Extending CR functions from codimension 2 CR singular manifolds in 3 dimensions

Jiří Lebl joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Extending CR functions from codimension 2 CR singular manifolds in <u>3 dimensions</u> any dimension

Jiří Lebl joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is $\operatorname{Im} z = 0$). Suppose $M \subset \mathbb{R}^n$ is a domain and $f: M \to \mathbb{C}$ is real-analytic. $\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F: V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically) Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is Im z = 0).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f \colon M \to \mathbb{C}$ is real-analytic.

 $\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F \colon V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)

Does not work in general:

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is Im z = 0).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f \colon M \to \mathbb{C}$ is real-analytic.

 $\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F \colon V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)

Does not work in general:

Note: all my submanifolds are embedded, all issues considered are local, and everything is real-analytic.

CR vectors

Let $M \subset \mathbb{C}^n$ be a submanifold,

$$T_p^{0,1}M = \left(\mathbb{C}\otimes T_pM\right) \cap \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_1}\Big|_p, \dots, \frac{\partial}{\partial \bar{z}_n}\Big|_p
ight\}$$

Definition: M is CR if

$$T^{0,1}M = igcup_{p\in M} T^{0,1}_p M$$
 is a vector bundle.

CR vectors

Let $M \subset \mathbb{C}^n$ be a submanifold,

$$T_p^{0,1}M = \left(\mathbb{C}\otimes T_pM
ight)\cap \operatorname{span}_{\mathbb{C}}\left\{rac{\partial}{\partialar{z}_1}\Big|_p,\ldots,rac{\partial}{\partialar{z}_n}\Big|_p
ight\}$$

Definition: M is CR if

$$T^{0,1}M = igcup_{p\in M} T^{0,1}_p M$$
 is a vector bundle.

 $F ext{ is holomorphic } \Rightarrow rac{\partial F}{\partial ar{z}_j} = 0 \Rightarrow Lig(F|_Mig) = 0 \; orall L \in \Gamma(\,T^{0,1}Mig).$

CR vectors

Let $M \subset \mathbb{C}^n$ be a submanifold,

$$T_p^{0,1}M = \left(\mathbb{C}\otimes T_pM
ight) \cap \operatorname{span}_{\mathbb{C}}\left\{rac{\partial}{\partial ar{z}_1}\Big|_p, \dots, rac{\partial}{\partial ar{z}_n}\Big|_p
ight\}$$

Definition: M is CR if

$$T^{0,1}M = igcup_{p\in M} T^{0,1}_p M$$
 is a vector bundle

 $egin{aligned} F ext{ is holomorphic} &\Rightarrow rac{\partial F}{\partial \overline{z}_j} = 0 \Rightarrow L(F|_M) = 0 \; orall L \in \Gamma(T^{0,1}M). \end{aligned}$ $egin{aligned} extbf{Definition:} \; f \colon M o \mathbb{C} \; ext{is } CR \; ext{if} \ Lf = 0 \; orall L \in \Gamma(T^{0,1}M). \end{aligned}$

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Idea of proof:

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Idea of proof:

Step 1) Write everything in sight in terms of z and \overline{z} (both f and the defining functions for M).

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Idea of proof:

- Step 1) Write everything in sight in terms of z and \overline{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\bar{z}s$ as possible, and plug that into the expression for f.

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Idea of proof:

- Step 1) Write everything in sight in terms of z and \overline{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\bar{z}s$ as possible, and plug that into the expression for f.
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining $\bar{z}s$.

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Idea of proof:

- Step 1) Write everything in sight in terms of z and \overline{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\overline{z}s$ as possible, and plug that into the expression for f.
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining $\bar{z}s$.

Step 4) ...

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

¹ Severi, F., Risoluzione generale del problema di Dirichlet per le funzioni biarmoniche, Atti Accad. Naz. Lincei, Rend., VI. Ser. **13** (1931), 795–804.

Idea of proof:

- Step 1) Write everything in sight in terms of z and \overline{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\overline{z}s$ as possible, and plug that into the expression for f.
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining $\overline{z}s$.

Step 4) ...

Step 5) Profit!

Definition: $f: M \to \mathbb{C}$ is CR if $Lf = 0 \ \forall \ L \in \Gamma(\mathbb{C} \otimes TM)$ such that $L|_p \in T_p^{0,1}M \ \forall p \in M$.

Definition: $f: M \to \mathbb{C}$ is CR if $Lf = 0 \,\forall \, L \in \Gamma(\mathbb{C} \otimes TM)$ such that $L|_p \in T_p^{0,1}M \,\forall p \in M$. $f: M \to \mathbb{C}$ is CR \Leftrightarrow it is CR on the CR submanifold $M_{CR} \subset M$ $(M_{CR} = \text{"CR points of } M")$

Definition: $f: M \to \mathbb{C}$ is CR if $Lf = 0 \ \forall \ L \in \Gamma(\mathbb{C} \otimes TM)$ such that $L|_p \in T_p^{0,1}M \ \forall p \in M$. $f: M \to \mathbb{C}$ is CR \Leftrightarrow it is CR on the CR submanifold $M_{CR} \subset M$ $(M_{CR} = \text{"CR points of } M")$

E.g. $M = \{w = |z|^2\} \subset \mathbb{C}^2$. $f = \overline{z}$ is CR (trivially), but f does not extend $(\frac{\partial}{\partial \overline{z}}|_0 f = 1 \neq 0)$

Definition: $f: M \to \mathbb{C}$ is CR if $Lf = 0 \,\forall \, L \in \Gamma(\mathbb{C} \otimes TM)$ such that $L|_p \in T_p^{0,1}M \,\forall p \in M$. $f: M \to \mathbb{C}$ is CR \Leftrightarrow it is CR on the CR submanifold $M_{CR} \subset M$ $(M_{CR} = \text{"CR points of } M")$

E.g. $M = \{w = |z|^2\} \subset \mathbb{C}^2$. $f = \overline{z}$ is CR (trivially), but f does not extend $(\frac{\partial}{\partial \overline{z}}|_0 f = 1 \neq 0)$

You could even take $f = \overline{z}^2$ to make $\frac{\partial}{\partial \overline{z}}|_0 f = 0$, but f still does not extend.

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

In (L.-Minor-Shroff-Son-Zhang '11) we proved that if M is real-analytic CR singular submanifold and $T^{0,1}M_{CR}$ extends to a vector bundle on M (so M is an image of a CR manifold), then there exists a real-analytic CR function on M that does not extend holomorphically. Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

In (L.-Minor-Shroff-Son-Zhang '11) we proved that if M is real-analytic CR singular submanifold and $T^{0,1}M_{CR}$ extends to a vector bundle on M (so M is an image of a CR manifold), then there exists a real-analytic CR function on M that does not extend holomorphically.

In (L.–Noell–Ravisankar '11) we proved a Severi type theorem for a real-analytic codimension 2 real-analytic CR singular manifold in \mathbb{C}^{n+1} $(n \geq 2)$ that is flat (subset of $\mathbb{C}^n \times \mathbb{R}$) and nondegenerate.

Α \boldsymbol{z}

Write a CR singular submanifold of codimension 2 in \mathbb{C}^{n+1} as (after a rotation by a unitary)

$$w =
ho(z, \overline{z})$$

 $= Q(z, \overline{z}) + E(z, \overline{z})$
 $= z^*Az + \overline{z^tBz} + z^tCz + E(z, \overline{z}),$
 $(z, w) \in \mathbb{C}^n \times \mathbb{C}, \quad
ho \text{ is } O(||z||)^2, \quad E \text{ is } O(||z||^3).$
 $A, B, C, n \times n \text{ complex matrices},$
 $z \text{ column vector},$
 $B, C \text{ symmetric.}$

Adam Coffman ('09) proved a normal form of Q in \mathbb{C}^3 up to local biholomorphisms (and it is a rather long list).

This was extremely useful.

Adam Coffman ('09) proved a normal form of Q in \mathbb{C}^3 up to local biholomorphisms (and it is a rather long list).

This was extremely useful.

This might be a good place to note that normal forms for codimension 2 CR singular manifolds has a long history:

C²: Bishop '65, Moser-Webster '83, Moser '85, Kenig-Webster '82, Gong '94, Huang-Krantz '95, Huang-Yin '09, Slapar '16, etc...

 \mathbb{C}^n $(n \geq 3)$ Dolbeault-Tomassini-Zaitsev '05, '11, Huang-Yin '09, '16, '17, Burcea '13, Gong-L. '15, Fang-Huang '18.

Coffman's table

976	A. COFFMAN TABLE 1. Normal forms for Theorem 7.1			
N	P			
$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$ $0 < \theta < \pi$	$\begin{pmatrix} a & b \\ b & d \end{pmatrix}$	5	$a>0,d>0,b\sim -b\in\mathbb{C}$	+ - 0
	$\begin{pmatrix} 0 & b \\ b & d \end{pmatrix}$	3	$b \ge 0, d \ge 0$	+ - 0
	$\begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$	3	$a > 0, b \ge 0$	+ - 0
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	2	$0 \le a \le d$	+ - 0
$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	2	$0 \le a \le d$	+ - 0
	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	1	b > 0	+
	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	0		+
$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & b \\ b & 1 \end{pmatrix}$	1	b > 0	$^{+0}$
	$\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$	2	Im(d) > 0	+
$\binom{0}{\tau} \begin{pmatrix} 0 & 1 \\ \tau & 0 \end{pmatrix} \\ 0 < \tau < 1$	$\begin{pmatrix} a & b \\ b & d \end{pmatrix}$	5	$b > 0, a = 1, (a, d) \sim (-a, -d)$	+ - 0
	$\begin{pmatrix} 0 & b \\ b & d \end{pmatrix}$	3	$b > 0, d = 1, d \sim -d$	+ - 0
	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	2	b > 0	+ - 0
	$\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$	3	$d \in \mathbb{C}$	$^{+0}$
	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	1		+
	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	1		+
$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} a & b \\ b & 1 \end{pmatrix}$	3	$b > 0, a \in \mathbb{C}$	+ - 0
	$\begin{pmatrix} 1 & b \\ b & 0 \end{pmatrix}$	1	b > 0	+ - 0
	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	1	b > 0	+ - 0
	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$	1	$a \ge 0$	$^{+0}$
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	0		0
	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	0		0
$\begin{pmatrix} 0 & 1 \\ 1 & i \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	3	$a > 0, d \in \mathbb{C}$	+ - 0
	$\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$	1	b > 0	$^{+0}$
	$\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$	1	$d \ge 0$	+
$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$	1	$a \ge 0$	+ - 0
	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	0		+
	$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$	1	$a \ge 0$	0
$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	0		+
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	0		0
	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	0		0

 $M \subset \mathbb{C}^{n+1}, (z, w) \in \mathbb{C}^n \times \mathbb{C}$ $M : w = \rho(z, \overline{z}) = Q(z, \overline{z}) + E(z, \overline{z}) = z^*Az + \overline{z^tBz} + z^tCz + E(z, \overline{z})$

Theorem (L.-Noell-Ravisankar)

Suppose

$$\operatorname{rank} \begin{bmatrix} A^* \\ B \end{bmatrix} \ge 2.$$

If $f(z, \overline{z})$ is real-analytic CR function defined near the origin, then f extends holomorphically near the origin. That is, $\exists F(z, w)$ such that

$$f(z,\overline{z})=F(z,
ho(z,\overline{z})).$$

Theorem (L.-Noell-Ravisankar)

Consider $M \subset \mathbb{C}^{n+1}$ given by $w = Q(z, \overline{z}) = z^*Az + \overline{z^tBz} + z^tCz$. Assume $\overline{\partial}Q \neq 0$. TFAE:

- (a) rank $\begin{bmatrix} A^* \\ B \end{bmatrix} \ge 2$
- (b) For every CR polynomial $f(z, \bar{z})$, $\exists!$ holo. poly. F(z, w) such that $f(z, \bar{z}) = F(z, Q(z, \bar{z}))$.

f homogeneous \Rightarrow F weighted homogeneous.

(c) Every CR real-linear $h(z, \overline{z})$ is holomorphic.

(d) M is not biholomorphically equivalent to one of the following (mutually inequivalent) exceptional cases:

(1)
$$w = \bar{z}_1 z_2 + \bar{z}_1^2$$
,
(2) $w = \bar{z}_1 z_2$,
(3) $w = |z_1|^2 + a \bar{z}_1^2$, $a \ge 0$
(4) $w = \bar{z}_1^2$.

$ar{\partial} Q \equiv 0,\, ext{that} ext{ is, } ext{rank} \left[egin{array}{c} A^* \ B \end{array} ight] = 0$

$$M: w = z^t C z + E(z, \bar{z})$$

$$M: w = z^t C z + E(z, \bar{z})$$

 $E \equiv 0$) M is complex and every "CR function" extends holomorphically. So for some E we may have extension.

$ar{\partial} Q \equiv 0, \, ext{that} ext{ is, } ext{rank} \left[egin{array}{c} A^* \ B \end{array} ight] = 0$

$$M: w = z^t C z + E(z, \bar{z})$$

 $E \equiv 0$) M is complex and every "CR function" extends holomorphically.

So for some E we may have extension.

$$E = \| z \|^4)$$
 M is given by $w = \| z \|^4$

and

$$f(z,ar{z})=\|z\|^2$$

is CR but equal to \sqrt{w} on M, so does not extend. So for some E we do not have extension. $M:w=Q(z,ar{z})+E(z,ar{z})$

 $E \equiv 0$) Extension does not hold. E.g. consider $M \subset \mathbb{C}^3$:

$$w=\overline{z}_1z_2$$

then \bar{z}_1 is CR as the CR vector field is $L = -z_2 \frac{\partial}{\partial \bar{z}_2}$ Note: The theorem is an if-and-only-if when $E \equiv 0$. $M:w=Q(z,ar{z})+E(z,ar{z})$

 $E \equiv 0$) Extension does not hold. E.g. consider $M \subset \mathbb{C}^3$:

$$w = \overline{z}_1 z_2$$

then \bar{z}_1 is CR as the CR vector field is $L = -z_2 \frac{\partial}{\partial \bar{z}_2}$ Note: The theorem is an if-and-only-if when $E \equiv 0$.

 $E \neq 0$) Extension may or may not hold depending on E. E.g.

$$w=ar{z}_1z_2+ar{z}_2^3$$

then extension holds (explicit computation), but if

$$w=\bar{z}_1z_2+\bar{z}_1^3$$

then extension does not hold $(\overline{z}_1 \text{ again})$.

Application: classification of CR images

Suppose $M \subset \mathbb{C}^{n+1}$ is a real-analytic CR singular submanifold of codimension 2, and there exists a real-analytic vector bundle \mathcal{V} on M such that $\mathcal{V}_p = T_p^{0,1}M$ for all $p \in M_{CR}$.

Equivalently (locally), \exists a generic submanifold $N \subset \mathbb{C}^{n+1}$ and a real-analytic CR map $\varphi \colon N \to \mathbb{C}^{n+1}$ such that $\varphi(N) = M$.

Application: classification of CR images

Suppose $M \subset \mathbb{C}^{n+1}$ is a real-analytic CR singular submanifold of codimension 2, and there exists a real-analytic vector bundle \mathcal{V} on M such that $\mathcal{V}_p = T_p^{0,1}M$ for all $p \in M_{CR}$.

Equivalently (locally), \exists a generic submanifold $N \subset \mathbb{C}^{n+1}$ and a real-analytic CR map $\varphi \colon N \to \mathbb{C}^{n+1}$ such that $\varphi(N) = M$.

Corollary

$$\begin{array}{l} M \ is \ equivalent \ to \ exactly \ one \ of \\ (1) \ w = \bar{z}_1 z_2 + \bar{z}_1^2 + O(\|z\|^3), \\ (2) \ w = \bar{z}_1 z_2 + O(\|z\|^3), \\ (3) \ w = |z_1|^2 + a \bar{z}_1^2 + O(\|z\|^3), \ a \ge 0, \\ (4) \ w = \bar{z}_1^2 + O(\|z\|^3). \\ (5) \ w = O(\|z\|^3). \end{array}$$

Thanks for listening!