Proper maps of ball complements & differences and rational sphere maps

Jiří Lebl (collaboration with Abdullal Al Helal and Achinta Nandi)

Department of Mathematics, Oklahoma State University

f is proper if it "takes boundary to boundary" (in Alexandroff compactification sense)

f is proper if it "takes boundary to boundary" (in Alexandroff compactification sense)

We focus on $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^N$. If *U*, *V* bounded and *f* extends to \overline{U} , then *f* is proper $\Leftrightarrow f(\partial U) \subset \partial V$. If *U*, *V* unbounded, need to also worry about " ∞ ".

f is proper if it "takes boundary to boundary" (in Alexandroff compactification sense)

We focus on $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^N$. If *U*, *V* bounded and *f* extends to \overline{U} , then *f* is proper $\Leftrightarrow f(\partial U) \subset \partial V$. If *U*, *V* unbounded, need to also worry about " ∞ ".

Goal: Classify all proper holomorphic maps $f: U \rightarrow V$.

Automorphisms of the unit disc \mathbb{D} :

$$
z\mapsto e^{i\theta}\varphi_\alpha(z)=e^{i\theta}\frac{\alpha-z}{1-\bar{\alpha}z}\qquad(\theta\in\mathbb{R},\alpha\in\mathbb{D}).
$$

 $\varphi_{\alpha}(\alpha) = 0$, $\varphi_{\alpha}(0) = \alpha$, $\varphi_{\alpha} \circ \varphi_{\alpha} = id$.

Automorphisms of the unit disc \mathbb{D} :

$$
z \mapsto e^{i\theta} \varphi_\alpha(z) = e^{i\theta} \frac{\alpha - z}{1 - \bar{\alpha} z} \qquad (\theta \in \mathbb{R}, \alpha \in \mathbb{D}).
$$

$$
\varphi_{\alpha}(\alpha) = 0
$$
, $\varphi_{\alpha}(0) = \alpha$, $\varphi_{\alpha} \circ \varphi_{\alpha} = id$.

Theorem (Fatou)

Every proper holomorphic map $f: \mathbb{D} \to \mathbb{D}$ *is a finite Blaschke product:*

$$
f(z) = e^{i\theta} \prod_{k=1}^{m} \frac{a_k - z}{1 - \bar{a}_k z}
$$

For \mathbb{B}_n = the unit ball, $Aut(\mathbb{B}_n)$ = automorphisms of \mathbb{B}_n : $z \mapsto U\varphi_\alpha(z)$, *U* is unitary, $\alpha \in \mathbb{B}_n$, and

$$
\varphi_{\alpha}(z) = \frac{\alpha - L_{\alpha}z}{1 - \langle z, \alpha \rangle}, \quad L_{\alpha}z = \left(1 - \sqrt{1 - ||\alpha||^2}\right) \frac{\langle z, \alpha \rangle}{||\alpha||^2} \alpha + \sqrt{1 - ||\alpha||^2} z, \quad L_0 = I.
$$

$$
\varphi_{\alpha}(\alpha) = 0, \quad \varphi_{\alpha}(0) = \alpha, \quad \varphi_{\alpha} \circ \varphi_{\alpha} = id.
$$

For \mathbb{B}_n = the unit ball, $Aut(\mathbb{B}_n)$ = automorphisms of \mathbb{B}_n . $z \mapsto U\varphi_\alpha(z)$, *U* is unitary, $\alpha \in \mathbb{B}_n$, and

$$
\varphi_{\alpha}(z) = \frac{\alpha - L_{\alpha}z}{1 - \langle z, \alpha \rangle}, \quad L_{\alpha}z = \left(1 - \sqrt{1 - ||\alpha||^2}\right) \frac{\langle z, \alpha \rangle}{||\alpha||^2} \alpha + \sqrt{1 - ||\alpha||^2} z, \quad L_0 = I.
$$

$$
\varphi_{\alpha}(\alpha) = 0, \quad \varphi_{\alpha}(0) = \alpha, \quad \varphi_{\alpha} \circ \varphi_{\alpha} = id.
$$

Theorem (Alexander, Pinchuk circa '77 (complicated history. . .)) *If* $f: \mathbb{B}_n \to \mathbb{B}_n$ ($n \geq 2$) is a proper holomorphic map, then $f \in Aut(\mathbb{B}_n)$.

 $N < n \implies$ no proper maps at all.

What about $f: \mathbb{B}_n \to \mathbb{B}_N$ if $N \neq n$? $N < n$ \Rightarrow no proper maps at all. $N > n$ \Rightarrow lots of proper maps.

 $N < n$ \Rightarrow no proper maps at all. $N > n$ \Rightarrow lots of proper maps.

Theorem (Dor '90)

For every n, there exists a proper holomorphic $f: \mathbb{B}_n \to \mathbb{B}_{n+1}$ *extending continuously up to the boundary and* $f(\partial \mathbb{B}_n) = \partial \mathbb{B}_{n+1}$ *.*

 $N < n$ \Rightarrow no proper maps at all. $N > n$ \Rightarrow lots of proper maps.

Theorem (Dor '90)

For every n, there exists a proper holomorphic $f: \mathbb{B}_n \to \mathbb{B}_{n+1}$ *extending continuously up to the boundary and* $f(\partial \mathbb{B}_n) = \partial \mathbb{B}_{n+1}$ *.*

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$. If a proper holomorphic $f: \mathbb{B}_n \to \mathbb{B}_N$ extends smoothly up to *the boundary, then f is rational, and its degree is bounded in terms of n and N.*

 $N < n$ \Rightarrow no proper maps at all. $N > n$ \Rightarrow lots of proper maps.

Theorem (Dor '90)

For every n, there exists a proper holomorphic $f: \mathbb{B}_n \to \mathbb{B}_{n+1}$ *extending continuously up to the boundary and* $f(\partial \mathbb{B}_n) = \partial \mathbb{B}_{n+1}$ *.*

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$. If a proper holomorphic $f: \mathbb{B}_n \to \mathbb{B}_N$ extends smoothly up to *the boundary, then f is rational, and its degree is bounded in terms of n and N.*

In fact, the result is local:

Theorem (Forstnerič '89)

Suppose $2 \le n \le N$ *and U is a neighborhood of* $p \in \partial \mathbb{B}_n$ *. If* $f: U \cap \overline{\mathbb{B}_n} \to \mathbb{C}^N$ *is* s *mooth, holomorphic on* $U \cap \mathbb{B}_n$ *, and* $f(U \cap S^{2n-1}) \subset S^{2N-1}$ *, then* f *is rational and extends to a proper map of* \mathbb{B}_n *to* \mathbb{B}_N *, and its degree is bounded in terms of n and N.*

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n *, it gives a proper map to* \mathbb{B}_N *.*

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n *, it gives a proper map to* \mathbb{B}_N *.*

Conversely, suppose $p: \mathbb{C}^n \to \mathbb{C}^N$ *is a polynomial taking* \mathbb{B}_n *to* \mathbb{B}_N *properly. Then* (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n , *it gives a proper map to* \mathbb{B}_N . *Conversely, suppose* $p: \mathbb{C}^n \to \mathbb{C}^N$ *is a polynomial taking* \mathbb{B}_n *to* \mathbb{B}_N *properly. Then* (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) *if also* $||p(z)|| \rightarrow \infty$ *as* $||z|| \rightarrow \infty$ *, then p is a proper map of* $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ *to* $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ *.*

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n , *it gives a proper map to* \mathbb{B}_N . *Conversely, suppose* $p: \mathbb{C}^n \to \mathbb{C}^N$ *is a polynomial taking* \mathbb{B}_n *to* \mathbb{B}_N *properly. Then* (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) *if also* $||p(z)|| \rightarrow \infty$ *as* $||z|| \rightarrow \infty$ *, then p is a proper map of* $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ *to* $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ *.*

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$
\left\langle f(z), f\left(\frac{z}{\|z\|^2}\right) \right\rangle = 1.
$$

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n , *it gives a proper map to* \mathbb{B}_N . *Conversely, suppose* $p: \mathbb{C}^n \to \mathbb{C}^N$ *is a polynomial taking* \mathbb{B}_n *to* \mathbb{B}_N *properly. Then* (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) *if also* $||p(z)|| \rightarrow \infty$ *as* $||z|| \rightarrow \infty$ *, then p is a proper map of* $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ *to* $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ *.*

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$
\left\langle f(z), f\left(\frac{z}{\|z\|^2}\right) \right\rangle = 1.
$$

Remark: It is not clear if the hypothesis (ii) in the converse is necessary.

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n *, it gives a proper map to* \mathbb{B}_N *. Conversely, suppose* $p: \mathbb{C}^n \to \mathbb{C}^N$ *is a polynomial taking* \mathbb{B}_n *to* \mathbb{B}_N *properly. Then* (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) *if also* $||p(z)|| \rightarrow \infty$ *as* $||z|| \rightarrow \infty$ *, then p is a proper map of* $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ *to* $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ *.*

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$
\left\langle f(z), f\left(\frac{z}{\|z\|^2}\right) \right\rangle = 1.
$$

Remark: It is not clear if the hypothesis (ii) in the converse is necessary. (ii) is satisfied if top degree terms do not vanish on the sphere (trivial),

Theorem

Suppose $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, $n \geq 2$, is a proper holomorphic map. Then f is a *polynomial, and when this polynomial is restricted to* \mathbb{B}_n *, it gives a proper map to* \mathbb{B}_N *. Conversely, suppose* $p: \mathbb{C}^n \to \mathbb{C}^N$ *is a polynomial taking* \mathbb{B}_n *to* \mathbb{B}_N *properly. Then* (i) $p(\mathbb{C}^n \setminus \overline{\mathbb{B}_n}) \subset \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$, and (ii) *if also* $||p(z)|| \rightarrow \infty$ *as* $||z|| \rightarrow \infty$ *, then p is a proper map of* $\mathbb{C}^n \setminus \overline{\mathbb{B}_n}$ *to* $\mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ *.*

The key is to use Hartogs and Forstnerič and then study polynomial sphere maps using Cauchy–Schwarz on the reflection principle:

$$
\left\langle f(z), f\left(\frac{z}{\|z\|^2}\right) \right\rangle = 1.
$$

Remark: It is not clear if the hypothesis (ii) in the converse is necessary. (ii) is satisfied if top degree terms do not vanish on the sphere (trivial), or if $f(0) = 0$ (using the reflection principle above).

Suppose $n \geq 2$ *and* $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ *are balls such that* $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ *and* $B_R(C) \cap B_N \neq \emptyset$ *. Suppose* $f: B_n \setminus \overline{B_r(c)} \to B_N \setminus \overline{B_R(C)}$ *is proper and holomorphic.*

Suppose $n \geq 2$ *and* $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ *are balls such that* $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ *and* $B_R(C) \cap B_N \neq \emptyset$ *. Suppose* $f: B_n \setminus B_r(c) \rightarrow B_N \setminus B_R(C)$ *is proper and holomorphic.*

Then f is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ *that takes* $(\partial B_r(c)) \cap \mathbb{B}_n$ *to* $(\partial B_R(C)) \cap \mathbb{B}_N$ *. If* $c = 0$ *and* $C = 0$ *and* $f = \frac{p}{q}$ *q is in lowest terms, then* deg *q* < deg *p.*

Suppose $n \geq 2$ *and* $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ *are balls such that* $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ *and* $B_R(C) \cap B_N \neq \emptyset$. Suppose $f: B_n \setminus B_r(c) \rightarrow B_N \setminus B_R(C)$ *is proper and holomorphic.*

Then f is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ *that takes* $(\partial B_r(c)) \cap \mathbb{B}_n$ *to* $(\partial B_R(C)) \cap \mathbb{B}_N$ *. If* $c = 0$ *and* $C = 0$ *and* $f = \frac{p}{q}$ *q is in lowest terms, then* deg *q* < deg *p.*

Conversely, every proper holomorphic map $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap B_N$ *is rational and restricts to a proper map of* $B_n \setminus B_r(c)$ *to* $B_N \setminus B_R(C)$ *.*

Suppose $n \geq 2$ *and* $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ *are balls such that* $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ *and* $B_R(C) \cap B_N \neq \emptyset$. Suppose $f: B_n \setminus B_r(c) \rightarrow B_N \setminus B_R(C)$ *is proper and holomorphic.*

Then f is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ *that takes* $(\partial B_r(c)) \cap \mathbb{B}_n$ *to* $(\partial B_R(C)) \cap \mathbb{B}_N$ *. If* $c = 0$ *and* $C = 0$ *and* $f = \frac{p}{q}$ *q is in lowest terms, then* deg *q* < deg *p.*

Conversely, every proper holomorphic map $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap B_N$ *is rational and restricts to a proper map of* $B_n \setminus \overline{B_r(c)}$ *to* $B_N \setminus \overline{B_R(C)}$ *.*

Kontinuitätssatz and Forstnerič to reduce to rational, then computation.

Suppose $n \geq 2$ *and* $B_r(c) \subset \mathbb{C}^n$, $B_R(C) \subset \mathbb{C}^N$ *are balls such that* $B_r(c) \cap \mathbb{B}_n \neq \emptyset$ *and* $B_R(C) \cap B_N \neq \emptyset$. Suppose $f: B_n \setminus B_r(c) \rightarrow B_N \setminus B_R(C)$ *is proper and holomorphic.*

Then f is rational and extends to a rational proper map of balls $f: \mathbb{B}_n \to \mathbb{B}_N$ *that takes* $(\partial B_r(c)) \cap \mathbb{B}_n$ *to* $(\partial B_R(C)) \cap \mathbb{B}_N$ *. If* $c = 0$ *and* $C = 0$ *and* $f = \frac{p}{q}$ *q is in lowest terms, then* deg *q* < deg *p.*

Conversely, every proper holomorphic map $f: \mathbb{B}_n \to \mathbb{B}_N$ that takes $(\partial B_r(c)) \cap \mathbb{B}_n$ to $(\partial B_R(C)) \cap B_N$ *is rational and restricts to a proper map of* $B_n \setminus \overline{B_r(c)}$ *to* $B_N \setminus \overline{B_R(C)}$ *.*

Kontinuitätssatz and Forstnerič to reduce to rational, then computation.

Proposition

Suppose $n \geq 2$, $\mathbb{B}_n \cap B_r(c) \neq \emptyset$, and $\mathbb{B}_N \cap B_R(C) \neq \emptyset$. There exist no proper *holomorphic maps* $f: \mathbb{B}_n \setminus \overline{B_r(c)} \to \mathbb{C}^N \setminus \overline{\mathbb{B}_N}$ nor $f: \mathbb{C}^n \setminus \overline{\mathbb{B}_n} \to \mathbb{B}_N \setminus \overline{B_R(C)}$.

Example: $\frac{1}{z}$ takes an annulus to an annulus but does not extend to a proper map of discs.

Example: $\frac{1}{z}$ takes an annulus to an annulus but does not extend to a proper map of discs.

Example: $\mathbb{C} \setminus \overline{\mathbb{D}}$ is biholomorphic to the punctured disc \mathbb{D}^* , which properly (nonrationally) embeds properly into \mathbb{C}^N (and hence into a complement of a ball) via Remmert–Bishop–Narasimhan.

Example: $\frac{1}{z}$ takes an annulus to an annulus but does not extend to a proper map of discs.

Example: $\mathbb{C} \setminus \overline{\mathbb{D}}$ is biholomorphic to the punctured disc \mathbb{D}^* , which properly (nonrationally) embeds properly into \mathbb{C}^N (and hence into a complement of a ball) via Remmert–Bishop–Narasimhan.

Example: Embed $\mathbb D$ properly into $\mathbb C^N$. Take a closed ball *B* such that $B \cap f(\mathbb D)$ is nontrivial but $f^{-1}(B)$ is connected, then $D \setminus f^{-1}(B)$ is equivalent to an annulus.

Definition: A rational $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Definition: A rational $f: \mathbb{C}^n \rightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: *z* ⊗*d* is a ∞-fold sphere map.

Definition: A rational $f: \mathbb{C}^n \rightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Definition: A rational $f: \mathbb{C}^n \rightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps.

Definition: A rational $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps. Follows as $||f \otimes g||^2 = ||f||^2 ||g||^2$ and $||f \oplus g||^2 = ||f||^2 + ||g||^2$.

Definition: A rational $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps. Follows as $||f \otimes g||^2 = ||f||^2 ||g||^2$ and $||f \oplus g||^2 = ||f||^2 + ||g||^2$.

Example: $f: \mathbb{C}^2 \to \mathbb{C}^6$ given by

$$
(z_1, z_2) \mapsto \left(\frac{2}{\sqrt{5}} z_1^3, \frac{2\sqrt{2}}{\sqrt{5}} z_1^2 z_2, \frac{2}{\sqrt{5}} z_1 z_2^2, z_1 z_2, z_2^2, \frac{1}{\sqrt{5}} z_1 \right),
$$

takes S^3 to S^{11} and $\frac{1}{2}S^3$ to $\frac{1}{4}S^{11}$, so it is a 2-fold map that is not a 3-fold map. Note that it is cubic.

Definition: A rational $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$ is an *m-fold sphere map* if there exist 2*m* numbers $0 < r_1 < r_2 < \cdots < r_m < \infty$ and $0 < R_1, R_2, \ldots, R_m < \infty$, such that the pole set of *f* misses $r_j S^{2n-1}$ and $f(r_j S^{2n-1}) \subset R_j S^{2N-1}$ for all $j = 1, ..., m$. If there are infinitely many such numbers r_j and R_j , then f is an ∞ -fold sphere map.

Example: $z^{\otimes d}$ is a ∞ -fold sphere map. Follows as $||z^{\otimes d}||^2 = ||z||^{2d}$.

Example: If *f* and *g* are *m*-fold sphere maps for the same $0 < r_1 < r_2 < \cdots < r_m < \infty$, then $f \otimes g$ or $f \oplus g$ are *m*-fold sphere maps. Follows as $||f \otimes g||^2 = ||f||^2 ||g||^2$ and $||f \oplus g||^2 = ||f||^2 + ||g||^2$.

Example: $f: \mathbb{C}^2 \to \mathbb{C}^6$ given by

$$
(z_1, z_2) \mapsto \left(\frac{2}{\sqrt{5}} z_1^3, \frac{2\sqrt{2}}{\sqrt{5}} z_1^2 z_2, \frac{2}{\sqrt{5}} z_1 z_2^2, z_1 z_2, z_2^2, \frac{1}{\sqrt{5}} z_1 \right),
$$

takes S^3 to S^{11} and $\frac{1}{2}S^3$ to $\frac{1}{4}S^{11}$, so it is a 2-fold map that is not a 3-fold map. Note that it is cubic.

f is also a proper map of $\mathbb{B}_2 \setminus \frac{1}{2} \overline{\mathbb{B}_2} \to \mathbb{B}_6 \setminus \frac{1}{4} \overline{\mathbb{B}_6}$.

Suppose $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$ *.*

Suppose $f: \mathbb{C}^n \dashrightarrow \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$ *.*

(i) If $m < \infty$ and f is a polynomial map of degree *m* or less, then f is an ∞ -fold *sphere map.*

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold *sphere map.*
- (ii) If $m < \infty$ and f is a rational map of degree $m 1$ or less, then f is an ∞ -fold *sphere map.*

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold *sphere map.*
- (ii) If $m < \infty$ and f is a rational map of degree $m 1$ or less, then f is an ∞ -fold *sphere map.*

If f is an ∞ -fold sphere map, then *f is polynomial and* \forall *r* > 0, \exists *R* > 0, *s.t. f*(*rS*2*n*−¹) ⊂ *RS*2*N*−¹ *. Moreover, there exists a unitary U* ∈ *U*(ℂ*^N*) *and homogeneous* $sphere$ maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}$, $j = 1, \ldots, k$, such that

 $f = U(h_1 \oplus \cdots \oplus h_k \oplus 0).$

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold *sphere map.*
- (ii) If $m < \infty$ and f is a rational map of degree $m 1$ or less, then f is an ∞ -fold *sphere map.*

If f is an ∞*-fold sphere map, then f is polynomial and* \forall *r* > 0, \exists *R* > 0, *s.t. f*(*rS*2*n*−¹) ⊂ *RS*2*N*−¹ *. Moreover, there exists a unitary U* ∈ *U*(ℂ*^N*) *and homogeneous* $sphere$ maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}$, $j = 1, \ldots, k$, such that

$$
f = U(h_1 \oplus \cdots \oplus h_k \oplus 0).
$$

The numbers above are sharp:

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold *sphere map.*
- (ii) If $m < \infty$ and f is a rational map of degree $m 1$ or less, then f is an ∞ -fold *sphere map.*

If f is an ∞*-fold sphere map, then f is polynomial and* \forall *r* > 0, \exists *R* > 0, *s.t. f*(*rS*2*n*−¹) ⊂ *RS*2*N*−¹ *. Moreover, there exists a unitary U* ∈ *U*(ℂ*^N*) *and homogeneous* $sphere$ maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}$, $j = 1, \ldots, k$, such that

$$
f = U(h_1 \oplus \cdots \oplus h_k \oplus 0).
$$

The numbers above are sharp:

For every *m*, there is a polynomial *m*-fold sphere map of degree *m* + 1 that is not an $(m + 1)$ -fold sphere map.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold *sphere map.*
- (ii) If $m < \infty$ and f is a rational map of degree $m 1$ or less, then f is an ∞ -fold *sphere map.*

If f is an ∞*-fold sphere map, then f is polynomial and* \forall *r* > 0, \exists *R* > 0, *s.t. f*(*rS*2*n*−¹) ⊂ *RS*2*N*−¹ *. Moreover, there exists a unitary U* ∈ *U*(ℂ*^N*) *and homogeneous* $sphere$ maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}$, $j = 1, \ldots, k$, such that

$$
f = U(h_1 \oplus \cdots \oplus h_k \oplus 0).
$$

The numbers above are sharp:

For every *m*, there is a polynomial *m*-fold sphere map of degree *m* + 1 that is not an $(m + 1)$ -fold sphere map.

For every *m*, there is a rational *m*-fold sphere map of degree *m* that is not an $(m + 1)$ -fold sphere map.

Suppose $f: \mathbb{C}^n \to \mathbb{C}^N$, $n \geq 2$, *is a rational m-fold sphere map*, $1 \leq m \leq \infty$.

- (i) If $m < \infty$ and f is a polynomial map of degree m or less, then f is an ∞ -fold *sphere map.*
- (ii) If $m < \infty$ and f is a rational map of degree $m 1$ or less, then f is an ∞ -fold *sphere map.*

If f is an ∞*-fold sphere map, then f is polynomial and* \forall *r* > 0, \exists *R* > 0, *s.t. f*(*rS*2*n*−¹) ⊂ *RS*2*N*−¹ *. Moreover, there exists a unitary U* ∈ *U*(ℂ*^N*) *and homogeneous* $sphere$ maps (possibly constant) $h_j: \mathbb{C}^n \to \mathbb{C}^{\ell_j}$, $j = 1, \ldots, k$, such that

$$
f = U(h_1 \oplus \cdots \oplus h_k \oplus 0).
$$

The numbers above are sharp:

For every *m*, there is a polynomial *m*-fold sphere map of degree *m* + 1 that is not an $(m + 1)$ -fold sphere map.

For every *m*, there is a rational *m*-fold sphere map of degree *m* that is not an $(m + 1)$ -fold sphere map.

Some bound follows by a trivial argument (Bézout), but not the sharp one.

Thanks for listening!