Levi-flat Plateau Problem

Jiří Lebl joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Physical solution in \mathbb{R}^3 : Take a bent wire M, dip it in soap water then the bubble (soap film) it makes is H.

Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Physical solution in \mathbb{R}^3 : Take a bent wire M, dip it in soap water then the bubble (soap film) it makes is H.

In \mathbb{R}^3 a minimal surface is an isometric immersion of a Riemann surface using harmonic functions.

Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Physical solution in \mathbb{R}^3 : Take a bent wire M, dip it in soap water then the bubble (soap film) it makes is H.

In \mathbb{R}^3 a minimal surface is an isometric immersion of a Riemann surface using harmonic functions. (That sounds like complex analysis is involved!)

A complex analysis problem: Analytic disc with smooth boundary

Consider $M \subset \mathbb{C}^m$ is a one dimensional smooth curve. Find a one dimensional analytic disc with boundary M.

A complex analysis problem: Analytic disc with smooth boundary

Consider $M \subset \mathbb{C}^m$ is a one dimensional smooth curve. Find a one dimensional analytic disc with boundary M.

We could try to start with a smooth

$$f\colon S^1 o M$$

Then we ask for

$$F \colon \overline{\mathbb{D}} \to \mathbb{C}^m$$

holomorphic in \mathbb{D} , smooth up to the boundary, $F|_{S^1} = f$. Then $H = F(\overline{\mathbb{D}})$ is the solution.

A complex analysis problem: Analytic disc with smooth boundary

Consider $M \subset \mathbb{C}^m$ is a one dimensional smooth curve. Find a one dimensional analytic disc with boundary M.

We could try to start with a smooth

$$f\colon S^1 o M$$

Then we ask for

$$F \colon \overline{\mathbb{D}} \to \mathbb{C}^m$$

holomorphic in \mathbb{D} , smooth up to the boundary, $F|_{S^1} = f$. Then $H = F(\overline{\mathbb{D}})$ is the solution.

We solve the Dirichlet problem, and for F to be holomorphic we need all the negative Fourier coefficients of f to be zero:

$$\int_{S^1} f(z) z^k \ dz = 0$$

for all k = 0, 1, 2, 3, ...

Levi-flat as a "minimal surface"

Harvey-Lawson solve this sort of problem for complex manifolds in \mathbb{C}^m . What about a real hypersurface?

Levi-flat as a "minimal surface"

Harvey-Lawson solve this sort of problem for complex manifolds in \mathbb{C}^m . What about a real hypersurface?

Levi-flat *H*:

- 1) Levi-form zero
- 2) Solution to a Monge-Ampère like equation
- 3) Foliated by complex hypersurfaces:

A simple example: $\mathbb{C}^n \times \mathbb{R} \subset \mathbb{C}^{n+1}$.

Levi-flat Plateau problem

Given $M\subset\mathbb{C}^{n+1}$ a compact real codimension 2 submanifold, is there a Levi-flat hypersurface H with boundary M? (in this talk most everything will be real-analytic)

Levi-flat Plateau problem

Given $M \subset \mathbb{C}^{n+1}$ a compact real codimension 2 submanifold, is there a Levi-flat hypersurface H with boundary M? (in this talk most everything will be real-analytic)

For n=1 studied extensively (Bishop '65, Bedford-Gaveau '83, many many others ... e.g. Shcherbina '93, etc.)

Levi-flat Plateau problem

Given $M \subset \mathbb{C}^{n+1}$ a compact real codimension 2 submanifold, is there a Levi-flat hypersurface H with boundary M? (in this talk most everything will be real-analytic)

For n=1 studied extensively (Bishop '65, Bedford-Gaveau '83, many many others ... e.g. Shcherbina '93, etc.)

In $n \geq 2$, Dolbeault–Tomassini–Zaitsev ('05 and '11) found a possibly singular solution given some conditions on M (elliptic CR singular points, CR orbits of codimension 1 so nowhere minimal).

The nowhere-minimality is necessary, the ellipticity is not.

"CR" and "CR singular" submanifolds

A manifold is CR if dim $T_p^{0,1}M$ is constant.

If dim $T_p^{0,1}M$ is not constant in any neighborhood of q, q is a CR singularity.

"CR" and "CR singular" submanifolds

A manifold is CR if dim $T_p^{0,1}M$ is constant.

If dim $T_p^{0,1}M$ is not constant in any neighborhood of q, q is a CR singularity.

Real hypersurface: always CR

Real codimension two: generically isolated CR singularities

"CR" and "CR singular" submanifolds

A manifold is CR if dim $T_p^{0,1}M$ is constant.

If dim $T_p^{0,1}M$ is not constant in any neighborhood of q, q is a CR singularity.

Real hypersurface: always CR

Real codimension two: generically isolated CR singularities

A CR M is nowhere minimal if through each point $p \in M$ there is a smaller CR submanifold $P_p \subset M$ with the same CR dimension.

Suppose $M=\partial H\subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H. If M is CR, it is of CR dimension n (M is complex) or n-1. As M is compact, it is not complex.

Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H.

If M is CR, it is of CR dimension n (M is complex) or n-1.

As M is compact, it is not complex.

CR vector fields of M are also CR vector fields of H. Levi-flat $H \Rightarrow$ we can't travel from one leaf of H to another.

7 / 21

Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H.

If M is CR, it is of CR dimension n (M is complex) or n-1.

As M is compact, it is not complex.

CR vector fields of M are also CR vector fields of H. Levi-flat $H \Rightarrow$ we can't travel from one leaf of H to another.

 \Rightarrow At a CR point of M, the CR orbit must be of smaller dimension than M

Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H.

If M is CR, it is of CR dimension n (M is complex) or n-1.

As M is compact, it is not complex.

CR vector fields of M are also CR vector fields of H. Levi-flat $H \Rightarrow$ we can't travel from one leaf of H to another.

- \Rightarrow At a CR point of M, the CR orbit must be of smaller dimension than M
- $\Rightarrow M$ is nowhere minimal.

The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

When n=1 every codimension 2 real submanifold is nowhere minimal (it is totally real).

The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

When n=1 every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let's first ask locally:

The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

When n = 1 every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let's first ask locally:

Near CR point?

The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

When n = 1 every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let's first ask locally:

Near CR point? Yes $(n \ge 2)$ if CR orbits are all of real codimension 1, possibly no otherwise (example in L. '06). (Trivially yes if n = 1, but not unique!)

The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

When n = 1 every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let's first ask locally:

Near CR point? Yes $(n \ge 2)$ if CR orbits are all of real codimension 1, possibly no otherwise (example in L. '06). (Trivially yes if n = 1, but not unique!)

Near a CR singular point?

The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

When n = 1 every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let's first ask locally:

Near CR point? Yes $(n \ge 2)$ if CR orbits are all of real codimension 1, possibly no otherwise (example in L. '06). (Trivially yes if n = 1, but not unique!)

Near a CR singular point? Yes $(n \ge 2)$ if the CR singularity is nondegenerate (or an exceptional case), Fang-Huang '17.

In n=1, not always. Yes if the CR singularity is e.g. elliptic. (e.g. Bishop '65, Moser-Webster '82, Moser '85, Huang-Yin '09 ... lots of others)

CR singularity

A codimension 2 CR singular submanifold M is locally

$$w=
ho(z,ar{z})=A(z,ar{z})+B(z,z)+\overline{B(z,z)}+O(\|z\|^3)$$

 $(z, w) \in \mathbb{C}^n \times \mathbb{C}$, A sesquilinear, B bilinear.

CR singularity

A codimension 2 CR singular submanifold M is locally

$$w=
ho(z,ar{z})=A(z,ar{z})+B(z,z)+\overline{B(z,z)}+O(\|z\|^3)$$

 $(z, w) \in \mathbb{C}^n \times \mathbb{C}$, A sesquilinear, B bilinear.

M is A-nondegenerate (or just nondegenerate) if A is nondegenerate. (elliptic if A is positive definite, and B has small eigenvalues)

CR singularity

A codimension 2 CR singular submanifold M is locally

$$w = \rho(z, \bar{z}) = A(z, \bar{z}) + B(z, z) + \overline{B(z, z)} + O(\|z\|^3)$$

 $(z, w) \in \mathbb{C}^n \times \mathbb{C}$, A sesquilinear, B bilinear.

M is A-nondegenerate (or just nondegenerate) if A is nondegenerate. (elliptic if A is positive definite, and B has small eigenvalues)

To be locally boundary of a Levi-flat hypersurface, we need to have, after a change of variables, A to be real-valued (Hermitian) and also the " $O(\|z\|^3)$ " to be real-valued.

A theorem

Theorem (L.-Noell-Ravisankar '17, '18)

Let $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, $n \geq 2$, be a bounded domain with connected real-analytic boundary such that $\partial \Omega$ has only A-nondegenerate CR singularities. Let $\Sigma \subset \partial \Omega$ be the set of CR singularities of $\partial \Omega$. Let $f : \partial \Omega \to \mathbb{C}^{n+1}$ be a real-analytic embedding that is CR at CR points of $\partial \Omega$ and takes CR points of $\partial \Omega$ to CR points of $f(\partial \Omega)$.

Then, there exists a real-analytic CR map $F: \overline{\Omega} \to \mathbb{C}^{n+1}$ such that $F|_{\partial\Omega} = f$ and $F|_{\overline{\Omega}\setminus\Sigma}$ is an immersion.

In other words, $H = F(\overline{\Omega})$ is the solution of the Levi-flat Plateau problem for $M = f(\partial\Omega)$.

Work along "leaves", extend $f(\cdot, s)$ using Hartogs-Bochner (really Martinelli), or Severi and then Hartogs.

Work along "leaves", extend $f(\cdot, s)$ using Hartogs-Bochner (really Martinelli), or Severi and then Hartogs.

Prove regularity of F in the interior of Ω .

Work along "leaves", extend $f(\cdot, s)$ using Hartogs-Bochner (really Martinelli), or Severi and then Hartogs.

Prove regularity of F in the interior of Ω .

Prove regularity at CR points and at the CR singularities of M.

Work along "leaves", extend $f(\cdot, s)$ using Hartogs-Bochner (really Martinelli), or Severi and then Hartogs.

Prove regularity of F in the interior of Ω .

Prove regularity at CR points and at the CR singularities of M.

If the Jacobian determinant of F is zero somewhere, then it vanishes on too large of a set (if $n \geq 2$) contradicting f being a diffeomorphism.

A better result via Fang-Huang

We get a better result if $f(\partial\Omega)$ also has only nondegenerate singularities by applying Fang-Huang.

Corollary

Let $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, $n \geq 2$, be a bounded domain with connected real-analytic boundary such that $\partial \Omega$ has only A-nondegenerate CR singularities, and let $f: \partial \Omega \to \mathbb{C}^{n+1}$ be a real-analytic embedding that is CR at CR points of $\partial \Omega$. Assume that $f(\partial \Omega)$ has only A-nondegenerate CR singularities. Further assume that either $n \geq 3$ or no CR singularity of $f(\partial \Omega)$ is the exceptional case (every CR singularity has an elliptic direction).

Then, there exists a real-analytic CR map $F: \overline{\Omega} \to \mathbb{C}^{n+1}$ such that $F|_{\partial\Omega} = f$ and F is an immersion on $\overline{\Omega}$.

(exceptional case:

$$w = |z_1|^2 - |z_2|^2 + \lambda(z_1^2 + \bar{z}_1^2) + \lambda(z_2^2 + \bar{z}_2^2) + O(||z||^3), \ \lambda \ge \frac{1}{2}$$

Examples... (n = 1)

Coordinates will be $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

Coordinates will be $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

$$N\subset\mathbb{C} imes\mathbb{R}$$
: $s=|z|^2$

$$F(z,s)=(z,zs+s^2)$$

Coordinates will be $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

$$N\subset\mathbb{C} imes\mathbb{R}$$
: $s=|z|^2$

$$F(z,s)=(z,zs+s^2)$$

Elliptic singularity,

Coordinates will be $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

$$N\subset\mathbb{C} imes\mathbb{R}$$
: $s=|z|^2$

$$F(z,s)=(z,zs+s^2)$$

Elliptic singularity, $F|_N$ a diffeomorphism,

Coordinates will be $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

$$N \subset \mathbb{C} \times \mathbb{R}$$
: $s = |z|^2$

$$F(z,s)=(z,zs+s^2)$$

Elliptic singularity, $F|_N$ a diffeomorphism, but F is a finite map, not an immersion (on either side of N)

Coordinates will be $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

$$N\subset \mathbb{C} imes \mathbb{R}$$
: $s=|z|^2$

$$F(z,s)=(z,zs+s^2)$$

Elliptic singularity, $F|_N$ a diffeomorphism, but F is a finite map, not an immersion (on either side of N)

$$F(z, s) = (z, zs)$$
 is even worse

(F(N)) is degenerate in both cases)

$$N\subset\mathbb{C}\times\mathbb{R}$$
: Im $z=0$

$$F(z,s) = (z + is, s^2 + z^2)$$

$$N\subset\mathbb{C} imes\mathbb{R}$$
: Im $z=0$ $F(z,s)=(z+is,s^2+z^2)$ N is CR (totally-real),

$$egin{aligned} N \subset \mathbb{C} imes \mathbb{R} \colon & \operatorname{Im} z = 0 \ F(z,s) = (z+is,s^2+z^2) \ N & \operatorname{is} & \operatorname{CR} ext{ (totally-real)}, \ F(N) & \operatorname{is, in} & (\xi,\eta) \in \mathbb{C}^2, \ \eta = |\xi|^2 \end{aligned}$$

$$egin{aligned} N \subset \mathbb{C} imes \mathbb{R} \colon & \operatorname{Im} z = 0 \ F(z,s) = (z+is,s^2+z^2) \ N & \operatorname{is} & \operatorname{CR} ext{ (totally-real)}, \ F(N) & \operatorname{is, in} & (\xi,\eta) \in \mathbb{C}^2, \ \eta = |\xi|^2 \end{aligned}$$

F(N) is elliptic, CR singular Bishop surface, A-nondegenerate (elliptic) ... (F is not an immersion on either side of N!)

$$egin{aligned} N \subset \mathbb{C} imes \mathbb{R} \colon & \operatorname{Im} z = 0 \ F(z,s) = (z+is,s^2+z^2) \ N & \operatorname{is} & \operatorname{CR} ext{ (totally-real)}, \ F(N) & \operatorname{is}, & \operatorname{in} \ (\xi,\eta) \in \mathbb{C}^2, \ \eta = |\xi|^2 \end{aligned}$$

F(N) is elliptic, CR singular Bishop surface, A-nondegenerate (elliptic) ... (F is not an immersion on either side of N!)

Any codimension-two submanifold of \mathbb{C}^2 is locally an image of a totally-real submanifold via a CR embedding.

$$egin{aligned} N \subset \mathbb{C} imes \mathbb{R} \colon & \operatorname{Im} z = 0 \ F(z,s) = (z+is,s^2+z^2) \ N & \operatorname{is} & \operatorname{CR} & \operatorname{(totally-real)}, \ F(N) & \operatorname{is, in} & (\xi,\eta) \in \mathbb{C}^2, \ \eta = |\xi|^2 \end{aligned}$$

F(N) is elliptic, CR singular Bishop surface, A-nondegenerate (elliptic) ... (F is not an immersion on either side of N!)

Any codimension-two submanifold of \mathbb{C}^2 is locally an image of a totally-real submanifold via a CR embedding.

This is impossible when $n \geq 2$ and F(N) is A-nondegenerate.

$$N \subset \mathbb{C}^2 \times \mathbb{R}$$
: $s = z_1 + \bar{z}_1 + |z_2|^2$

N is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

$$N\subset\mathbb{C}^2 imes\mathbb{R}$$
: $s=z_1+ar{z}_1+|z_2|^2$

N is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

$$egin{align} F(z,s) &= (z,s^2 + is^3) \ & ext{In } (\xi,\sigma+i au) \in \mathbb{C}^2 imes \mathbb{C} \ & ext{} F(N) ext{ is } \ &\sigma &= (\xi_1 + ar{\xi}_1 + |\xi_2|^2)^2 \qquad ext{and} \qquad au &= (\xi_1 + ar{\xi}_1 + |\xi_2|^2)^3, \ \end{aligned}$$

$$N\subset\mathbb{C}^2 imes\mathbb{R}$$
: $s=z_1+ar{z}_1+|z_2|^2$

N is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

$$F(z,s) = (z,s^2 + is^3)$$

In $(\xi,\sigma+i au) \in \mathbb{C}^2 \times \mathbb{C}$
 $F(N)$ is
 $\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2$ and $\tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3$,

F(N) is CR singular, $F|_N$ is a diffeomorphism, $F|_N$ is a CR diffeomorphism outside the CR singularity,

$$N\subset\mathbb{C}^2 imes\mathbb{R}$$
: $s=z_1+ar{z}_1+|z_2|^2$

N is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

$$F(z,s) = (z,s^2 + is^3)$$

In $(\xi,\sigma+i au) \in \mathbb{C}^2 \times \mathbb{C}$
 $F(N)$ is $\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2$ and $\tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3$,

F(N) is CR singular, $F|_N$ is a diffeomorphism, $F|_N$ is a CR diffeomorphism outside the CR singularity,

The singular(!) Levi-flat hypersurface $\{\sigma^3=\tau^2\}$ is the unique Levi-flat hypersurface that contains F(N).

$$N\subset\mathbb{C}^2 imes\mathbb{R}$$
: $s=z_1+ar{z}_1+|z_2|^2$

N is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

$$F(z,s) = (z,s^2 + is^3)$$

In $(\xi,\sigma+i au) \in \mathbb{C}^2 \times \mathbb{C}$
 $F(N)$ is
 $\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2$ and $\tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3$,

F(N) is CR singular, $F|_N$ is a diffeomorphism, $F|_N$ is a CR diffeomorphism outside the CR singularity,

The singular(!) Levi-flat hypersurface $\{\sigma^3 = \tau^2\}$ is the unique Levi-flat hypersurface that contains F(N).

The singularity of F(N) is degenerate!

$$egin{aligned} N \subset \mathbb{C}^n imes \mathbb{R}\colon & s = \|z\|^2 \ F(z,s) = (z,s^2) \ & ext{In } (\xi,\sigma) \in \mathbb{C}^n imes \mathbb{C}, \ & F(N)\colon & \sigma = \|\xi\|^4 \end{aligned}$$

F(N) is CR singular and degenerate in every sense.

$$N \subset \mathbb{C}^n \times \mathbb{R}$$
: $s = ||z||^2$

$$F(z,s)=(z,s^2+is^3)$$

$$F(N): \sigma = \|\xi\|^4$$
 and $\tau = \|\xi\|^6$

$$egin{aligned} N \subset \mathbb{C}^n imes \mathbb{R}\colon & s = \|z\|^2 \ F(z,s) = (z,s^2 + is^3) \ F(N)\colon \sigma = \|\xi\|^4 \quad ext{and} \quad au = \|\xi\|^6 \end{aligned}$$

F(N) is degenerate, and the singular $\{\sigma^3 = \tau^2\}$ is the unique Levi-flat that contains F(N).

F(N) is an example of the necessity of nondegeneracy in Fang-Huang.

Examples... (now think globally)

$$\Omega \subset \mathbb{C}^n \times \mathbb{R}$$
: $||z||^2 + (s + \epsilon)^2 < 1$
 $F(z,s) = (z,s^2)$
In $(\xi,\sigma) \in \mathbb{C}^n \times \mathbb{R}$,
 $F(\partial \Omega)$ is $4\epsilon^2 \sigma = (1 - \epsilon^2 - ||\xi||^2 - \sigma)^2$
 $F|_{\partial \Omega}$ is a diffeomorphism,
 $F(\partial \Omega)$ has CR singularities at
 $\xi = 0$, $4\epsilon^2 \sigma = (1 - \epsilon^2 - \sigma)^2$ (isolated)
 $\sigma = 0$ and $||\xi||^2 = 1 - \epsilon^2$ (not isolated, images of CR points) but ...

Examples... (now think globally)

$$\Omega\subset\mathbb{C}^n imes\mathbb{R}: \qquad \|z\|^2+(s+\epsilon)^2<1 \ F(z,s)=(z,s^2)$$

$$\operatorname{In}\ (\xi,\sigma)\in\mathbb{C}^n imes\mathbb{R}, \ F(\partial\Omega)\ ext{is}\ 4\epsilon^2\sigma=(1-\epsilon^2-\|\xi\|^2-\sigma)^2$$

 $F|_{\partial\Omega}$ is a diffeomorphism,

 $F(\partial\Omega)$ has CR singularities at

$$\xi = 0$$
, $4\epsilon^2 \sigma = (1 - \epsilon^2 - \sigma)^2$ (isolated)

 $\sigma = 0$ and $\|\xi\|^2 = 1 - \epsilon^2$ (not isolated, images of CR points)

but ... F is not 1-1, nor an immersion!

$$\Omega\subset\mathbb{C}^n imes\mathbb{R}$$
: $\|z\|^2+(s+\epsilon)^2<1$ $F(z,s)=(z,1-4s^2+i(8s^3-2s))$ $F|_{\partial\Omega}$ is a diffeomorphism, $F(\partial\Omega)$ has only (two) elliptic CR singularities, but ...

$$\Omega\subset\mathbb{C}^n imes\mathbb{R}: \qquad \|z\|^2+(s+\epsilon)^2<1 \ F(z,s)=(z,1-4s^2+i(8s^3-2s))$$

 $F|_{\partial\Omega}$ is a diffeomorphism, $F(\partial\Omega)$ has only (two) elliptic CR singularities,

but ... F is not 1-1 on Ω

A final example ...

Let
$$H$$
 in $(\xi,\eta)\in\mathbb{C}^2$ be
$$\mathrm{Im}(\xi^2+\eta^2)=0,\qquad |\xi|^2+|\eta+\epsilon|^2\leq 1$$
 H is singular (as a variety) at the origin

A final example ...

Let
$$H$$
 in $(\xi,\eta)\in\mathbb{C}^2$ be
$$\mathrm{Im}(\xi^2+\eta^2)=0, \qquad |\xi|^2+|\eta+\epsilon|^2\leq 1$$
 H is singular (as a variety) at the origin
$$M=\text{``}\partial H\text{'`}$$

$$\mathrm{Im}(\xi^2+\eta^2)=0, \qquad |\xi|^2+|\eta+\epsilon|^2=1$$
 M has isolated CR singularities at
$$\left(0,-\epsilon\pm 1\right), \quad \left(0,\pm i\sqrt{1-\epsilon^2}\right), \quad \left(\pm i\sqrt{1-\frac{\epsilon^2}{4}},\frac{-\epsilon}{2}\right)$$

A final example ...

Let
$$H$$
 in $(\xi,\eta)\in\mathbb{C}^2$ be
$$\operatorname{Im}(\xi^2+\eta^2)=0, \qquad |\xi|^2+|\eta+\epsilon|^2\leq 1$$
 H is singular (as a variety) at the origin
$$M=\text{``}\partial H\text{''}$$

$$\operatorname{Im}(\xi^2+\eta^2)=0, \qquad |\xi|^2+|\eta+\epsilon|^2=1$$
 M has isolated CR singularities at $\left(0,-\epsilon\pm 1\right), \quad \left(0,\pm i\sqrt{1-\epsilon^2}\right), \quad \left(\pm i\sqrt{1-\frac{\epsilon^2}{4}},\frac{-\epsilon}{2}\right)$ H is not an image of a domain in $\mathbb{C}\times\mathbb{R}!$ (There is nothing special about \mathbb{C}^2 here).

Thank you!