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Hartogs phenomenon

Theorem (Hartogs)
Let 
 � Cn , n � 2, be a domain, and K �� 
 be compact
with 
 nK connected. If f 2 O(
 nK ), then there exists a
unique F 2 O(
) such that F j
nK = f .


K

There are no hypotheses on the geometry of 
, only a mild
clearly required topological requirement on 
 nK .
Furthermore, K can be “as large as we want.”
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CR submanifolds, singularities, and CR functions

M � Cn a C1-smooth real submanifold.

T 0;1
p M = spanC

n
@
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M is a CR submanifold if dimT 0;1
p M is constant on M .

e.g. every real hypersurface in Cn is a CR submanifold.

M is CR singular at q 2M if dimT 0;1
p M is not constant in

any neighbourhood of q .

Write MCR = M n f CR singularities of M g
Generically a codimension 2 submanifold of Cn will have
isolated CR singularities.

A smooth function f : M ! C on a CR submanifold is a CR
function if vf = 0 for all v 2 T 0;1M .
We will write f 2 CR(M ).
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Bochner-Hartogs

Theorem (Bochner-Hartogs)
Let 
 � Cn , n � 2, be a bounded domain with smooth
connected boundary. If f 2 C1(@
) \CR(@
), then there
exists a unique F 2 C1(
) \ O(
) such that F j@
 = f .

Again, notice the very simple (and clearly necessary)
hypotheses on 
. The proof can be done using the
Bochner-Martinelli integral.

Does not hold in n = 1. But if a continuous F exists, it is C1.

Theorem (Severi)
Let 
 � Cn , n � 2, be a bounded domain with real-analytic
connected boundary. If f 2 C!(@
) \CR(@
), then there
exists a unique F 2 O(
) such that F j@
 = f .
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Local extension CR case

A smooth CR function f on a strictly pseudoconvex smooth
hypersurface M � Cn+1 extends to one side.

If Levi-form has eigenvalues of both signs, then to both sides, so
to a neighbourhood.

If f and M is real-analytic, then no need to check the
Levi-form, f always extends to a neighbourhood.
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Cn
� R

In coordinates (z ;w) 2 Cn � C, consider the hypersurface X
given by

Imw = 0:

Let w = s + it . Parametrize X using (z ; s) 2 Cn � R.

The CR vectors on X are @
@�zj

.

A function f (z ; s) is CR if it is holomorphic for fixed s .
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Sphere in Cn
� R


 = f(z ; s) 2 Cn � R : kzk2 + s2 < 1g
Have f 2 C1(@
) \CR(@
CR), want F 2 C1(
) \CR(
).

Or, have f 2 C!(@
) \CR(@
CR), want F 2 O(
).

@
 has CR singularities at the “poles”


 has a natural foliation by the copies of Cn (intersected with
the ball).

Most trouble happens at the CR singularities.
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Global counterexample for C1

Hartogs theorem works in the C! case in Cn � R (first proved
by Severi for n = 1 and Brown, and then Bochner, and most
recently generalized by Henkin and Michel).

But only in C!, not C1!

Counterexample picture:

t=2

t=1

t=0

t=3

t=−1

t

z

K

t=1/2
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Local situation

Consider (z ; s) 2 Cn � R. Define M by

s = �(z ; �z )

Have f 2 C!(M ) \CR(MCR), want F 2 O(M )
(F holomorphic in a neighbourhood of M ).

Counterexample 1, n = 1:
Suppose M is given by s = jz j2 and let f be given by �z . But we
must have F = s

z , not even continuous at 0.

Counterexample 2, n � 1:
Suppose M is given by s = kzk4.
Define f by

p
s .

f is CR and C! on M :
p
s = kzk2 on M .

F must be
p
s which is not even C 1 at the origin.
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Codimension 2 CR singularities

A CR singularity of codim 2 in Cn+1 can be put in the form

w = �(z ; �z ); (z ;w) 2 Cn � C

Bishop (’65) first studied such nondegenerate M in C2:

w = z �z + �(z 2 + �z 2) + E(z ; �z ):

� � 0 is the Bishop invariant.

0 � � < 1
2 : elliptic � = 1

2 : parabolic
1
2 < � � 1: hyperbolic

Why elliptic? Because fz �z + �(z 2 + �z 2) = constg gives ellipses.

We automatically have E real-valued in our situation, that is
the manifold is holomorphically-flat.

Studied extensively (elliptic): Moser-Webster, Moser,
Kenig-Webster, Gong, Huang-Krantz, Huang, Huang-Yin, etc...
Mostly interested in normal form.
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n > 1

Start with a holomorphically flat M :

w =
X
j ;k

(ajkzj �zk + bjkzj zk + �bjk �zj �zk ) + E(z ; �z )

where [ajk ] is Hermitian and E real-valued.

By nondegenerate we will mean [ajk ] invertible.

Far less understood (elliptic again nicest): Huang-Yin, Burcea,
Gong-L., Dolbeault-Tomassini-Zaitsev, Coffman, Slapar, etc...
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Previous work on real-analytic extension

Harris (’78) provides a complete (but difficult to apply)
criterion for f on an arbitrary CR singular M to be a
restriction of a holomorphic function in C! case.

In particular, it is not always true for functions CR on MCR.

In L.-Minor-Shroff-Son-Zhang we proved that if a real-analytic
CR singular manifold M is an image of a real-analytic CR map

f : N � Cn+1 ! Cn+1

from a CR submanifold N that is a diffeomorhism onto
f (N ) = M , then there exists a real-analytic function vanishing
on all CR directions (so CR on MCR) that is not a restriction of
a holomorphic function.
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Local extension

Theorem (L.-Noell-Ravisankar)

Let M � Cn+1, n � 2, be a holomorphically-flat real
codimension 2 real-analytic submanifold with a
nondegenerate CR singularity at 0 2M.
Suppose f 2 C!(M ) \CR(MCR). Then there exists a
neighbourhood U of 0 2 Cn+1 and F 2 O(U ) such that
F jM\U = f .
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The global extension

Corollary (L.-Noell-Ravisankar)
Suppose 
 � Cn � R, n � 2, is a bounded domain with
connected real-analytic boundary and all CR singularities of
@
 are nondegenerate. Suppose f 2 C!(@
) \CR

�
(@
)CR

�
.

Then there exists F holomorphic on a neighbourhood of 

in Cn+1, such that F j@
 = f .

Proof is to follow Severi’s example: apply the local extension
and then apply the Hartogs theorem (in this case Hartogs for
Cn � R).
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Levi-flat Plateau problem

Dolbeault-Tomassini-Zaitsev studied when a compact CR
singular M is the boundary of a Levi-flat. They prove existence
of a singular solution under certain conditions on M , in
particular ellipticity.

Our global theorem has an immediate corollary, giving a
singular solution for certain M . Here is the real-analytic case.

Corollary
Suppose 
 � Cn � R, n > 1, is a bounded domain with
connected real-analytic boundary, and M = f (@
) � Cn+1 is
the image of a C! map f that is CR on (@
)CR. Suppose
all CR singularities of @
 are nondegenerate.
Then there exists a holomorphic map F to Cn+1 whose
restriction to @
 is f . F (
) is a Levi-flat wherever it is
nonsingular.
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“Proof” of local extension

Except in special cases one can follow the following outline:

1) Suppose f is a homogeneous polynomial and E = 0.

2) Extend f near MCR.
3) Find enough “an elliptic direction” to find a family of
attached analytic discs shrinking to a CR point.
4) Extend along these families to find a holomorphic function in
neighbourhood of a large attached disc.
5) Show that this holomorphic function is actually a
polynomial.
6) Use the above model case to obtain a formal solution in
general and show that it converges.
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The smooth case

In the elliptic case we have also the extension for smooth maps.
For n > 1 and a nondegenerate M is given by

w =
X
j ;k

(ajkzj �zk + bjkzj zk + �bjk �zj �zk ) + E(z ; �z )

for a real valued E . Then M is elliptic if M intersected with
fw = constg are boundaries of domains shrinking to zero, then
[ajk ] must be definite (WLOG positive) and we can diagonalize

w =
X
j

�
zj �zj + �j (z 2

j + �z 2
j )
�
+ E(z ; �z )

and 0 � �j <
1
2 .
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The local theorem

Theorem (L.-Noell-Ravisankar)
Suppose H and M are closed submanifolds of
U = f(z ;w) 2 Cn � C : kzk < �z ; jw j < �wg given by

M : w =
X�

jzj j2 + �j (z 2
j + �z 2

j )
�
+ E(z ; �z );

H : Rew �
X�

jzj j2 + �j (z 2
j + �z 2

j )
�
+ E(z ; �z ); Imw = 0:

E is real-valued, smooth, and O(3), 0 � �j <
1
2 for all j and

�z ; �w > 0 “small enough.” Suppose f : M ! C is C1 and either

(i) n > 1 and f is a CR function on MCR, or

(ii) n = 1 and for every 0 < c < �w , there exists a continuous
function on H \ fw = cg, holomorphic on
(H nM ) \ fw = cg extending f jM\fw=cg

Then there exists an F 2 C1(H ) \CR(H nM ), and F jM = f .
Furthermore, F has a formal power series at 0 in z and w.
If M and f are C!, then F is a restriction of a holomorphic
function defined in a neighborhood of H in Cn+1.
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The global theorem

Theorem (L.-Noell-Ravisankar)
Suppose 
 � Cn � R is a bounded domain with smooth
boundary. Let (z ; s) 2 Cn � R be the coordinates. Suppose
all CR singularities of @
 are nondegenerate and elliptic.
Suppose f : @
! C is smooth and either
(i) n > 1 and f is a CR function on (@
)CR, or
(ii) n = 1 and for every c 2 R where 
 \ fs = cg is

nonempty, there exists a continuous function on

 \ fs = cg, holomorphic on 
 \ fs = cg extending
f j@
\fs=cg.

Then there exists F 2 C1(
) \CR(
) and F j@
 = f .
Furthermore, if @
 and f are real-analytic, then F is a
restriction of a holomorphic function defined in a
neighborhood of 
 in Cn+1.
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Thank you


