Lewy extension for smooth hypersurfaces in

$\mathbb{C}^{n} \times \mathbb{R}$

Jiří Lebl
joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Hypersurface in \mathbb{C}^{n}

Any smooth hypersurface M can be locally written as

$$
\operatorname{Im} w=\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E(z, \bar{z}, \operatorname{Re} w)
$$

for $E \in O(3)$, and $\epsilon_{j}=-1,0,1$.
The form $\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}$ is the Levi-form at the origin.

Hypersurface in \mathbb{C}^{n}

Any smooth hypersurface M can be locally written as

$$
\operatorname{Im} w=\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E(z, \bar{z}, \operatorname{Re} w)
$$

for $E \in O(3)$, and $\epsilon_{j}=-1,0,1$.
The form $\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}$ is the Levi-form at the origin.
Define manifold with boundary H_{+}by

$$
\operatorname{Im} w \geq \sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E(z, \bar{z}, \operatorname{Re} w)
$$

Hypersurface in \mathbb{C}^{n}

Any smooth hypersurface M can be locally written as

$$
\operatorname{Im} w=\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E(z, \bar{z}, \operatorname{Re} w)
$$

for $E \in O(3)$, and $\epsilon_{j}=-1,0,1$.
The form $\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}$ is the Levi-form at the origin.
Define manifold with boundary H_{+}by

$$
\operatorname{Im} w \geq \sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E(z, \bar{z}, \operatorname{Re} w)
$$

If $f \in \mathcal{O}\left(H_{+} \backslash M\right) \cap C^{\infty}\left(H_{+}\right)$, then f is CR on M, that is, $\nu f=0$ for every $\nu \in \Gamma\left(T^{0,1} M\right)$
Here $T_{p}^{0,1} M=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_{k}}, \frac{\partial}{\partial \bar{w}}\right\} \cap \mathbb{C} \otimes T_{p} M$

Lewy extension

$$
M: \operatorname{Im} w=\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E \quad H_{+}: \quad \operatorname{Im} w \geq \sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E
$$

Lewy extension

$$
M: \operatorname{Im} w=\sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E \quad H_{+}: \quad \operatorname{Im} w \geq \sum_{j=1}^{n} \epsilon_{j}\left|z_{j}\right|^{2}+E
$$

Theorem (Lewy extension)
Let $M, H_{+} \subset \mathbb{C}^{n+1}, n \geq 1$, be as above.
Then \exists a neighborhood U of 0 , such that given $f \in C R(M) \cap C^{\infty}(M)$:
(i) If the Levi-form at 0 has a positive eigenvalue, then $\exists F \in C^{\infty}\left(U \cap H_{+}\right) \cap \mathcal{O}\left(U \cap H_{+} \backslash M\right)$ such that $\left.F\right|_{M \cap U}=\left.f\right|_{M \cap U}$
(ii) If the Levi-form at 0 has eigenvalues of both signs, then $\exists F \in \mathcal{O}(U)$ such that $\left.F\right|_{M \cap U}=\left.f\right|_{M \cap U}$

Real-analytic CR functions

Theorem (Severi)
Suppose $M \subset \mathbb{C}^{n+1}$ is a real-analytic hypersurface and $f \in C R(M) \cap C^{\omega}(M)$
Then \exists neighborhood U of M and
$F \in \mathcal{O}(U)$ s.t. $\left.F\right|_{M \cap U}=\left.f\right|_{M \cap U}$.

Hypersurfaces in $\mathbb{C}^{n} \times \mathbb{R}$

Write coordinates as $(z, s) \in \mathbb{C}^{n} \times \mathbb{R}$.

Hypersurfaces in $\mathbb{C}^{n} \times \mathbb{R}$

Write coordinates as $(z, s) \in \mathbb{C}^{n} \times \mathbb{R}$.
Call the sets $\mathbb{C}^{n} \times\{s\}$ the leaves of $\mathbb{C}^{n} \times \mathbb{R}$.
For $X \subset \mathbb{C}^{n} \times \mathbb{R}$ define $X_{(s)}=\left\{z \in \mathbb{C}^{n} \mid(z, s) \in X\right\}$

Write coordinates as $(z, s) \in \mathbb{C}^{n} \times \mathbb{R}$.
Call the sets $\mathbb{C}^{n} \times\{s\}$ the leaves of $\mathbb{C}^{n} \times \mathbb{R}$.
For $X \subset \mathbb{C}^{n} \times \mathbb{R}$ define $X_{(s)}=\left\{z \in \mathbb{C}^{n} \mid(z, s) \in X\right\}$
Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a smooth real hypersurface.
$T_{p}^{0,1} M=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_{k}}\right\} \cap \mathbb{C} \otimes T_{p} M=T_{p}^{0,1} M_{(s)}$

Write coordinates as $(z, s) \in \mathbb{C}^{n} \times \mathbb{R}$.
Call the sets $\mathbb{C}^{n} \times\{s\}$ the leaves of $\mathbb{C}^{n} \times \mathbb{R}$.
For $X \subset \mathbb{C}^{n} \times \mathbb{R}$ define $X_{(s)}=\left\{z \in \mathbb{C}^{n} \mid(z, s) \in X\right\}$
Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a smooth real hypersurface.
$T_{p}^{0,1} M=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_{k}}\right\} \cap \mathbb{C} \otimes T_{p} M=T_{p}^{0,1} M_{(s)}$
M is CR at p if $\operatorname{dim} T_{q}^{0,1} M$ is constant on M near p.
Let $M_{C R}$ be the set of CR points of M.
Otherwise M has a CR singularity at p.

Write coordinates as $(z, s) \in \mathbb{C}^{n} \times \mathbb{R}$.
Call the sets $\mathbb{C}^{n} \times\{s\}$ the leaves of $\mathbb{C}^{n} \times \mathbb{R}$.
For $X \subset \mathbb{C}^{n} \times \mathbb{R}$ define $X_{(s)}=\left\{z \in \mathbb{C}^{n} \mid(z, s) \in X\right\}$
Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a smooth real hypersurface.
$T_{p}^{0,1} M=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_{k}}\right\} \cap \mathbb{C} \otimes T_{p} M=T_{p}^{0,1} M_{(s)}$
M is CR at p if $\operatorname{dim} T_{q}^{0,1} M$ is constant on M near p.
Let $M_{C R}$ be the set of CR points of M.
Otherwise M has a CR singularity at p.
$f \in C^{\infty}(M)$ is CR if $\nu f=0$ for all $\nu \in \Gamma\left(T^{0,1} M_{C R}\right)$.

Hypersurfaces in $\mathbb{C}^{n} \times \mathbb{R}$

Write coordinates as $(z, s) \in \mathbb{C}^{n} \times \mathbb{R}$.
Call the sets $\mathbb{C}^{n} \times\{s\}$ the leaves of $\mathbb{C}^{n} \times \mathbb{R}$.
For $X \subset \mathbb{C}^{n} \times \mathbb{R}$ define $X_{(s)}=\left\{z \in \mathbb{C}^{n} \mid(z, s) \in X\right\}$
Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a smooth real hypersurface.
$T_{p}^{0,1} M=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_{k}}\right\} \cap \mathbb{C} \otimes T_{p} M=T_{p}^{0,1} M_{(s)}$
M is CR at p if $\operatorname{dim} T_{q}^{0,1} M$ is constant on M near p.
Let $M_{C R}$ be the set of CR points of M.
Otherwise M has a CR singularity at p.
$f \in C^{\infty}(M)$ is CR if $\nu f=0$ for all $\nu \in \Gamma\left(T^{0,1} M_{C R}\right)$.
(Equivalently, $\nu f=0$ for all $\nu \in \Gamma(\mathbb{C} \otimes T M)$ where $\nu_{p} \in T_{p}^{0,1} M$ for all p).

Real-analytic CR case

(Severi strikes again)
Suppose $M \subset \mathbb{C}^{n} \times \mathbb{R}$ is a real-analytic CR hypersurface and $f \in C R(M) \cap C^{\omega}(M)$
Then \exists a neighborhood $U \subset \mathbb{C}^{n+1}$ of $M \subset \mathbb{C}^{n} \times \mathbb{R} \subset \mathbb{C}^{n+1}$ and $F \in \mathcal{O}(U)$ s.t. $\left.F\right|_{M}=f$.

Smooth extension in the CR case

Theorem (Special case of Hill-Taiani '84)

Let $M \subset \mathbb{C}^{n} \times \mathbb{R}, n \geq 2$, be a real smooth $C R$ hypersurface of $C R$ dimension $n-1$ (not complex). Let $p=\left(z_{0}, s_{0}\right) \in M$. Let (a, b) be the number of positive and negative eigenvalues of the Levi-form of $M_{\left(s_{0}\right)}$ at z_{0}.

Then \exists a neighborhood $U \subset \mathbb{C}^{n} \times \mathbb{R}$ of p, such that given $f \in C^{\infty}(M) \cap C R(M)$:
(i) If $a \geq 1$, and H_{+}is the corresponding side, then $\exists F \in C^{\infty}\left(U \cap H_{+}\right) \cap C R\left(U \cap H_{+} \backslash M\right)$ such that $\left.f\right|_{M \cap U}=\left.F\right|_{M \cap U}$.
(ii) If $a \geq 1$ and $b \geq 1$, then $\exists F \in C^{\infty}(U) \cap C R(U)$ such that $\left.f\right|_{M \cap U}=\left.F\right|_{M \cap U}$.

CR singular submanifolds and $\mathbb{C}^{n} \times \mathbb{R}$

CR singular manifolds in \mathbb{C}^{2} of real dim 2 first studied by Bishop ('65).

Later by Moser-Webster, Moser, Kenig-Webster, Gong, Huang-Krantz, Huang, Huang-Yin, etc... Mostly interested in normal form.

CR singular submanifolds and $\mathbb{C}^{n} \times \mathbb{R}$

CR singular manifolds in \mathbb{C}^{2} of real dim 2 first studied by Bishop ('65).

Later by Moser-Webster, Moser, Kenig-Webster, Gong, Huang-Krantz, Huang, Huang-Yin, etc...
Mostly interested in normal form.
In two dimensions we (at least formally) can generally realize such manifolds as real hypersurfaces in $\mathbb{C} \times \mathbb{R}$.

CR singular submanifolds and $\mathbb{C}^{n} \times \mathbb{R}$

CR singular manifolds in \mathbb{C}^{2} of real dim 2 first studied by Bishop ('65).

Later by Moser-Webster, Moser, Kenig-Webster, Gong, Huang-Krantz, Huang, Huang-Yin, etc...
Mostly interested in normal form.
In two dimensions we (at least formally) can generally realize such manifolds as real hypersurfaces in $\mathbb{C} \times \mathbb{R}$.

Higher dimensions far less understood.
See e.g. Huang-Yin, Burcea, Gong-L.,
Dolbeault-Tomassini-Zaitsev, Coffman, Slapar, (and of course L.-Noell-Ravisankar), etc...

In \mathbb{C}^{m} for $m>2$ generally a codimension 2 submanifold is not realizable as a submanifold of $\mathbb{C}^{m-1} \times \mathbb{R}$.

CR singular submanifolds and $\mathbb{C}^{n} \times \mathbb{R}$

A real codimension 2 CR singular submanifold $M \subset \mathbb{C}^{m}$ does not in general have the extension property in the analytic case. (Harris '78, L.-Minor-Shroff-Son-Zhang).

CR singular submanifolds and $\mathbb{C}^{n} \times \mathbb{R}$

A real codimension 2 CR singular submanifold $M \subset \mathbb{C}^{m}$ does not in general have the extension property in the analytic case. (Harris '78, L.-Minor-Shroff-Son-Zhang).

Simplest example: Let M in $(z, w) \in \mathbb{C}^{n} \times \mathbb{C}$ be given by

$$
w=z_{1} \bar{z}_{1}
$$

Then $\bar{z}_{1}=\frac{w}{z_{1}}$ on M and so does not extend to a neighborhood.

CR singular submanifolds and $\mathbb{C}^{n} \times \mathbb{R}$

A real codimension 2 CR singular submanifold $M \subset \mathbb{C}^{m}$ does not in general have the extension property in the analytic case. (Harris '78, L.-Minor-Shroff-Son-Zhang).

Simplest example: Let M in $(z, w) \in \mathbb{C}^{n} \times \mathbb{C}$ be given by

$$
w=z_{1} \bar{z}_{1}
$$

Then $\bar{z}_{1}=\frac{w}{z_{1}}$ on M and so does not extend to a neighborhood.
In early 20th century several authors considered extensions of holomorphic functions (e.g. Hartogs phenomenon) in $\mathbb{C}^{n} \times \mathbb{R}^{k}$ (e.g. Bochner, Brown, Severi, etc...)

Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a hypersurface with a CR singularity. Write M as

$$
s=Q(z, \bar{z})+E(z, \bar{z})
$$

where Q is a real quadratic form, and $E \in O(3)$.
If Q is nondegenerate then the CR singularity is isolated.

Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a hypersurface with a CR singularity. Write M as

$$
s=Q(z, \bar{z})+E(z, \bar{z})
$$

where Q is a real quadratic form, and $E \in O(3)$.
If Q is nondegenerate then the CR singularity is isolated.
Write $Q(z, \bar{z})=A(z, \bar{z})+B(z, z)+\overline{B(z, z)}$ for Hermitian form A and bilinear B.

CR singular hypersurface in $\mathbb{C}^{n} \times \mathbb{R}$

Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a hypersurface with a CR singularity. Write M as

$$
s=Q(z, \bar{z})+E(z, \bar{z})
$$

where Q is a real quadratic form, and $E \in O(3)$.
If Q is nondegenerate then the CR singularity is isolated.
Write $Q(z, \bar{z})=A(z, \bar{z})+B(z, z)+B(z, z)$ for Hermitian form A and bilinear B.

Diagonalize A

$$
s=\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}+B(z, z)+\overline{B(z, z)}+E(z, \bar{z})
$$

We can't generally also diagonalize B (unless $a=n$).

CR singular hypersurface in $\mathbb{C}^{n} \times \mathbb{R}$

Let $M \subset \mathbb{C}^{n} \times \mathbb{R}$ be a hypersurface with a CR singularity. Write M as

$$
s=Q(z, \bar{z})+E(z, \bar{z})
$$

where Q is a real quadratic form, and $E \in O(3)$.
If Q is nondegenerate then the CR singularity is isolated.
Write $Q(z, \bar{z})=A(z, \bar{z})+B(z, z)+\overline{B(z, z)}$ for Hermitian form A and bilinear B.

Diagonalize A

$$
s=\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}+B(z, z)+\overline{B(z, z)}+E(z, \bar{z})
$$

We can't generally also diagonalize B (unless $a=n$).
Define manifold with boundary H_{+}by

$$
s \geq \sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}+B(z, z)+\overline{B(z, z)}+E(z, \bar{z})
$$

Real analytic CR singular case

Let M be defined by

$$
\begin{aligned}
s & =\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}+B(z, z)+\overline{B(z, z)}+E(z, \bar{z}) \\
& =A+B+\bar{B}+E=Q+E
\end{aligned}
$$

Theorem (L.-Noell-Ravisankar '16)
Suppose M is real-analytic (E is real-analytic),
A is nondegenerate $(a+b=n), n \geq 2$, and
$f \in C^{\omega}(M) \cap C R\left(M_{C R}\right)$.
Then \exists neighborhood U of 0 in $\mathbb{C}^{n} \times \mathbb{C}$ and $F \in \mathcal{O}(U)$ such that $\left.F\right|_{M \cap U}=\left.f\right|_{M \cap U}$.

$$
\begin{aligned}
& H_{+}: s \geq \sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}+B(z, z)+\overline{B(z, z)}+E(z, \bar{z}) \\
& M: s=\sum_{j=1}^{a}\left|z_{j}\right|^{2}-\sum_{j=a+1}^{a+b}\left|z_{j}\right|^{2}+B(z, z)+\overline{B(z, z)}+E(z, \bar{z})
\end{aligned}
$$

Theorem (L.-Noell-Ravisankar '17)

Suppose Q is nondegenerate, and $a \geq 2$.
Then \exists a neighborhood U of 0 , such that given $f \in C^{\infty}(M) \cap C R(M)$:
(i) If $a \geq 2$,
then $\exists F \in C^{\infty}\left(U \cap H_{+}\right) \cap C R\left(U \cap H_{+} \backslash M\right)$
such that $\left.F\right|_{M \cap U}=\left.f\right|_{M \cap U}$.
(ii) If $a \geq 2$ and $b \geq 2$,
then $\exists F \in C^{\infty}(U) \cap C R(U)$
such that $\left.F\right|_{M \cap U}=\left.f\right|_{M \cap U}$.
In either case, F has a formal power series in z and s at 0 .

Levi-form on the leaves

There are two problems for the extension:

1) existence of the extension
2) regularity up to the boundary

Levi-form on the leaves

There are two problems for the extension:

1) existence of the extension
2) regularity up to the boundary

For the first problem, the two eigenvalues are needed.
$M: s=A(z, \bar{z})+B(z, z)+\overline{B(z, z)}+E(z, \bar{z})$
If A has two positive eigenvalues, then the Levi-form of $M_{(s)}$ has at least one positive eigenvalues.

Example 1: Define M by $s=\|z\|^{4}$ (isolated CR singularity). The function \sqrt{s} is $C^{\omega}(M)$ (it equals $\|z\|^{2}$ on M).
It is $C R$, and the unique extension to H_{+}is \sqrt{s}, not smooth at the origin.

Some sort of nondegeneracy is necessary

Example 1: Define M by $s=\|z\|^{4}$ (isolated CR singularity). The function \sqrt{s} is $C^{\omega}(M)$ (it equals $\|z\|^{2}$ on M).

It is CR , and the unique extension to H_{+}is \sqrt{s}, not smooth at the origin.

Example 2: Write $z=\left(z^{\prime}, z^{\prime \prime}\right)$. Define M by
$s=\left(\left\|z^{\prime}\right\|^{2}-\left\|z^{\prime \prime}\right\|^{2}\right)^{3}$.
The function $\sqrt[3]{s}$ is $C^{\omega}(M)$ (equals $\left\|z^{\prime}\right\|^{2}-\left\|z^{\prime \prime}\right\|^{2}$ on M).
It is CR , and the unique extension to H_{+}is $\sqrt[3]{s}$, not smooth at points of H^{+}where $s=0$ (including interior).
CR singularity is large. All points where $s=0$ are CR singular.

CR case: one nonzero eigenvalue is necessary

Define $M \subset \mathbb{C}^{2} \times \mathbb{R}$ and f by

$$
\operatorname{Im} z_{1}=s\left|z_{2}\right|^{2}, \quad f(z, s)= \begin{cases}\frac{e^{-1 / s^{2}}}{z_{1}+i s} & \text { if } s \neq 0 \\ 0 & \text { if } s=0\end{cases}
$$

The Levi-form is zero when $s=0$.
Extension of f to neither side is possible near 0 .

Define $M \subset \mathbb{C}^{2} \times \mathbb{R}$ and f by

$$
M: s=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}, \quad f(z, s)= \begin{cases}\frac{1}{z_{1}} e^{-1 / s^{2}} & \text { if } s>0 \\ 0 & \text { if } s=0 \\ \frac{1}{z_{2}} e^{-1 / s^{2}} & \text { if } s<0\end{cases}
$$

$f \in C^{\infty}(M) \cap C R(M)$ but no extension exists due to the poles.

Analogue of Baouendi-Treves is not true

An idea for extension is to generalize Baouendi-Treves (B-T) (approximation by polynomials in z and s).

Analogue of Baouendi-Treves is not true

An idea for extension is to generalize Baouendi-Treves (B-T) (approximation by polynomials in z and s).

But M :

$$
s=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}
$$

cannot have $\mathrm{B}-\mathrm{T}$.
There is a disc through every point attached to M, so B-T would imply extension to a neighborhood.

Analogue of Baouendi-Treves is not true

An idea for extension is to generalize Baouendi-Treves (B-T) (approximation by polynomials in z and s).

But M :

$$
s=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}
$$

cannot have $\mathrm{B}-\mathrm{T}$.
There is a disc through every point attached to M, so B-T would imply extension to a neighborhood.

Question: What extra hypotheses to add to B-T to make it work.

Two eigenvalues of both signs needed for extension to a neighborhood

Define $M \subset \mathbb{C}^{3} \times \mathbb{R}$ and f by
$M: s=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}, \quad f(z, s)= \begin{cases}0 & \text { if } s \geq 0, \\ \frac{1}{z_{3}} e^{-1 / s^{2}} & \text { if } s<0 .\end{cases}$
Again, $f \in C^{\infty}(M) \cap C R(M)$
And f extends above M, but not below M.

There exists an example that extends only to one side at every point.

Let $M \subset \mathbb{C}^{2} \times \mathbb{R}$ be

$$
s=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\|z\|^{2}
$$

$g: S^{3} \subset \mathbb{C}^{2} \rightarrow \mathbb{C}$ a smooth CR function not extending to the outside of S^{3} through any point (e.g. Catlin or Hakim-Sibony).

$$
f(z, s)= \begin{cases}e^{-1 / s^{2}} g\left(\frac{z}{\sqrt{s}}\right) & \text { if } s<0 \\ 0 & \text { if } s=0\end{cases}
$$

is smooth, CR, extends above M (to H_{+}), but not below through any point.

Let $M \subset \mathbb{C} \times \mathbb{R}$ be a nonparabolic Bishop surface

$$
s=|z|^{2}+\lambda z^{2}+\lambda \bar{z}^{2}, \quad\left(\text { where } 0 \leq \lambda<\infty \text { and } \lambda \neq \frac{1}{2}\right) .
$$

Define a smooth $f: \mathbb{C} \rightarrow \mathbb{R}$ that is zero on the first quadrant of \mathbb{C} and positive elsewhere.

Parametrize M by z, then $f(z, \bar{z})$ is smooth on M. The CR condition is vacuous.

Let $M \subset \mathbb{C} \times \mathbb{R}$ be a nonparabolic Bishop surface

$$
s=|z|^{2}+\lambda z^{2}+\lambda \bar{z}^{2}, \quad\left(\text { where } 0 \leq \lambda<\infty \text { and } \lambda \neq \frac{1}{2}\right) .
$$

Define a smooth $f: \mathbb{C} \rightarrow \mathbb{R}$ that is zero on the first quadrant of \mathbb{C} and positive elsewhere.

Parametrize M by z, then $f(z, \bar{z})$ is smooth on M. The CR condition is vacuous.

For every $s \neq 0$, the leaf

$$
\left(H_{+}\right)_{(s)}=\left\{z \in \mathbb{C}\left|s \geq|z|^{2}+\lambda z^{2}+\lambda \bar{z}^{2}\right\}\right.
$$

is either empty, or has part of its boundary in the first quadrant. So f cannot extend.

Define M by

$$
s=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\lambda\left(z_{1}^{2}+\bar{z}_{1}^{2}\right)
$$

for $\lambda>\frac{1}{2}$.
For $s>0$, the manifold with boundary $\left(H_{+}\right)_{(s)}$ has disconnected boundary.

Construct a function that is a different constant on each boundary component for each $\left(H_{+}\right)_{(s)}$.

Example: Topology for degenerate M can be evil

Take $\phi(x)=\sin ^{2}(1 / x) e^{-1 / x^{2}}$, and let M be given by

$$
s=\phi\left(\|z\|^{2}\right)
$$

$\left(H_{+}\right)_{(s)}$ has multiple components with disconnected boundary. The function $\|z\|^{2}$ is $C^{\infty}(M) \cap C R(M)$ but has no extension. The CR singularity is large (an infinite set of concentric circles).

Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions on the model manifold $s=Q(z, \bar{z})$.

Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions on the model manifold $s=Q(z, \bar{z})$.
2) Iterate the above to obtain a formal power series solution.

Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions on the model manifold $s=Q(z, \bar{z})$.
2) Iterate the above to obtain a formal power series solution.
3) Extend near the CR points using Hill-Taiani.

Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions on the model manifold $s=Q(z, \bar{z})$.
2) Iterate the above to obtain a formal power series solution.
3) Extend near the CR points using Hill-Taiani.
4) Construct families of analytic discs inside a single leaf attached to CR points of M shrinking to a CR point of M.

Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions on the model manifold $s=Q(z, \bar{z})$.
2) Iterate the above to obtain a formal power series solution.
3) Extend near the CR points using Hill-Taiani.
4) Construct families of analytic discs inside a single leaf attached to CR points of M shrinking to a CR point of M.
5) Apply Kontinuitätssatz to find an extension F. (technicality: proving single valuedness, $M_{(s)}$ and $\left(H_{+}\right)_{(s)}$ need not be connected, and $\left(H_{+}\right)_{(s)}$ may not be simply connected.)

Proof of the theorem, cont.

6) Prove that F is continuous up to the CR singularity.
7) Prove that F is continuous up to the CR singularity.
8) Suppose M given by $s=\rho(z, \bar{z})$. Parametrize M by z and differentiate $f(z, \bar{z})$ outside the origin.

$$
f_{\bar{z}_{j}}=\left(\left.F_{s}\right|_{M}\right) \rho_{\bar{z}_{j}}
$$

Division works formally at the origin by the formal solution. By Malgrange $\left.F_{s}\right|_{M}$ is smooth. Similarly $\left.F_{z_{j}}\right|_{M}$ is smooth.

Proof of the theorem, cont.

6) Prove that F is continuous up to the CR singularity.
7) Suppose M given by $s=\rho(z, \bar{z})$. Parametrize M by z and differentiate $f(z, \bar{z})$ outside the origin.

$$
f_{\bar{z}_{j}}=\left(\left.F_{s}\right|_{M}\right) \rho_{\bar{z}_{j}}
$$

Division works formally at the origin by the formal solution. By Malgrange $\left.F_{s}\right|_{M}$ is smooth. Similarly $\left.F_{z_{j}}\right|_{M}$ is smooth.
8) $\left.F_{s}\right|_{M}$ and $\left.F_{z_{j}}\right|_{M}$ are smooth CR functions, therefore their extensions are continuous up to the boundary. Now iterate.

Notes/Questions...

In the real-analytic (or formal) case functions always extend if A is nondegenerate even if Q is degenerate.

Notes/Questions...

In the real-analytic (or formal) case functions always extend if A is nondegenerate even if Q is degenerate.

Not sure how much nondegeneracy is necessary.
Question: Is isolated singularity needed?
Is nondegeneracy of Q needed?
(It is not in the real-analytic/formal case).

Notes/Questions...

In the real-analytic (or formal) case functions always extend if A is nondegenerate even if Q is degenerate.

Not sure how much nondegeneracy is necessary.
Question: Is isolated singularity needed?
Is nondegeneracy of Q needed?
(It is not in the real-analytic/formal case).
Question: What nondegeneracy is needed in the C^{ω} case?
(e.g., we can prove C^{ω} extension for
$\left.s=z_{1}^{2}+\cdots+z_{n}^{2}+\bar{z}_{1}^{2}+\cdots+\bar{z}_{n}^{2}.\right)$

Thank you

