Extensions of CR functions from CR singular submanifolds of codimension 2

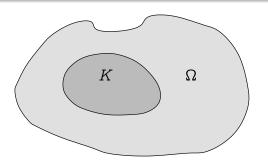
Jiří Lebl joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Hartogs phenomenon

Theorem (Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a domain, and $K \subset \subset \Omega$ be compact with $\Omega \setminus K$ connected. If $f \in \mathcal{O}(\Omega \setminus K)$, then there exists a unique $F \in \mathcal{O}(\Omega)$ such that $F|_{\Omega \setminus K} = f$.



There are no hypotheses on the geometry of Ω , only a mild clearly required topological requirement on $\Omega \setminus K$. Furthermore, K can be "as large as we want."

 $M \subset \mathbb{C}^n$ a C^{∞} -smooth real submanifold.

$$T_p^{0,1}M = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \bar{z}_k}\right\} \cap \mathbb{C} \otimes T_p M$$

 $M \subset \mathbb{C}^n$ a C^{∞} -smooth real submanifold.

$$T_p^{0,1}M=\operatorname{span}_{\mathbb{C}}\left\{rac{\partial}{\partial ar{z}_k}
ight\}\cap\mathbb{C}\otimes T_pM$$

M is a CR submanifold if dim $T_p^{0,1}M$ is constant on M. e.g. every real hypersurface in \mathbb{C}^n is a CR submanifold.

 $M \subset \mathbb{C}^n$ a C^{∞} -smooth real submanifold.

$$T_p^{0,1}M=\operatorname{span}_{\mathbb{C}}\left\{rac{\partial}{\partial ar{z}_k}
ight\}\cap\mathbb{C}\otimes T_pM$$

M is a CR submanifold if dim $T_p^{0,1}M$ is constant on M. e.g. every real hypersurface in \mathbb{C}^n is a CR submanifold.

M is CR singular at $q \in M$ if dim $T_p^{0,1}M$ is not constant in any neighbourhood of q.

Write
$$M_{CR} = M \setminus \{ \text{ CR singularities of } M \}$$

Generically a codimension 2 submanifold of \mathbb{C}^n will have isolated CR singularities.

 $M \subset \mathbb{C}^n$ a C^{∞} -smooth real submanifold.

$$T_p^{0,1}M=\operatorname{span}_{\mathbb{C}}\left\{rac{\partial}{\partial ar{z}_k}
ight\}\cap\mathbb{C}\otimes T_pM$$

M is a CR submanifold if dim $T_p^{0,1}M$ is constant on M. e.g. every real hypersurface in \mathbb{C}^n is a CR submanifold.

M is CR singular at $q \in M$ if dim $T_p^{0,1}M$ is not constant in any neighbourhood of q.

Write $M_{CR} = M \setminus \{ \text{ CR singularities of } M \}$

Generically a codimension 2 submanifold of \mathbb{C}^n will have isolated CR singularities.

A smooth function $f: M \to \mathbb{C}$ on a CR submanifold is a CR function if vf = 0 for all $v \in T^{0,1}M$. We will write $f \in CR(M)$.

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

We are only considering the C^{∞} category here.

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

We are only considering the C^{∞} category here.

Does not hold in n = 1. But if a continuous F exists, it is C^{∞} .

Theorem (Bochner-Hartogs)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with smooth connected boundary. If $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in C^{\infty}(\overline{\Omega}) \cap \mathcal{O}(\Omega)$ such that $F|_{\partial\Omega} = f$.

Again, notice the very simple (and clearly necessary) hypotheses on Ω . The proof can be done using the Bochner-Martinelli integral.

We are only considering the C^{∞} category here.

Does not hold in n=1. But if a continuous F exists, it is C^{∞} .

Theorem (Severi)

Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a bounded domain with real-analytic connected boundary. If $f \in C^{\omega}(\partial\Omega) \cap CR(\partial\Omega)$, then there exists a unique $F \in \mathcal{O}(\overline{\Omega})$ such that $F|_{\partial\Omega} = f$.

Local extension CR case

A smooth CR function f on a strictly pseudoconvex smooth hypersurface $M \subset \mathbb{C}^{n+1}$ extends to one side.

If Levi-form has eigenvalues of both signs, then to both sides, so to a neighbourhood.

If f and M is real-analytic, then no need to check the Levi-form, f always extends to a neighbourhood.

$\mathbb{C}^n \times \mathbb{R}$

Use coordinates $(z,w)\in\mathbb{C}^n imes\mathbb{C}$ consider the hypersurface X given by

$$\operatorname{Im} w = 0.$$

Let w = s + it. Then parametrize X using $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

$\mathbb{C}^n \times \mathbb{R}$

Use coordinates $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ consider the hypersurface X given by

$$\operatorname{Im} w = 0.$$

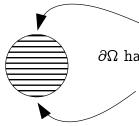
Let w = s + it. Then parametrize X using $(z, s) \in \mathbb{C}^n \times \mathbb{R}$.

The CR vectors on X are $\frac{\partial}{\partial \bar{z}_j}$.

A function f(z, s) is CR if it is holomorphic for fixed s.

$$\Omega = \{(z,s) \in \mathbb{C}^n \times \mathbb{R} : \|z\|^2 + s^2 < 1\}$$

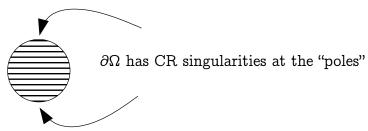
Have $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$.



 $\partial\Omega$ has CR singularities at the "poles"

$$\Omega = \{(z, s) \in \mathbb{C}^n \times \mathbb{R} : ||z||^2 + s^2 < 1\}$$

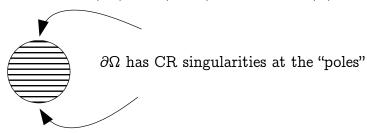
Have $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$.



 Ω has a natural foliation by the copies of \mathbb{C}^n (intersected with the ball). We can apply standard Bochner-Hartogs on each leaf (as long as n > 1).

$$\Omega = \{(z, s) \in \mathbb{C}^n \times \mathbb{R} : ||z||^2 + s^2 < 1\}$$

Have $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$.

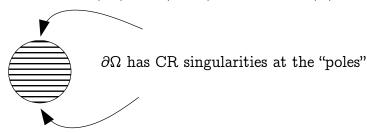


 Ω has a natural foliation by the copies of \mathbb{C}^n (intersected with the ball). We can apply standard Bochner-Hartogs on each leaf (as long as n > 1).

Most trouble happens at the CR singularities.

$$\Omega = \{(z, s) \in \mathbb{C}^n \times \mathbb{R} : ||z||^2 + s^2 < 1\}$$

Have $f \in C^{\infty}(\partial\Omega) \cap CR(\partial\Omega_{CR})$, want $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$.



 Ω has a natural foliation by the copies of \mathbb{C}^n (intersected with the ball). We can apply standard Bochner-Hartogs on each leaf (as long as n > 1).

Most trouble happens at the CR singularities.

We cannot expect F to be a restriction of a holomorphic function. Any C^{∞} function depending only on s is CR.

Local situation

Consider
$$(z,s)\in\mathbb{C}^n imes\mathbb{R}.$$
 Define M by $s=
ho(z,ar{z})$

and H by

$$s \geq \rho(z, \bar{z}).$$

Have $f \in C^{\infty}(M) \cap CR(M_{CR})$, want $F \in C^{\infty}(H) \cap CR(H \setminus M)$.

Local situation

Consider $(z, s) \in \mathbb{C}^n \times \mathbb{R}$. Define M by

$$s=
ho(z,ar{z})$$

and H by

$$s \geq \rho(z, \bar{z}).$$

Have $f \in C^{\infty}(M) \cap CR(M_{CR})$, want $F \in C^{\infty}(H) \cap CR(H \setminus M)$.

Counterexample:

Suppose M is given by $s = ||z||^4$.

Define f by \sqrt{s} .

f is CR and C^{ω} on M: $\sqrt{s} = ||z||^2$ on M.

F must be \sqrt{s} which is not C^{∞} on H.

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar{z}), \qquad (z,w)\in\mathbb{C}^n imes\mathbb{C}$$

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar{z}), \qquad (z,w)\in\mathbb{C}^n imes\mathbb{C}$$

Bishop ('65) first studied such nondegenerate M in \mathbb{C}^2 :

$$w=z\bar{z}+\lambda(z^2+\bar{z}^2)+E(z,\bar{z}).$$

 $\lambda \geq 0$ is the Bishop invariant.

 $0 \le \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \le \infty$: hyperbolic Why elliptic? Because $\{z\bar{z} + \lambda(z^2 + \bar{z}^2) = \text{const}\}$ gives ellipses.

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar{z}), \qquad (z,w)\in\mathbb{C}^n imes\mathbb{C}$$

Bishop ('65) first studied such nondegenerate M in \mathbb{C}^2 :

$$w=zar{z}+\lambda(z^2+ar{z}^2)+E(z,ar{z}).$$

 $\lambda \geq 0$ is the Bishop invariant.

 $0 \le \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \le \infty$: hyperbolic Why elliptic? Because $\{z\bar{z} + \lambda(z^2 + \bar{z}^2) = \text{const}\}$ gives ellipses.

As in our model we wish to apply Bochner-Hartogs, so we want ellipticity: Domains shrinking to zero. Also we automatically have E real-valued (holomorphically flat M).

A CR singularity of codim 2 in \mathbb{C}^{n+1} can be put in the form

$$w=
ho(z,ar{z}), \qquad (z,w)\in\mathbb{C}^n imes\mathbb{C}$$

Bishop ('65) first studied such nondegenerate M in \mathbb{C}^2 :

$$w=zar{z}+\lambda(z^2+ar{z}^2)+E(z,ar{z}).$$

 $\lambda \geq 0$ is the Bishop invariant.

 $0 \le \lambda < \frac{1}{2}$: elliptic $\lambda = \frac{1}{2}$: parabolic $\frac{1}{2} < \lambda \le \infty$: hyperbolic

Why elliptic? Because $\{z\bar{z} + \lambda(z^2 + \bar{z}^2) = \text{const}\}$ gives ellipses.

As in our model we wish to apply Bochner-Hartogs, so we want ellipticity: Domains shrinking to zero. Also we automatically have E real-valued (holomorphically flat M).

Studied extensively (elliptic): Moser-Webster, Moser, Kenig-Webster, Gong, Huang-Krantz, Huang, Huang-Yin, etc... Mostly interested in normal form.

n > 1

Start with M

$$w = \sum_{j,k} (a_{jk} z_j ar{z}_k + b_{jk} z_j z_k + ar{b}_{jk} ar{z}_j ar{z}_k) + E(z,ar{z})$$

For flat M, we arrange $[a_{jk}]$ to be Hermitian and E real-valued. By nondegenerate we will mean $[a_{jk}]$ invertible. Start with M

$$w = \sum_{j,k} (a_{jk} z_j ar{z}_k + b_{jk} z_j z_k + ar{b}_{jk} ar{z}_j ar{z}_k) + E(z,ar{z})$$

For flat M, we arrange $[a_{jk}]$ to be Hermitian and E real-valued.

By nondegenerate we will mean $[a_{jk}]$ invertible.

Nondegenerate M is *elliptic* if M intersected with $\{w = \text{const}\}$ are boundaries of domains shrinking to zero, then $[a_{jk}]$ must be definite (WLOG positive) and we can diagonalize

$$w = \sum_j (z_j ar{z}_j + \lambda_j (z_j^2 + ar{z}_j^2)) + E(z, ar{z})$$

and $0 \le \lambda_j < \frac{1}{2}$.

Start with M

$$w = \sum_{j,k} (a_{jk}z_jar{z}_k + b_{jk}z_jz_k + ar{b}_{jk}ar{z}_jar{z}_k) + E(z,ar{z})$$

For flat M, we arrange $[a_{jk}]$ to be Hermitian and E real-valued.

By nondegenerate we will mean $[a_{jk}]$ invertible.

Nondegenerate M is *elliptic* if M intersected with $\{w = \text{const}\}$ are boundaries of domains shrinking to zero, then $[a_{jk}]$ must be definite (WLOG positive) and we can diagonalize

$$w = \sum_j \left(z_j ar{z}_j + \lambda_j (z_j^2 + ar{z}_j^2)
ight) + E(z,ar{z})$$

and $0 \le \lambda_j < \frac{1}{2}$.

Far less understood (elliptic again nicest): Huang-Yin, Burcea, Gong-L., Dolbeault-Tomassini-Zaitsev, Slapar, etc...

The local theorem

Theorem (L.-Noell-Ravisankar)

Suppose H and M are closed submanifolds of $U = \{(z, w) \in \mathbb{C}^n \times \mathbb{C} : \|z\| < \delta_z, |w| < \delta_w\}$ given by

$$egin{aligned} M: w &= \sum \left(|z_j|^2 + \lambda_j (z_j^2 + ar{z}_j^2)
ight) + E(z,ar{z}), \ H: \mathrm{Re} \, w &\geq \sum \left(|z_j|^2 + \lambda_j (z_j^2 + ar{z}_j^2)
ight) + E(z,ar{z}), \quad \mathrm{Im} \, w = 0. \end{aligned}$$

E is real-valued, smooth, and O(3), $0 \le \lambda_j < \frac{1}{2}$ for all j and $\delta_z, \delta_w > 0$ "small enough." Suppose $f \colon M \to \mathbb{C}$ is C^{∞} and either

- (i) n > 1 and f is a CR function on M_{CR} , or
- (ii) n=1 and for every $0 < c < \delta_w$, there exists a continuous function on $H \cap \{w=c\}$, holomorphic on $(H \setminus M) \cap \{w=c\}$ extending $f|_{M \cap \{w=c\}}$

Then there exists an $F \in C^{\infty}(H) \cap CR(H \setminus M)$, and $F|_M = f$. Furthermore, F has a formal power series at 0 in z and w. If M and f are C^{ω} , then F is a restriction of a holomorphic function defined in a neighborhood of H in \mathbb{C}^{n+1} .

Current work in C^{ω} ...

Theorem (L.-Noell-Ravisankar)

Let $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, be a holomorphically-flat real codimension 2 real-analytic submanifold with a nondegenerate CR singularity at $0 \in M$. Suppose $f \in C^{\omega}(M) \cap CR(M \setminus \{0\})$. Then there exists a neighbourhood U of $0 \in \mathbb{C}^{n+1}$ and $F \in \mathcal{O}(U)$ such that $F|_{M \cap U} = f$.

The global theorem

Theorem (L.-Noell-Ravisankar)

Suppose $\Omega \subset \mathbb{C}^n \times \mathbb{R}$ is a bounded domain with smooth boundary. Let $(z,s) \in \mathbb{C}^n \times \mathbb{R}$ be the coordinates. Suppose all CR singularities of $\partial \Omega$ are nondegenerate and elliptic. Suppose $f: \partial \Omega \to \mathbb{C}$ is smooth and either

- (i) n > 1 and f is a CR function on $(\partial \Omega)_{CR}$, or
- (ii) n=1 and for every $c\in\mathbb{R}$ where $\Omega\cap\{s=c\}$ is nonempty, there exists a continuous function on $\overline{\Omega}\cap\{s=c\}$, holomorphic on $\Omega\cap\{s=c\}$ extending $f|_{\partial\Omega\cap\{s=c\}}$.

Then there exists $F \in C^{\infty}(\overline{\Omega}) \cap CR(\Omega)$ and $F|_{\partial\Omega} = f$. Furthermore, if $\partial\Omega$ and f are real-analytic, then F is a restriction of a holomorphic function defined in a neighborhood of $\overline{\Omega}$ in \mathbb{C}^{n+1} .

The global theorem for real-analytic

Theorem (L.-Noell-Ravisankar)

Suppose $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, $n \geq 2$, is a bounded domain with connected real-analytic boundary. Suppose all CR singularities of $\partial \Omega$ are nondegenerate. Suppose $f \in C^{\omega}(\partial \Omega) \cap CR((\partial \Omega)_{CR})$.

Then there exists F holomorphic on a neighbourhood of Ω in \mathbb{C}^{n+1} , such that $F|_{\partial\Omega} = f$.

Levi-flat Plateau problem

Dolbeault-Tomassini-Zaitsev studied when a compact CR singular M is the boundary of a Levi-flat. They prove existence of a singular solution under certain conditions on M, in particular ellipticity.

Levi-flat Plateau problem

Dolbeault-Tomassini-Zaitsev studied when a compact CR singular M is the boundary of a Levi-flat. They prove existence of a singular solution under certain conditions on M, in particular ellipticity.

Our global theorem has an immediate corollary, giving a singular solution for certain M. Here is the real-analytic case.

Corollary

Suppose $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, n > 1, is a bounded domain with connected real-analytic boundary, and $M = f(\partial \Omega) \subset \mathbb{C}^{n+1}$ is the image of a smooth map f that is CR on $(\partial \Omega)_{CR}$. Suppose all CR singularities of $\partial \Omega$ are nondegenerate. Then there exists a holomorphic map F to \mathbb{C}^{n+1} whose restriction to $\partial \Omega$ is f. $F(\overline{\Omega})$ is a Levi-flat wherever it is nonsingular.

Thank you