $\epsilon > 0$ let X_ϵ denote the ϵ -neighborhood of X . Define

$$\begin{aligned} SADH_q(X) = \{z \in \mathbb{C}^n : \text{for each } \epsilon > 0, \exists \text{ a continuous family of discs } \varphi_t: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n, \\ t \in [0, 1], z = \varphi_1(0), \varphi_t(\partial\mathbb{D}) \subset X_\epsilon \ \forall t \in [0, 1], \varphi_0 \equiv q, \text{ and} \\ \|\varphi_t(0) - q\| \text{ is a strictly increasing function of } t\}, \end{aligned}$$

We call $SADH_q(X)$ the *shrinking approximate disc hull of X at q* .

Theorem: If $SADH_q(M)$ contains an open set U , then there is some ball B centered at q so that every $f \in CR_H(M)$ extends to B .

If our discs come in families, we can use Kontinuitätssatz:

Suppose $U \subset \mathbb{C}^n$ is open and there exists a sequence of analytic discs φ_k converging (pointwise) to an analytic disc φ such that $\varphi_k(\overline{\mathbb{D}}) \subset U$ and $\varphi(\partial\mathbb{D}) \subset U$. Then every f holomorphic in U can be analytically continued to every point of $\varphi(\mathbb{D})$.

For $\epsilon > 0$ let X_ϵ denote the ϵ -neighborhood of X . Define

$$\begin{aligned} SADH_q(X) = \{z \in \mathbb{C}^n : \text{for each } \epsilon > 0, \exists \text{ a continuous family of discs } \varphi_t: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n, \\ t \in [0, 1], z = \varphi_1(0), \varphi_t(\partial\mathbb{D}) \subset X_\epsilon \ \forall t \in [0, 1], \varphi_0 \equiv q, \text{ and} \\ \|\varphi_t(0) - q\| \text{ is a strictly increasing function of } t\}, \end{aligned}$$

We call $SADH_q(X)$ the *shrinking approximate disc hull of X at q* .

Theorem: If $SADH_q(M)$ contains an open set U , then there is some ball B centered at q so that every $f \in CR_H(M)$ extends to B .

Remark: It is not just possible to iterate SADH.

If our discs come in families, we can use Kontinuitätssatz:

Suppose $U \subset \mathbb{C}^n$ is open and there exists a sequence of analytic discs φ_k converging (pointwise) to an analytic disc φ such that $\varphi_k(\overline{\mathbb{D}}) \subset U$ and $\varphi(\partial\mathbb{D}) \subset U$. Then every f holomorphic in U can be analytically continued to every point of $\varphi(\mathbb{D})$.

For $\epsilon > 0$ let X_ϵ denote the ϵ -neighborhood of X . Define

$$\begin{aligned} SADH_q(X) = \{z \in \mathbb{C}^n : \text{for each } \epsilon > 0, \exists \text{ a continuous family of discs } \varphi_t: \overline{\mathbb{D}} \rightarrow \mathbb{C}^n, \\ t \in [0, 1], z = \varphi_1(0), \varphi_t(\partial\mathbb{D}) \subset X_\epsilon \ \forall t \in [0, 1], \varphi_0 \equiv q, \text{ and} \\ \|\varphi_t(0) - q\| \text{ is a strictly increasing function of } t\}, \end{aligned}$$

We call $SADH_q(X)$ the *shrinking approximate disc hull of X at q* .

Theorem: If $SADH_q(M)$ contains an open set U , then there is some ball B centered at q so that every $f \in CR_H(M)$ extends to B .

Remark: It is not just possible to iterate SADH.

Remark: Without the shrinking hypothesis the result fails.

Fun little fact (appeared in Minsker '76):

Every continuous function on the closed unit disc $\overline{\mathbb{D}}$ can be written as a uniform limit of polynomials in z and \bar{z}^2 , that is, $P_\ell(z, \bar{z}^2)$.
In particular, \bar{z} is such a limit.

This is like showing that $CR = CR_P$ on $w = \bar{z}^2$.

Fun little fact (appeared in Minsker '76):

Every continuous function on the closed unit disc $\overline{\mathbb{D}}$ can be written as a uniform limit of polynomials in z and \bar{z}^2 , that is, $P_\ell(z, \bar{z}^2)$.
In particular, \bar{z} is such a limit.

This is like showing that $CR = CR_P$ on $w = \bar{z}^2$.

On the other hand, \bar{z} is not the limit of polynomials of the form $P_\ell(z, z\bar{z})$.
($CR \neq CR_P$ on $w = |z|^2$).

Thanks for listening!