Proper maps of ball complements & differences and rational sphere maps

Jiří Lebl (collaboration with Abdullal Al Helal and Achinta Nandi)

Department of Mathematics, Oklahoma State University

 $f: U \to V$ is proper if $f^{-1}(K) \subset \subset U$ whenever $K \subset \subset V$.

 $f: U \to V$ is proper if $f^{-1}(K) \subset U$ whenever $K \subset V$.

f is proper if it "takes boundary to boundary" (in Alexandroff compactification sense)

 $f: U \to V$ is proper if $f^{-1}(K) \subset \subset U$ whenever $K \subset \subset V$.

f is proper if it "takes boundary to boundary" (in Alexandroff compactification sense)

We focus on $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^N$. If U, V bounded and f extends to \overline{U} , then f is proper $\Leftrightarrow f(\partial U) \subset \partial V$. If U, V unbounded, need to also worry about " ∞ ". $f: U \to V$ is proper if $f^{-1}(K) \subset \subset U$ whenever $K \subset \subset V$.

f is proper if it "takes boundary to boundary" (in Alexandroff compactification sense)

We focus on $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^N$. If U, V bounded and f extends to \overline{U} , then f is proper $\Leftrightarrow f(\partial U) \subset \partial V$. If U, V unbounded, need to also worry about " ∞ ".

Goal: Classify all proper holomorphic maps $f: U \to V$.

Automorphisms of the unit disc \mathbb{D} :

$$z \mapsto e^{i\theta} \varphi_{\alpha}(z) = e^{i\theta} \frac{\alpha - z}{1 - \bar{\alpha} z} \qquad (\theta \in \mathbb{R}, \alpha \in \mathbb{D}).$$

 $\varphi_{\alpha}(\alpha)=0, \quad \varphi_{\alpha}(0)=\alpha, \quad \varphi_{\alpha}\circ\varphi_{\alpha}=\mathrm{id}.$

Automorphisms of the unit disc \mathbb{D} :

$$z \mapsto e^{i\theta} \varphi_{\alpha}(z) = e^{i\theta} \frac{\alpha - z}{1 - \bar{\alpha} z} \qquad (\theta \in \mathbb{R}, \alpha \in \mathbb{D}).$$

$$\varphi_{\alpha}(\alpha) = 0, \quad \varphi_{\alpha}(0) = \alpha, \quad \varphi_{\alpha} \circ \varphi_{\alpha} = \mathrm{id}.$$

Theorem (Fatou)

Every proper holomorphic map $f : \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product:*

$$f(z) = e^{i\theta} \prod_{k=1}^{m} \frac{a_k - z}{1 - \bar{a}_k z}$$

For \mathbb{B}_n = the unit ball, Aut(\mathbb{B}_n) = automorphisms of \mathbb{B}_n : $z \mapsto U\varphi_{\alpha}(z)$, *U* is unitary, $\alpha \in \mathbb{B}_n$, and

$$\varphi_{\alpha}(z) = \frac{\alpha - L_{\alpha} z}{1 - \langle z, \alpha \rangle}, \quad L_{\alpha} z = \left(1 - \sqrt{1 - \|\alpha\|^2}\right) \frac{\langle z, \alpha \rangle}{\|\alpha\|^2} \alpha + \sqrt{1 - \|\alpha\|^2} z, \quad L_0 = I.$$

$$\varphi_{\alpha}(\alpha) = 0, \quad \varphi_{\alpha}(0) = \alpha, \quad \varphi_{\alpha} \circ \varphi_{\alpha} = \mathrm{id}.$$

For \mathbb{B}_n = the unit ball, Aut(\mathbb{B}_n) = automorphisms of \mathbb{B}_n : $z \mapsto U\varphi_{\alpha}(z)$, *U* is unitary, $\alpha \in \mathbb{B}_n$, and

$$\varphi_{\alpha}(z) = \frac{\alpha - L_{\alpha} z}{1 - \langle z, \alpha \rangle}, \quad L_{\alpha} z = \left(1 - \sqrt{1 - \|\alpha\|^2}\right) \frac{\langle z, \alpha \rangle}{\|\alpha\|^2} \alpha + \sqrt{1 - \|\alpha\|^2} z, \quad L_0 = I.$$

$$\varphi_{\alpha}(\alpha) = 0, \quad \varphi_{\alpha}(0) = \alpha, \quad \varphi_{\alpha} \circ \varphi_{\alpha} = \mathrm{id}.$$

Theorem (Alexander, Pinchuk circa '77 (complicated history...)) If $f: \mathbb{B}_n \to \mathbb{B}_n \ (n \ge 2)$ is a proper holomorphic map, then $f \in \operatorname{Aut}(\mathbb{B}_n)$.

 $N < n \implies$ no proper maps at all.

What about $f: \mathbb{B}_n \to \mathbb{B}_N$ if $N \neq n$? $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

 $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

Theorem (Dor '90)

For every *n*, there exists a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_{n+1}$ extending continuously up to the boundary and $f(\partial \mathbb{B}_n) = \partial \mathbb{B}_{n+1}$.

 $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

Theorem (Dor '90)

For every *n*, there exists a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_{n+1}$ extending continuously up to the boundary and $f(\partial \mathbb{B}_n) = \partial \mathbb{B}_{n+1}$.

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$. If a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_N$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N.

 $N < n \implies$ no proper maps at all. $N > n \implies$ lots of proper maps.

Theorem (Dor '90)

For every *n*, there exists a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_{n+1}$ extending continuously up to the boundary and $f(\partial \mathbb{B}_n) = \partial \mathbb{B}_{n+1}$.

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$. If a proper holomorphic $f : \mathbb{B}_n \to \mathbb{B}_N$ extends smoothly up to the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$ and U is a neighborhood of $p \in \partial \mathbb{B}_n$. If $f: U \cap \overline{\mathbb{B}_n} \to \mathbb{C}^N$ is smooth, holomorphic on $U \cap \mathbb{B}_n$, and $f(U \cap S^{2n-1}) \subset S^{2N-1}$, then f is rational and extends to a proper map of \mathbb{B}_n to \mathbb{B}_N , and its degree is bounded in terms of n and N.

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N .

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N .

Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ is a polynomial taking \mathbb{B}_n to \mathbb{B}_N properly. Then (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N . Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ is a polynomial taking \mathbb{B}_n to \mathbb{B}_N properly. Then (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) if also $||p(z)|| \to \infty$ as $||z|| \to \infty$, then p is a proper map of $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ to $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$.

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N . Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ is a polynomial taking \mathbb{B}_n to \mathbb{B}_N properly. Then (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) if also $\|p(z)\| \to \infty$ as $\|z\| \to \infty$, then p is a proper map of $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ to $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$.

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$\left\langle f(z), f\left(\frac{z}{\left\|z\right\|^2}\right) \right\rangle = 1$$

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N . Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ is a polynomial taking \mathbb{B}_n to \mathbb{B}_N properly. Then (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) if also $\|p(z)\| \to \infty$ as $\|z\| \to \infty$, then p is a proper map of $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ to $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$.

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$\left\langle f(z), f\left(\frac{z}{\|z\|^2}\right) \right\rangle = 1.$$

Remark: It is not clear if the hypothesis (ii) in the converse is necessary.

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N . Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ is a polynomial taking \mathbb{B}_n to \mathbb{B}_N properly. Then (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) if also $||p(z)|| \to \infty$ as $||z|| \to \infty$, then p is a proper map of $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ to $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$.

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$\left\langle f(z), f\left(\frac{z}{\left\|z\right\|^2}\right) \right\rangle = 1$$

Remark: It is not clear if the hypothesis (ii) in the converse is necessary. (ii) is satisfied if top degree terms do not vanish on the sphere (trivial),

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \ge 2$, is a proper holomorphic map. Then f is a polynomial, and when this polynomial is restricted to \mathbb{B}_n , it gives a proper map to \mathbb{B}_N . Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ is a polynomial taking \mathbb{B}_n to \mathbb{B}_N properly. Then (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) if also $\|p(z)\| \to \infty$ as $\|z\| \to \infty$, then p is a proper map of $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ to $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$.

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$\left\langle f(z), f\left(\frac{z}{\|z\|^2}\right) \right\rangle = 1$$

Remark: It is not clear if the hypothesis (ii) in the converse is necessary. (ii) is satisfied if top degree terms do not vanish on the sphere (trivial), or if f(0) = 0 (using the reflection principle above).

Suppose $n \ge 2$ and $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ are balls such that $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ and $B_R(C) \cap \mathbb{B}_N \neq \emptyset$. Suppose $f : \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{B}_N \setminus \overline{B_R(C)}$ is proper and holomorphic.

Suppose $n \ge 2$ and $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ are balls such that $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ and $B_R(C) \cap \mathbb{B}_N \neq \emptyset$. Suppose $f : \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{B}_N \setminus \overline{B_R(C)}$ is proper and holomorphic.

Then *f* is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$. If c = 0 and C = 0 and $f = \frac{p}{q}$ is in lowest terms, then deg $q < \deg p$.

Suppose $n \ge 2$ and $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ are balls such that $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ and $B_R(C) \cap \mathbb{B}_N \neq \emptyset$. Suppose $f : \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{B}_N \setminus \overline{B_R(C)}$ is proper and holomorphic.

Then *f* is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$. If c = 0 and C = 0 and $f = \frac{p}{q}$ is in lowest terms, then deg $q < \deg p$.

Conversely, every proper holomorphic map $f : \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$ is rational and restricts to a proper map of $\mathbb{B}_n \setminus \overline{B_r(c)}$ to $\mathbb{B}_N \setminus \overline{B_R(C)}$.

Suppose $n \ge 2$ and $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ are balls such that $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ and $B_R(C) \cap \mathbb{B}_N \neq \emptyset$. Suppose $f : \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{B}_N \setminus \overline{B_R(C)}$ is proper and holomorphic.

Then *f* is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$. If c = 0 and C = 0 and $f = \frac{p}{q}$ is in lowest terms, then deg $q < \deg p$.

Conversely, every proper holomorphic map $f : \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$ is rational and restricts to a proper map of $\mathbb{B}_n \setminus \overline{B_r(c)}$ to $\mathbb{B}_N \setminus \overline{B_R(C)}$.

Kontinuitätssatz and Forstnerič to reduce to rational, then computation.

Suppose $n \ge 2$ and $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ are balls such that $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ and $B_R(C) \cap \mathbb{B}_N \neq \emptyset$. Suppose $f : \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{B}_N \setminus \overline{B_R(C)}$ is proper and holomorphic.

Then *f* is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$. If c = 0 and C = 0 and $f = \frac{p}{q}$ is in lowest terms, then deg $q < \deg p$.

Conversely, every proper holomorphic map $f : \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap \mathbb{B}_N$ is rational and restricts to a proper map of $\mathbb{B}_n \setminus \overline{B_r(c)}$ to $\mathbb{B}_N \setminus \overline{B_R(C)}$.

Kontinuitätssatz and Forstnerič to reduce to rational, then computation.

Proposition

Suppose $n \ge 2$, $\mathbb{B}_n \cap B_r(c) \neq \emptyset$, and $\mathbb{B}_N \cap B_R(C) \neq \emptyset$. There exist no proper holomorphic maps $f : \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ nor $f : \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{B}_N \setminus \overline{B_R(C)}$.

Example: $\frac{1}{z}$ takes an annulus to an annulus but does not extend to a proper map of discs.

Example: $\frac{1}{z}$ takes an annulus to an annulus but does not extend to a proper map of discs.

Example: $\mathbb{C} \setminus \overline{\mathbb{D}}$ is biholomorphic to the punctured disc \mathbb{D}^* , which properly (nonrationally) embeds properly into \mathbb{C}^N (and hence into a complement of a ball) via Remmert–Bishop–Narasimhan.

Example: $\frac{1}{z}$ takes an annulus to an annulus but does not extend to a proper map of discs.

Example: $\mathbb{C} \setminus \overline{\mathbb{D}}$ is biholomorphic to the punctured disc \mathbb{D}^* , which properly (nonrationally) embeds properly into \mathbb{C}^N (and hence into a complement of a ball) via Remmert–Bishop–Narasimhan.

Example: Embed \mathbb{D} properly into \mathbb{C}^N . Take a closed ball *B* such that $B \cap f(\mathbb{D})$ is nontrivial but $f^{-1}(B)$ is connected, then $\mathbb{D} \setminus f^{-1}(B)$ is equivalent to an annulus.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps. Follows as $||f \otimes g||^2 = ||f||^2 ||g||^2$ and $||f \oplus g||^2 = ||f||^2 + ||g||^2$.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps. Follows as $||f \otimes g||^2 = ||f||^2 ||g||^2$ and $||f \oplus g||^2 = ||f||^2 + ||g||^2$.

Example: $f: \mathbb{C}^2 \to \mathbb{C}^6$ given by

$$(z_1, z_2) \mapsto \left(\frac{2}{\sqrt{5}} z_1^3, \frac{2\sqrt{2}}{\sqrt{5}} z_1^2 z_2, \frac{2}{\sqrt{5}} z_1 z_2^2, z_1 z_2, z_2^2, \frac{1}{\sqrt{5}} z_1\right),$$

takes S^3 to S^{11} and $\frac{1}{2}S^3$ to $\frac{1}{4}S^{11}$, so it is a 2-fold map that is not a 3-fold map. Note that it is cubic.

Definition: A rational $f: \mathbb{C}^n \to \mathbb{C}^N$ is an *m*-fold sphere map if there exist 2m numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of f misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, \ldots, m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps. Follows as $||f \otimes g||^2 = ||f||^2 ||g||^2$ and $||f \oplus g||^2 = ||f||^2 + ||g||^2$.

Example: $f: \mathbb{C}^2 \to \mathbb{C}^6$ given by

$$(z_1, z_2) \mapsto \left(\frac{2}{\sqrt{5}} z_1^3, \frac{2\sqrt{2}}{\sqrt{5}} z_1^2 z_2, \frac{2}{\sqrt{5}} z_1 z_2^2, z_1 z_2, z_2^2, \frac{1}{\sqrt{5}} z_1\right),$$

takes S^3 to S^{11} and $\frac{1}{2}S^3$ to $\frac{1}{4}S^{11}$, so it is a 2-fold map that is not a 3-fold map. Note that it is cubic.

f is also a proper map of $\mathbb{B}_2 \setminus \frac{1}{2}\overline{\mathbb{B}_2} \to \mathbb{B}_6 \setminus \frac{1}{4}\overline{\mathbb{B}_6}$.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational m-fold sphere map, $1 \le m \le \infty$.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

(i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.
- (ii) If $m < \infty$ and f is a rational map of degree m 1 or less, then f is an ∞ -fold sphere map.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.
- (ii) If $m < \infty$ and f is a rational map of degree m 1 or less, then f is an ∞ -fold sphere map.

If f is an ∞ -fold sphere map, then f is polynomial and $\forall r > 0, \exists R > 0, s.t.$ $f(rS^{2n-1}) \subset RS^{2N-1}$. Moreover, there exists a unitary $U \in U(\mathbb{C}^N)$ and homogeneous sphere maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}, j = 1, ..., k$, such that

 $f = U(h_1 \oplus \cdots \oplus h_k \oplus 0).$

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.
- (ii) If $m < \infty$ and f is a rational map of degree m 1 or less, then f is an ∞ -fold sphere map.

If f is an ∞ -fold sphere map, then f is polynomial and $\forall r > 0, \exists R > 0, s.t.$ $f(rS^{2n-1}) \subset RS^{2N-1}$. Moreover, there exists a unitary $U \in U(\mathbb{C}^N)$ and homogeneous sphere maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}, j = 1, ..., k$, such that

$$f=U(h_1\oplus\cdots\oplus h_k\oplus 0).$$

The numbers above are sharp:

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.
- (ii) If $m < \infty$ and f is a rational map of degree m 1 or less, then f is an ∞ -fold sphere map.

If f is an ∞ -fold sphere map, then f is polynomial and $\forall r > 0, \exists R > 0, s.t.$ $f(rS^{2n-1}) \subset RS^{2N-1}$. Moreover, there exists a unitary $U \in U(\mathbb{C}^N)$ and homogeneous sphere maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}, j = 1, ..., k$, such that

$$f=U(h_1\oplus\cdots\oplus h_k\oplus 0).$$

The numbers above are sharp:

For every *m*, there is a polynomial *m*-fold sphere map of degree m + 1 that is not an (m + 1)-fold sphere map.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.
- (ii) If $m < \infty$ and f is a rational map of degree m 1 or less, then f is an ∞ -fold sphere map.

If f is an ∞ -fold sphere map, then f is polynomial and $\forall r > 0, \exists R > 0, s.t.$ $f(rS^{2n-1}) \subset RS^{2N-1}$. Moreover, there exists a unitary $U \in U(\mathbb{C}^N)$ and homogeneous sphere maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}, j = 1, ..., k$, such that

$$f=U(h_1\oplus\cdots\oplus h_k\oplus 0).$$

The numbers above are sharp:

For every *m*, there is a polynomial *m*-fold sphere map of degree m + 1 that is not an (m + 1)-fold sphere map.

For every *m*, there is a rational *m*-fold sphere map of degree *m* that is not an (m + 1)-fold sphere map.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \ge 2$, is a rational *m*-fold sphere map, $1 \le m \le \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold sphere map.
- (ii) If $m < \infty$ and f is a rational map of degree m 1 or less, then f is an ∞ -fold sphere map.

If f is an ∞ -fold sphere map, then f is polynomial and $\forall r > 0, \exists R > 0, s.t.$ $f(rS^{2n-1}) \subset RS^{2N-1}$. Moreover, there exists a unitary $U \in U(\mathbb{C}^N)$ and homogeneous sphere maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}, j = 1, ..., k$, such that

$$f=U(h_1\oplus\cdots\oplus h_k\oplus 0).$$

The numbers above are sharp:

For every *m*, there is a polynomial *m*-fold sphere map of degree m + 1 that is not an (m + 1)-fold sphere map.

For every *m*, there is a rational *m*-fold sphere map of degree *m* that is not an (m + 1)-fold sphere map.

Some bound follows by a trivial argument (Bézout), but not the sharp one.

Thanks for listening!