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f : U → V is proper if f−1(K) ⊂⊂ U whenever K ⊂⊂ V.

f is proper if it “takes boundary to boundary”
(in Alexandroff compactification sense)

We focus on U ⊂ ℂn and V ⊂ ℂN.
If U,V bounded and f extends to U, then f is proper ⇔ f (𝜕U) ⊂ 𝜕V.
If U,V unbounded, need to also worry about “∞”.

Goal: Classify all proper holomorphic maps f : U → V.
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Automorphisms of the unit disc 𝔻:

z ↦→ ei𝜃𝜑𝛼(z) = ei𝜃 𝛼 − z
1 − 𝛼̄z

(𝜃 ∈ ℝ, 𝛼 ∈ 𝔻).

𝜑𝛼(𝛼) = 0, 𝜑𝛼(0) = 𝛼, 𝜑𝛼 ◦ 𝜑𝛼 = id.

Theorem (Fatou)
Every proper holomorphic map f : 𝔻 → 𝔻 is a finite Blaschke product:

f (z) = ei𝜃
m∏

k=1

ak − z
1 − ākz
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For 𝔹n = the unit ball, Aut(𝔹n) = automorphisms of 𝔹n:

z ↦→ U𝜑𝛼(z), U is unitary, 𝛼 ∈ 𝔹n, and

𝜑𝛼(z) =
𝛼 − L𝛼z

1 − ⟨z, 𝛼⟩ , L𝛼z =

(
1 −

√
1 − ∥𝛼∥2

) ⟨z, 𝛼⟩
∥𝛼∥2 𝛼 +

√
1 − ∥𝛼∥2z, L0 = I.

𝜑𝛼(𝛼) = 0, 𝜑𝛼(0) = 𝛼, 𝜑𝛼 ◦ 𝜑𝛼 = id.

Theorem (Alexander, Pinchuk circa ’77 (complicated history. . . ))
If f : 𝔹n → 𝔹n (n ≥ 2) is a proper holomorphic map, then f ∈ Aut(𝔹n).
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What about f : 𝔹n → 𝔹N if N ≠ n?

N < n ⇒ no proper maps at all. N > n ⇒ lots of proper maps.

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary and f (𝜕𝔹n) = 𝜕𝔹n+1.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N and U is a neighborhood of p ∈ 𝜕𝔹n. If f : U ∩ 𝔹n → ℂN is
smooth, holomorphic on U ∩ 𝔹n, and f (U ∩ S2n−1) ⊂ S2N−1, then f is rational and
extends to a proper map of 𝔹n to 𝔹N, and its degree is bounded in terms of n and N.



5 / 11

What about f : 𝔹n → 𝔹N if N ≠ n?

N < n ⇒ no proper maps at all.

N > n ⇒ lots of proper maps.

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary and f (𝜕𝔹n) = 𝜕𝔹n+1.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N and U is a neighborhood of p ∈ 𝜕𝔹n. If f : U ∩ 𝔹n → ℂN is
smooth, holomorphic on U ∩ 𝔹n, and f (U ∩ S2n−1) ⊂ S2N−1, then f is rational and
extends to a proper map of 𝔹n to 𝔹N, and its degree is bounded in terms of n and N.



5 / 11

What about f : 𝔹n → 𝔹N if N ≠ n?

N < n ⇒ no proper maps at all. N > n ⇒ lots of proper maps.

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary and f (𝜕𝔹n) = 𝜕𝔹n+1.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N and U is a neighborhood of p ∈ 𝜕𝔹n. If f : U ∩ 𝔹n → ℂN is
smooth, holomorphic on U ∩ 𝔹n, and f (U ∩ S2n−1) ⊂ S2N−1, then f is rational and
extends to a proper map of 𝔹n to 𝔹N, and its degree is bounded in terms of n and N.



5 / 11

What about f : 𝔹n → 𝔹N if N ≠ n?

N < n ⇒ no proper maps at all. N > n ⇒ lots of proper maps.

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary and f (𝜕𝔹n) = 𝜕𝔹n+1.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N and U is a neighborhood of p ∈ 𝜕𝔹n. If f : U ∩ 𝔹n → ℂN is
smooth, holomorphic on U ∩ 𝔹n, and f (U ∩ S2n−1) ⊂ S2N−1, then f is rational and
extends to a proper map of 𝔹n to 𝔹N, and its degree is bounded in terms of n and N.



5 / 11

What about f : 𝔹n → 𝔹N if N ≠ n?

N < n ⇒ no proper maps at all. N > n ⇒ lots of proper maps.

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary and f (𝜕𝔹n) = 𝜕𝔹n+1.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N and U is a neighborhood of p ∈ 𝜕𝔹n. If f : U ∩ 𝔹n → ℂN is
smooth, holomorphic on U ∩ 𝔹n, and f (U ∩ S2n−1) ⊂ S2N−1, then f is rational and
extends to a proper map of 𝔹n to 𝔹N, and its degree is bounded in terms of n and N.



5 / 11

What about f : 𝔹n → 𝔹N if N ≠ n?

N < n ⇒ no proper maps at all. N > n ⇒ lots of proper maps.

Theorem (Dor ’90)
For every n, there exists a proper holomorphic f : 𝔹n → 𝔹n+1 extending continuously
up to the boundary and f (𝜕𝔹n) = 𝜕𝔹n+1.

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N. If a proper holomorphic f : 𝔹n → 𝔹N extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič ’89)
Suppose 2 ≤ n ≤ N and U is a neighborhood of p ∈ 𝜕𝔹n. If f : U ∩ 𝔹n → ℂN is
smooth, holomorphic on U ∩ 𝔹n, and f (U ∩ S2n−1) ⊂ S2N−1, then f is rational and
extends to a proper map of 𝔹n to 𝔹N, and its degree is bounded in terms of n and N.



6 / 11

What about ball complements or differences? (No longer pseudoconvex)

Theorem
Suppose f : ℂn \ 𝔹n → ℂN \ 𝔹N, n ≥ 2, is a proper holomorphic map. Then f is a
polynomial, and when this polynomial is restricted to 𝔹n, it gives a proper map to 𝔹N.

Conversely, suppose p : ℂn → ℂN is a polynomial taking 𝔹n to 𝔹N properly. Then
(i) p(ℂn \ 𝔹n) ⊂ ℂN \ 𝔹N, and

(ii) if also ∥p(z)∥ → ∞ as ∥z∥ → ∞, then p is a proper map of ℂn \𝔹n to ℂN \𝔹N.

The key is to use Hartogs and Forstnerič and then study polynomial sphere
maps using Cauchy–Schwarz on the reflection principle:〈

f (z), f
(

z
∥z∥2

)〉
= 1.

Remark: It is not clear if the hypothesis (ii) in the converse is necessary.
(ii) is satisfied if top degree terms do not vanish on the sphere (trivial),
or if f (0) = 0 (using the reflection principle above).
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Theorem
Suppose n ≥ 2 and Br(c) ⊂ ℂn, BR(C) ⊂ ℂN are balls such that Br(c) ∩ 𝔹n ≠ ∅ and
BR(C) ∩ 𝔹N ≠ ∅. Suppose f : 𝔹n \ Br(c) → 𝔹N \ BR(C) is proper and holomorphic.

Then f is rational and extends to a rational proper map of balls f : 𝔹n → 𝔹N that
takes (𝜕Br(c)) ∩ 𝔹n to (𝜕BR(C)) ∩ 𝔹N. If c = 0 and C = 0 and f = p

q is in lowest
terms, then deg q < deg p.

Conversely, every proper holomorphic map f : 𝔹n → 𝔹N that takes (𝜕Br(c)) ∩ 𝔹n to
(𝜕BR(C)) ∩ 𝔹N is rational and restricts to a proper map of 𝔹n \ Br(c) to 𝔹N \ BR(C).

Kontinuitätssatz and Forstnerič to reduce to rational, then computation.

Proposition
Suppose n ≥ 2, 𝔹n ∩ Br(c) ≠ ∅, and 𝔹N ∩ BR(C) ≠ ∅. There exist no proper
holomorphic maps f : 𝔹n \ Br(c) → ℂN \ 𝔹N nor f : ℂn \ 𝔹n → 𝔹N \ BR(C).
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Kontinuitätssatz and Forstnerič to reduce to rational, then computation.
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Remark: None of the results hold if n = 1.

Example: 1
z takes an annulus to an annulus but does not extend to a proper

map of discs.

Example: ℂ \𝔻 is biholomorphic to the punctured disc 𝔻∗, which properly
(nonrationally) embeds properly into ℂN (and hence into a complement of a
ball) via Remmert–Bishop–Narasimhan.

Example: Embed 𝔻 properly into ℂN. Take a closed ball B such that B∩ f (𝔻) is
nontrivial but f−1(B) is connected, then 𝔻 \ f−1(B) is equivalent to an annulus.
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How about rational maps taking several spheres to spheres?

Definition: A rational f : ℂn d ℂN is an m-fold sphere map if there exist 2m
numbers 0 < r1 < r2 < · · · < rm < ∞ and 0 < R1 ,R2 , . . . ,Rm < ∞, such that the
pole set of f misses rjS2n−1 and f (rjS2n−1) ⊂ RjS2N−1 for all j = 1, . . . ,m. If there
are infinitely many such numbers rj and Rj, then f is an ∞-fold sphere map.

Example: z⊗d is a ∞-fold sphere map. Follows as ∥z⊗d∥2 = ∥z∥2d.

Example: If f and g are m-fold sphere maps for the same
0 < r1 < r2 < · · · < rm < ∞, then f ⊗ g or f ⊕ g are m-fold sphere maps.
Follows as ∥f ⊗ g∥2 = ∥f ∥2∥g∥2 and ∥f ⊕ g∥2 = ∥f ∥2 + ∥g∥2.

Example: f : ℂ2 → ℂ6 given by

(z1 , z2) ↦→
(

2√
5
z3

1 ,
2
√

2√
5

z2
1z2 ,

2√
5
z1z2

2 , z1z2 , z2
2 ,

1√
5
z1

)
,

takes S3 to S11 and 1
2S3 to 1

4S11, so it is a 2-fold map that is not a 3-fold map.
Note that it is cubic.

f is also a proper map of 𝔹2 \ 1
2𝔹2 → 𝔹6 \ 1

4𝔹6.
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Theorem
Suppose f : ℂn d ℂN, n ≥ 2, is a rational m-fold sphere map, 1 ≤ m ≤ ∞.

(i) If m < ∞ and f is a polynomial map of degree m or less, then f is an ∞-fold
sphere map.

(ii) If m < ∞ and f is a rational map of degree m − 1 or less, then f is an ∞-fold
sphere map.

If f is an ∞-fold sphere map, then f is polynomial and ∀ r > 0, ∃ R > 0, s.t.
f (rS2n−1) ⊂ RS2N−1. Moreover, there exists a unitary U ∈ U(ℂN) and homogeneous
sphere maps (possibly constant) hj : ℂn → ℂℓj , j = 1, . . . , k, such that

f = U(h1 ⊕ · · · ⊕ hk ⊕ 0).

The numbers above are sharp:
For every m, there is a polynomial m-fold sphere map of degree m + 1 that is
not an (m + 1)-fold sphere map.
For every m, there is a rational m-fold sphere map of degree m that is not an
(m + 1)-fold sphere map.
Some bound follows by a trivial argument (Bézout), but not the sharp one.
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