Extensions of CR functions from CR singular submanifolds of codimension 2

Jiří Lebl joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Theorem (Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a domain, and $K \subset \subset \Omega$ be compact with $\Omega \setminus K$ connected. If $f \in \mathcal{O}(\Omega \setminus K)$, then there exists a unique $F \in \mathcal{O}(\Omega)$ such that $F|_{\Omega \setminus K} = f$.

There are no hypotheses on the geometry of Ω , only a mild clearly required topological requirement on $\Omega \setminus K$. Furthermore, K can be "as large as we want."

 $M \subset \mathbb{C}^n$ a C^∞ -smooth real submanifold. $T_p^{0,1}M = \operatorname{span}_{\mathbb{C}}\left\{ rac{\partial}{\partial \overline{z}_k}
ight\} \, \cap \, \mathbb{C} \otimes T_p M$

 $M \subset \mathbb{C}^n$ a C^∞ -smooth real submanifold. $T_p^{0,1}M = \operatorname{span}_{\mathbb{C}}\left\{ rac{\partial}{\partial \overline{z}_k}
ight\} \,\cap\, \mathbb{C}\otimes T_pM$

M is a CR submanifold if dim $T_p^{0,1}M$ is constant on M. e.g. every real hypersurface in \mathbb{C}^n is a CR submanifold.

 $M \subset \mathbb{C}^n$ a C^∞ -smooth real submanifold. $T_p^{0,1}M = \operatorname{span}_{\mathbb{C}}\left\{ rac{\partial}{\partial \overline{z}_k}
ight\} \, \cap \, \mathbb{C} \otimes T_p M$

M is a CR submanifold if dim $T_p^{0,1}M$ is constant on M. e.g. every real hypersurface in \mathbb{C}^n is a CR submanifold.

M is CR singular at $q \in M$ if dim $T_p^{0,1}M$ is not constant in any neighbourhood of q.

Write $M_{CR} = M \setminus \{ \text{ CR singularities of } M \}$

Generically a codimension 2 submanifold of \mathbb{C}^n will have isolated CR singularities.

 $M \subset \mathbb{C}^n$ a C^{∞} -smooth real submanifold. $T_p^{0,1}M = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \overline{z}_k}\right\} \,\cap\, \mathbb{C}\otimes T_pM$

M is a CR submanifold if dim $T_p^{0,1}M$ is constant on M. e.g. every real hypersurface in \mathbb{C}^n is a CR submanifold.

M is CR singular at $q \in M$ if dim $T_p^{0,1}M$ is not constant in any neighbourhood of q.

Write $M_{CR} = M \setminus \{ \text{ CR singularities of } M \}$

Generically a codimension 2 submanifold of \mathbb{C}^n will have isolated CR singularities.

A smooth function $f: M \to \mathbb{C}$ on a CR submanifold is a *CR* function if vf = 0 for all $v \in T^{0,1}M$. We will write $f \in CR(M)$.

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

Does not hold in n = 1. But if a continuous F exists, it is C^{∞} .

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

Does not hold in n = 1. But if a continuous F exists, it is C^{∞} .

Theorem (Severi)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with real-analytic connected boundary. If $f \in C^{\omega}(\partial \Omega) \cap CR(\partial \Omega)$, then there exists a unique $F \in \mathcal{O}(\overline{\Omega})$ such that $F|_{\partial \Omega} = f$.

- A smooth CR function f on a strictly pseudoconvex smooth hypersurface $M \subset \mathbb{C}^{n+1}$ extends to one side.
- If Levi-form has eigenvalues of both signs, then to both sides, so to a neighbourhood.
- If f and M is real-analytic, then no need to check the Levi-form, f always extends to a neighbourhood.

In coordinates $(z, w) \in \mathbb{C}^n imes \mathbb{C}$, consider the hypersurface X given by

 $\operatorname{Im} w = 0.$

Let w = s + it. Parametrize X using $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

In coordinates $(z, w) \in \mathbb{C}^n \times \mathbb{C}$, consider the hypersurface X given by

 $\operatorname{Im} w = 0.$

Let w = s + it. Parametrize X using $(z, s) \in \mathbb{C}^n \times \mathbb{R}$. The CR vectors on X are $\frac{\partial}{\partial \bar{z}_j}$. A function f(z, s) is CR if it is holomorphic for fixed s.

Sphere in $\mathbb{C}^n \times \mathbb{R}$

 $\Omega = \{(z,s) \in \mathbb{C}^n \times \mathbb{R} : \|z\|^2 + s^2 < 1\}$ Have $f \in C^{\infty}(\partial \Omega) \cap CR(\partial \Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$. Or, have $f \in C^{\omega}(\partial \Omega) \cap CR(\partial \Omega_{CR})$, want $F \in \mathcal{O}(\overline{\Omega})$. $\partial \Omega$ has CR singularities at the "poles"

Sphere in $\mathbb{C}^n \times \mathbb{R}$

 $\Omega = \{(z, s) \in \mathbb{C}^n \times \mathbb{R} : \|z\|^2 + s^2 < 1\}$ Have $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$. Or, have $f \in C^{\omega}(\partial \Omega) \cap CR(\partial \Omega_{CR})$, want $F \in \mathcal{O}(\overline{\Omega})$. $\partial \Omega$ has CR singularities at the "poles"

 Ω has a natural foliation by the copies of \mathbb{C}^n (intersected with the ball).

Sphere in $\mathbb{C}^n \times \mathbb{R}$

 $\Omega = \{(z, s) \in \mathbb{C}^n \times \mathbb{R} : \|z\|^2 + s^2 < 1\}$ Have $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$. Or, have $f \in C^{\omega}(\partial \Omega) \cap CR(\partial \Omega_{CR})$, want $F \in \mathcal{O}(\overline{\Omega})$. $\partial \Omega$ has CR singularities at the "poles"

 Ω has a natural foliation by the copies of \mathbb{C}^n (intersected with the ball).

Most trouble happens at the CR singularities.

Global counterexample for C^{∞}

Hartogs theorem works in the C^{ω} case in $\mathbb{C}^n \times \mathbb{R}$ (first proved by Severi for n = 1 and Brown, and then Bochner, and most recently generalized by Henkin and Michel).

Global counterexample for C^{∞}

Hartogs theorem works in the C^{ω} case in $\mathbb{C}^n \times \mathbb{R}$ (first proved by Severi for n = 1 and Brown, and then Bochner, and most recently generalized by Henkin and Michel).

But only in C^{ω} , not C^{∞} !

Counterexample picture:

Local situation

Consider $(z, s) \in \mathbb{C}^n \times \mathbb{R}$. Define M by

$$s=
ho(z,\overline{z})$$

Have $f \in C^{\omega}(M) \cap CR(M_{CR})$, want $F \in \mathcal{O}(M)$ (F holomorphic in a neighbourhood of M). Consider $(z, s) \in \mathbb{C}^n \times \mathbb{R}$. Define M by

$$s=
ho(z,ar z)$$

Have $f \in C^{\omega}(M) \cap CR(M_{CR})$, want $F \in \mathcal{O}(M)$ (F holomorphic in a neighbourhood of M).

Counterexample 1, n = 1: Suppose M is given by $s = |z|^2$ and let f be given by \overline{z} . But we must have $F = \frac{s}{z}$, not even continuous at 0. Consider $(z, s) \in \mathbb{C}^n \times \mathbb{R}$. Define M by

$$s=
ho(z,ar z)$$

Have $f \in C^{\omega}(M) \cap CR(M_{CR})$, want $F \in \mathcal{O}(M)$ (F holomorphic in a neighbourhood of M).

Counterexample 1, n = 1: Suppose M is given by $s = |z|^2$ and let f be given by \overline{z} . But we must have $F = \frac{s}{z}$, not even continuous at 0. Counterexample 2, $n \ge 1$: Suppose M is given by $s = ||z||^4$. Define f by \sqrt{s} . f is CR and C^{ω} on M: $\sqrt{s} = ||z||^2$ on M. F must be \sqrt{s} which is not even C^1 at the origin.

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar z), \qquad (z,w)\in \mathbb{C}^n imes \mathbb{C}$$

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar z), \qquad (z,w)\in \mathbb C^n imes \mathbb C$$

Bishop ('65) first studied such nondegenerate M in \mathbb{C}^2 :

$$w=zar{z}+\lambda(z^2+ar{z}^2)+E(z,ar{z}).$$

 $\lambda \geq 0$ is the Bishop invariant.

 $0 \le \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \le \infty$: hyperbolic Why elliptic? Because $\{z\bar{z} + \lambda(z^2 + \bar{z}^2) = \text{const}\}$ gives ellipses.

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar z), \qquad (z,w)\in \mathbb C^n imes \mathbb C$$

Bishop ('65) first studied such nondegenerate M in \mathbb{C}^2 :

$$w=zar{z}+\lambda(z^2+ar{z}^2)+E(z,ar{z}).$$

 $\lambda \geq 0$ is the Bishop invariant.

 $0 \leq \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \leq \infty$: hyperbolic Why elliptic? Because $\{z\bar{z} + \lambda(z^2 + \bar{z}^2) = \text{const}\}$ gives ellipses.

We automatically have E real-valued in our situation, that is the manifold is holomorphically-flat.

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar z), \qquad (z,w)\in\mathbb{C}^n imes\mathbb{C}$$

Bishop ('65) first studied such nondegenerate M in \mathbb{C}^2 :

$$w=zar{z}+\lambda(z^2+ar{z}^2)+E(z,ar{z}).$$

 $\lambda \geq 0$ is the Bishop invariant.

 $0 \leq \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \leq \infty$: hyperbolic Why elliptic? Because $\{z\bar{z} + \lambda(z^2 + \bar{z}^2) = \text{const}\}$ gives ellipses.

We automatically have E real-valued in our situation, that is the manifold is holomorphically-flat.

Studied extensively (elliptic): Moser-Webster, Moser, Kenig-Webster, Gong, Huang-Krantz, Huang, Huang-Yin, etc... Mostly interested in normal form. Start with a holomorphically flat M:

$$w=\sum_{j,k}(a_{jk}z_jar{z}_k+b_{jk}z_jz_k+ar{b}_{jk}ar{z}_jar{z}_k)+E(z,ar{z})$$

where $[a_{jk}]$ is Hermitian and E real-valued. By *nondegenerate* we will mean $[a_{jk}]$ invertible. Start with a holomorphically flat M:

$$w=\sum_{j,k}(a_{jk}z_jar{z}_k+b_{jk}z_jz_k+ar{b}_{jk}ar{z}_jar{z}_k)+E(z,ar{z})$$

where $[a_{ik}]$ is Hermitian and E real-valued.

By nondegenerate we will mean $[a_{jk}]$ invertible.

Far less understood (elliptic again nicest): Huang-Yin, Burcea, Gong-L., Dolbeault-Tomassini-Zaitsev, Coffman, Slapar, etc...

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

In particular, it is not always true for functions CR on M_{CR} .

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

In particular, it is not always true for functions CR on M_{CR} .

In L.-Minor-Shroff-Son-Zhang we proved that if a real-analytic CR singular manifold M is an image of a real-analytic CR map

 $f: N \subset \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$

from a CR submanifold N that is a diffeomorhism onto f(N) = M, then there exists a real-analytic function vanishing on all CR directions (so CR on M_{CR}) that is not a restriction of a holomorphic function.

Theorem (L.-Noell-Ravisankar)

Let $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, be a holomorphically-flat real codimension 2 real-analytic submanifold with a nondegenerate CR singularity at $0 \in M$. Suppose $f \in C^{\omega}(M) \cap CR(M_{CR})$. Then there exists a neighbourhood U of $0 \in \mathbb{C}^{n+1}$ and $F \in \mathcal{O}(U)$ such that $F|_{M \cap U} = f$.

Corollary (L.-Noell-Ravisankar)

Suppose $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, $n \geq 2$, is a bounded domain with connected real-analytic boundary and all CR singularities of $\partial \Omega$ are nondegenerate. Suppose $f \in C^{\omega}(\partial \Omega) \cap CR((\partial \Omega)_{CR})$. Then there exists F holomorphic on a neighbourhood of $\overline{\Omega}$ in \mathbb{C}^{n+1} , such that $F|_{\partial \Omega} = f$.

Proof is to follow Severi's example: apply the local extension and then apply the Hartogs theorem (in this case Hartogs for $\mathbb{C}^n \times \mathbb{R}$).

Dolbeault-Tomassini-Zaitsev studied when a compact CR singular M is the boundary of a Levi-flat. They prove existence of a singular solution under certain conditions on M, in particular ellipticity.

Dolbeault-Tomassini-Zaitsev studied when a compact CR singular M is the boundary of a Levi-flat. They prove existence of a singular solution under certain conditions on M, in particular ellipticity.

Our global theorem has an immediate corollary, giving a singular solution for certain M. Here is the real-analytic case.

Corollary

Suppose $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, n > 1, is a bounded domain with connected real-analytic boundary, and $M = f(\partial \Omega) \subset \mathbb{C}^{n+1}$ is the image of a C^{ω} map f that is CR on $(\partial \Omega)_{CR}$. Suppose all CR singularities of $\partial \Omega$ are nondegenerate. Then there exists a holomorphic map F to \mathbb{C}^{n+1} whose restriction to $\partial \Omega$ is f. $F(\overline{\Omega})$ is a Levi-flat wherever it is nonsingular.

1) Suppose f is a homogeneous polynomial and E = 0.

- 1) Suppose f is a homogeneous polynomial and E = 0.
- 2) Extend f near M_{CR} .

- 1) Suppose f is a homogeneous polynomial and E = 0.
- 2) Extend f near M_{CR} .
- 3) Find enough "an elliptic direction" to find a family of attached analytic discs shrinking to a CR point.

- 1) Suppose f is a homogeneous polynomial and E = 0.
- 2) Extend f near M_{CR} .
- 3) Find enough "an elliptic direction" to find a family of attached analytic discs shrinking to a CR point.
- 4) Extend along these families to find a holomorphic function in neighbourhood of a large attached disc.

- 1) Suppose f is a homogeneous polynomial and E = 0.
- 2) Extend f near M_{CR} .
- 3) Find enough "an elliptic direction" to find a family of attached analytic discs shrinking to a CR point.
- 4) Extend along these families to find a holomorphic function in neighbourhood of a large attached disc.

5) Show that this holomorphic function is actually a polynomial.

- 1) Suppose f is a homogeneous polynomial and E = 0.
- 2) Extend f near M_{CR} .
- 3) Find enough "an elliptic direction" to find a family of attached analytic discs shrinking to a CR point.
- 4) Extend along these families to find a holomorphic function in neighbourhood of a large attached disc.
- 5) Show that this holomorphic function is actually a polynomial.
- 6) Use the above model case to obtain a formal solution in general and show that it converges.

In the elliptic case we have also the extension for smooth maps. For n > 1 and a nondegenerate M is given by

$$w=\sum_{j,k}(a_{jk}z_jar{z}_k+b_{jk}z_jz_k+ar{b}_{jk}ar{z}_jar{z}_k)+E(z,ar{z})$$

for a real valued E. Then M is *elliptic* if M intersected with $\{w = \text{const}\}$ are boundaries of domains shrinking to zero, then $[a_{jk}]$ must be definite (WLOG positive) and we can diagonalize

$$w=\sum_j (z_jar z_j+\lambda_j(z_j^2+ar z_j^2))+E(z,ar z)$$

and $0 \leq \lambda_j < \frac{1}{2}$.

Theorem (L.-Noell-Ravisankar)

Suppose H and M are closed submanifolds of $U = \{(z, w) \in \mathbb{C}^n \times \mathbb{C} : ||z|| < \delta_z, |w| < \delta_w\}$ given by

$$egin{aligned} M: w &= \sumig(|z_j|^2 + \lambda_j(z_j^2 + ar{z}_j^2)ig) + E(z,ar{z}), \ H: ext{Re} \ w &\geq \sumig(|z_j|^2 + \lambda_j(z_j^2 + ar{z}_j^2)ig) + E(z,ar{z}), \quad ext{Im} \ w = 0. \end{aligned}$$

E is real-valued, smooth, and O(3), $0 \le \lambda_j < \frac{1}{2}$ for all j and $\delta_z, \delta_w > 0$ "small enough." Suppose $f: M \to \mathbb{C}$ is C^{∞} and either

(i)
$$n > 1$$
 and f is a CR function on M_{CR} , or

(ii) n = 1 and for every 0 < c < δ_w, there exists a continuous function on H ∩ {w = c}, holomorphic on (H \ M) ∩ {w = c} extending f|_{M∩{w=c}}

Then there exists an $F \in C^{\infty}(H) \cap CR(H \setminus M)$, and $F|_{M} = f$. Furthermore, F has a formal power series at 0 in z and w. If M and f are C^{ω} , then F is a restriction of a holomorphic function defined in a neighborhood of H in \mathbb{C}^{n+1} .

Theorem (L.-Noell-Ravisankar)

Suppose $\Omega \subset \mathbb{C}^n \times \mathbb{R}$ is a bounded domain with smooth boundary. Let $(z, s) \in \mathbb{C}^n \times \mathbb{R}$ be the coordinates. Suppose all CR singularities of $\partial \Omega$ are nondegenerate and elliptic. Suppose $f : \partial \Omega \to \mathbb{C}$ is smooth and either

(i) n > 1 and f is a CR function on $(\partial \Omega)_{CR}$, or

(ii) n = 1 and for every c ∈ ℝ where Ω ∩ {s = c} is nonempty, there exists a continuous function on Ω ∩ {s = c}, holomorphic on Ω ∩ {s = c} extending f|∂Ω∩{s=c}.

Then there exists $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$ and $F|_{\partial\Omega} = f$. Furthermore, if $\partial\Omega$ and f are real-analytic, then F is a restriction of a holomorphic function defined in a neighborhood of $\overline{\Omega}$ in \mathbb{C}^{n+1} . Thank you