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Hypersurface in Cn

Any smooth hypersurface M can be locally written as

Imw =
nX

j=1

�j jzj j2 + E(z ; �z ;Rew)

for E 2 O(3), and �j = �1; 0; 1.
The form

Pn
j=1 �j jzj j2 is the Levi-form at the origin.

Define manifold with boundary H+ by

Imw �
nX

j=1

�j jzj j2 + E(z ; �z ;Rew)

If f 2 O(H+ nM ) \C1(H+), then f is CR on M , that is,
�f = 0 for every � 2 �(T 0;1M )

Here T 0;1
p M = spanC
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Lewy extension

M : Imw =
nX

j=1

�j jzj j2 + E H+ : Imw �
nX

j=1

�j jzj j2 + E

Theorem (Lewy extension)

Let M ;H+ � Cn+1, n � 1, be as above.

Then 9 a neighborhood U of 0, such that given
f 2 CR(M ) \C1(M ):
(i) If the Levi-form at 0 has a positive eigenvalue,

then 9 F 2 C1(U \H+) \ O(U \H+ nM ) such that
F jM\U = f jM\U

(ii) If the Levi-form at 0 has eigenvalues of both signs,
then 9 F 2 O(U ) such that F jM\U = f jM\U
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Real-analytic CR functions

Theorem (Severi)

Suppose M � Cn+1 is a real-analytic hypersurface
and f 2 CR(M ) \C!(M )

Then 9 neighborhood U of M and
F 2 O(U ) s.t. F jM\U = f jM\U .
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Hypersurfaces in Cn
� R

Write coordinates as (z ; s) 2 Cn � R.

Call the sets Cn � fsg the leaves of Cn � R.
For X � Cn � R define X(s) = fz 2 Cn j (z ; s) 2 X g
Let M � Cn � R be a smooth real hypersurface.

T 0;1
p M = spanC

n
@
@�zk

o
\ C
TpM = T 0;1

p M(s)

M is CR at p if dimT 0;1
q M is constant on M near p.

Let MCR be the set of CR points of M .

Otherwise M has a CR singularity at p.

f 2 C1(M ) is CR if �f = 0 for all � 2 �(T 0;1MCR).

(Equivalently, �f = 0 for all � 2 �(C
TM ) where �p 2 T 0;1
p M

for all p).
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Real-analytic CR case

(Severi strikes again)

Suppose M � Cn � R is a real-analytic CR hypersurface
and f 2 CR(M ) \C!(M )

Then 9 a neighborhood U � Cn+1 of M � Cn � R � Cn+1 and

F 2 O(U ) s.t. F jM = f .
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Smooth extension in the CR case

Theorem (Special case of Hill-Taiani ’84)

Let M � Cn � R, n � 2, be a real smooth CR hypersurface
of CR dimension n � 1 (not complex). Let p = (z0; s0) 2 M.
Let (a ; b) be the number of positive and negative eigenvalues
of the Levi-form of M(s0) at z0.

Then 9 a neighborhood U � Cn � R of p,
such that given f 2 C1(M ) \CR(M ):
(i) If a � 1, and H+ is the corresponding side,

then 9 F 2 C1(U \H+) \CR(U \H+ nM )

such that f jM\U = F jM\U .
(ii) If a � 1 and b � 1,

then 9 F 2 C1(U ) \CR(U )

such that f jM\U = F jM\U .



9 / 27

CR singular submanifolds and Cn
� R

CR singular manifolds in C2 of real dim 2 first studied by
Bishop (’65).

Later by Moser-Webster, Moser, Kenig-Webster, Gong,
Huang-Krantz, Huang, Huang-Yin, etc...
Mostly interested in normal form.

In two dimensions we (at least formally) can generally realize
such manifolds as real hypersurfaces in C� R.

Higher dimensions far less understood.
See e.g. Huang-Yin, Burcea, Gong-L.,
Dolbeault-Tomassini-Zaitsev, Coffman, Slapar,
(and of course L.-Noell-Ravisankar), etc...

In Cm for m > 2 generally a codimension 2 submanifold is not
realizable as a submanifold of Cm�1 � R.
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CR singular submanifolds and Cn
� R

A real codimension 2 CR singular submanifold M � Cm does
not in general have the extension property in the analytic case.
(Harris ’78, L.-Minor-Shroff-Son-Zhang).

Simplest example: Let M in (z ;w) 2 Cn � C be given by

w = z1�z1

Then �z1 =
w
z1 on M and so does not extend to a neighborhood.

In early 20th century several authors considered extensions of
holomorphic functions (e.g. Hartogs phenomenon) in Cn � Rk

(e.g. Bochner, Brown, Severi, etc...)
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CR singular hypersurface in Cn
� R

Let M � Cn � R be a hypersurface with a CR singularity.
Write M as

s = Q(z ; �z ) + E(z ; �z )

where Q is a real quadratic form, and E 2 O(3).

If Q is nondegenerate then the CR singularity is isolated.

Write Q(z ; �z ) = A(z ; �z ) +B(z ; z ) +B(z ; z )
for Hermitian form A and bilinear B .

Diagonalize A

s =
aX

j=1

jzj j2 �
a+bX

j=a+1

jzj j2 +B(z ; z ) +B(z ; z ) + E(z ; �z );

We can’t generally also diagonalize B (unless a = n).

Define manifold with boundary H+ by

s �
aX

j=1

jzj j2 �
a+bX

j=a+1

jzj j2 +B(z ; z ) +B(z ; z ) + E(z ; �z )
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Real analytic CR singular case

Let M be defined by

s =
aX

j=1

jzj j2 �
a+bX

j=a+1

jzj j2 +B(z ; z ) +B(z ; z ) + E(z ; �z )

= A+B +B + E = Q + E

Theorem (L.-Noell-Ravisankar ’16)
Suppose M is real-analytic (E is real-analytic),
A is nondegenerate (a + b = n), n � 2, and
f 2 C!(M ) \CR(MCR).

Then 9 neighborhood U of 0 in Cn � C and
F 2 O(U ) such that F jM\U = f jM\U .
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Smooth CR singular case

H+ : s �Pa
j=1jzj j2�

Pa+b
j=a+1jzj j2 +B(z ; z )+B(z ; z )+E(z ; �z )

M : s =
Pa

j=1jzj j2 �
Pa+b

j=a+1jzj j2 +B(z ; z ) +B(z ; z ) +E(z ; �z )

Theorem (L.-Noell-Ravisankar ’17)

Suppose Q is nondegenerate, and a � 2.
Then 9 a neighborhood U of 0,
such that given f 2 C1(M ) \CR(M ):
(i) If a � 2,

then 9 F 2 C1(U \H+) \CR(U \H+ nM )

such that F jM\U = f jM\U .
(ii) If a � 2 and b � 2,

then 9 F 2 C1(U ) \CR(U )

such that F jM\U = f jM\U .
In either case, F has a formal power series in z and s at 0.
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Levi-form on the leaves

There are two problems for the extension:

1) existence of the extension

2) regularity up to the boundary

For the first problem, the two eigenvalues are needed.

M : s = A(z ; �z ) +B(z ; z ) +B(z ; z ) + E(z ; �z )

If A has two positive eigenvalues, then the Levi-form of M(s)
has at least one positive eigenvalues.
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Some sort of nondegeneracy is necessary

Example 1: Define M by s = kzk4 (isolated CR singularity).

The function
p

s is C!(M ) (it equals kzk2 on M ).

It is CR, and the unique extension to H+ is
p

s ,
not smooth at the origin.

Example 2: Write z = (z 0; z 00). Define M by
s =

�kz 0k2 � kz 00k2�3.
The function 3

p
s is C!(M ) (equals kz 0k2 � kz 00k2 on M ).

It is CR, and the unique extension to H+ is 3
p

s ,
not smooth at points of H+ where s = 0 (including interior).

CR singularity is large. All points where s = 0 are CR singular.
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CR case: one nonzero eigenvalue is necessary

Define M � C2 � R and f by

Im z1 = s jz2j2 ; f (z ; s) =

8<
:

e�1=s2

z1+is if s 6= 0;
0 if s = 0:

The Levi-form is zero when s = 0.
Extension of f to neither side is possible near 0.
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CR singular case: two eigenvalues of the same sign are
necessary

Define M � C2 � R and f by

M : s = jz1j2 � jz2j2 ; f (z ; s) =

8>><
>>:

1
z1 e

�1=s2
if s > 0,

0 if s = 0,
1
z2 e

�1=s2
if s < 0.

f 2 C1(M ) \CR(M ) but no extension exists due to the poles.
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Analogue of Baouendi-Treves is not true

An idea for extension is to generalize Baouendi-Treves (B-T)
(approximation by polynomials in z and s).

But M :
s = jz1j2 � jz2j2

cannot have B-T.

There is a disc through every point attached to M , so B-T
would imply extension to a neighborhood.

Question: What extra hypotheses to add to B-T to make it
work.
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Two eigenvalues of both signs needed for extension to
a neighborhood

Define M � C3 � R and f by

M : s = jz1j2 + jz2j2 � jz3j2 ; f (z ; s) =

(
0 if s � 0,
1
z3 e

�1=s2
if s < 0.

Again, f 2 C1(M ) \CR(M )

And f extends above M , but not below M .
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There exists an example that extends only to one side
at every point.

Let M � C2 � R be

s = jz1j2 + jz2j2 = kzk2;

g : S3 � C2 ! C a smooth CR function not extending to the
outside of S3 through any point (e.g. Catlin or Hakim-Sibony).

f (z ; s) =

8<
:e�1=s2

g
� zp

s

�
if s < 0,

0 if s = 0,

is smooth, CR, extends above M (to H+), but not below
through any point.
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Extension fails in n = 1.

Let M � C� R be a nonparabolic Bishop surface

s = jz j2 + �z 2 + ��z 2; (where 0 � � <1 and � 6= 1
2):

Define a smooth f : C! R that is zero on the first quadrant of
C and positive elsewhere.

Parametrize M by z , then f (z ; �z ) is smooth on M .
The CR condition is vacuous.

For every s 6= 0, the leaf

(H+)(s) = fz 2 C j s � jz j2 + �z 2 + ��z 2g

is either empty, or has part of its boundary in the first
quadrant. So f cannot extend.
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Example: Topology of leaves can be a problem

Define M by
s = jz1j2 � jz2j2 + �(z 2

1 + �z 2
1 )

for � > 1
2 .

For s > 0, the manifold with boundary (H+)(s) has
disconnected boundary.

Construct a function that is a different constant on each
boundary component for each (H+)(s).
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Example: Topology for degenerate M can be evil

Take �(x ) = sin2(1=x )e�1=x2
, and let M be given by

s = �(kzk2)

(H+)(s) has multiple components with disconnected boundary.

The function kzk2 is C1(M ) \CR(M ) but has no extension.

The CR singularity is large (an infinite set of concentric circles).
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Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions
on the model manifold s = Q(z ; �z ).

2) Iterate the above to obtain a formal power series solution.

3) Extend near the CR points using Hill-Taiani.

4) Construct families of analytic discs inside a single leaf
attached to CR points of M shrinking to a CR point of M .

5) Apply Kontinuitätssatz to find an extension F . (technicality:
proving single valuedness, M(s) and (H+)(s) need not be
connected, and (H+)(s) may not be simply connected.)
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Proof of the theorem, cont.

6) Prove that F is continuous up to the CR singularity.

7) Suppose M given by s = �(z ; �z ). Parametrize M by z and
differentiate f (z ; �z ) outside the origin.

f�zj = (Fs jM )��zj

Division works formally at the origin by the formal solution.
By Malgrange Fs jM is smooth. Similarly Fzj jM is smooth.

8) Fs jM and Fzj jM are smooth CR functions, therefore their
extensions are continuous up to the boundary. Now iterate.
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Notes/Questions...

In the real-analytic (or formal) case functions always extend if
A is nondegenerate even if Q is degenerate.

Not sure how much nondegeneracy is necessary.

Question: Is isolated singularity needed?
Is nondegeneracy of Q needed?
(It is not in the real-analytic/formal case).

Question: What nondegeneracy is needed in the C! case?
(e.g., we can prove C! extension for
s = z 2

1 + � � �+ z 2
n + �z 2

1 + � � �+ �z 2
n .)
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Thank you


