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f is proper if it “takes boundary to boundary”
(in Alexandroff compactification sense)

We focus on U c C" and V c CN.

If U, V bounded and f extends to U, then f is proper < f(dU) c dV.
If U, V unbounded, need to also worry about “co”.

Goal: Classify all proper holomorphic maps f: U — V.
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Theorem (Fatou)
Every proper holomorphic map f: D — D is a finite Blaschke product:
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For B, = the unitball, Aut(B,) = automorphisms of B:
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Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))
Iff: B, — By, (n > 2) is a proper holomorphic map, then f € Aut(B,). J
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What about f: B, — By if N # n?
N <n = noproper maps at all. N>n = lots of proper maps.

Theorem (Dor "90)

For every n, there exists a proper holomorphic f: B, — By41 extending continuously
up to the boundary and f(dB,,) = dB41.
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Theorem (Forstneri¢ '89)

Suppose 2 < n < N. If a proper holomorphic f: B, — By extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

In fact, the result is local:

Theorem (Forstneri¢ '89)

Suppose 2 < n < N and U is a neighborhood of p € dB,,. Iff: UNB, — CN is
smooth, holomorphic on U N By, and f(U N S*'~1) ¢ S?N=1, then f is rational and
extends to a proper map of B, to By, and its degree is bounded in terms of n and N.
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Theorem

Suppose f: C" \ B, — CN \ By, n > 2, is a proper holomorphic map. Then f is a
polynomial, and when this polynomial is restricted to B,,, it gives a proper map to By.

Conversely, suppose p: C"* — CN is a polynomial taking B, to By properly. Then
(i) p(C"\ By) c CV\ By, and
(ii) ifalso ||p(z)|| — oo as ||z|| — oo, then p is a proper map of C" \ B, to CN \ By.

The key is to use Hartogs and Forstneri¢ and then study polynomial sphere
maps using Cauchy-Schwarz on the reflection principle:

s (757} -

Remark: It is not clear if the hypothesis (ii) in the converse is necessary.
(ii) is satisfied if top degree terms do not vanish on the sphere (trivial),
or if f(0) = 0 (using the reflection principle above).
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Suppose n > 2 and B,(c) c C", BR(C) c CN are balls such that B,(c) N B, # 0 and
Br(C) N By # 0. Suppose f: By, \ B,(c) — By \ Br(C) is proper and holomorphic.

Then f is rational and extends to a rational proper map of balls f : B, — By that
takes (dB;(c)) N By, fo (dBr(C)) NBy. Ifc=0and C=0and f = 7 is in lowest
terms, then deg g < degp.

Conversely, every proper holomorphic map f: B, — By that takes (dB,(c)) N B, to

(dBr(C)) N By is rational and restricts to a proper map of B, \ Bx(c) to By \ Br(C).

Kontinuitdtssatz and Forstneri¢ to reduce to rational, then computation.

Proposition

Suppose n > 2, B, N By(c) # 0, and By N Br(C) # 0. There exist no proper
holomorphic maps f: B, \ B,(c) — CN \ By nor f: C" \ B, — By \ Bz(C).




Remark: None of the results hold if n = 1.
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Remark: None of the results hold if n = 1.

Example: 1 takes an annulus to an annulus but does not extend to a proper
map of discs.

Example: C \ D is biholomorphic to the punctured disc D*, which properly
(nonrationally) embeds properly into C (and hence into a complement of a
ball) via Remmert-Bishop—Narasimhan.

Example: Embed D properly into CV. Take a closed ball B such that BNf(D) is
nontrivial but f~!(B) is connected, then D \ f~!(B) is equivalent to an annulus.
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Definition: A rational f: C" --» CN is an m-fold sphere map if there exist 2m
numbers0 <r <r <---<r, <ooand 0 < Ry, Ry, ..., R, < oo, such that the
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Example: If f and g are m-fold sphere maps for the same
0<r<rp<--- <ty <o, thenf ® gorf ®gare m-fold sphere maps.
Follows as [[f ® g1 = IIfI1?llgll* and [If & glI* = IIfII* + ligll*.

Example: f: C?> — C° given by

2.3 2V2.2 2
(21122) = (\/521/ 5 2122/ \/’2122/ 2122, er \/gzl) ’

takes S° to S!! and 153 to 1S, so it is a 2-fold map that is not a 3-fold map.
Note that it is cubic.

f is also a proper map of B, \ %[BTZ — B\ %[ET&
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f(rS?*=1) c RS*N=1. Moreover, there exists a unitary U € U(CN) and homogeneous
sphere maps (possibly constant) hj: C" — CY%,j =1,... k, such that

f=UMh & - ®h®0).

The numbers above are sharp:

For every m, there is a polynomial m-fold sphere map of degree m + 1 that is
not an (m + 1)-fold sphere map.

For every m, there is a rational m-fold sphere map of degree m that is not an
(m + 1)-fold sphere map.

Some bound follows by a trivial argument (Bézout), but not the sharp one.



Thanks for listening!
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