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Abstract. An n-strand braid is order-preserving if its induced action on the fundamental group
G of the disk with n punctures preserves some bi-ordering of G. A braid β is order-preserving

if and only if the link L obtained as the union of β and its axis has bi-orderable complement.
We describe and implement an algorithm which, given a braid β, terminates if β is not order-

preserving. Additionally, our algorithm returns a complete proof that β is not order-preserving.

The algorithm relies on the fact that the fundamental group of the n-punctured disk is a free
group.

1. Introduction

A group G is called bi-orderable if there is a strict total ordering < on G that is invariant under
both left and right multiplication. Free groups are bi-orderable, and in fact have uncountably
many distinct bi-orderings. Given a braid β in the n-strand braid group Bn, there is a specific
action of β ∈ Bn on Fn coming the induced action of β on the fundamental group of the n-
punctured disk; see Section 2. We aim to classify braids via properties of this action with respect
to bi-orders of the free group. In particular, if the action β preserves a given bi-ordering of Fn,
the we say that β is order-preserving, or that β preserves a bi-order of Fn.

Question 1. Which n-strand braids preserve a bi-order of the free group of rank n?

Kin and Rolfsen resolved this question for periodic braids, and several families of non-periodic
braids [KR18]. We produce a new infinte family of 3-braids which are not order-preserving.

Theorem 2. The braids σ1σ
2k+1
2 are not order-preserving for any integer k.

We discovered this family, and the proof that the family is not order-preserving, with the help
of our implementation of a new algorithm.

Algorithm. Given a braid which is not order-preserving, our algorithm can determine in finite
time that the braid is indeed not order-preserving, and return a proof of this fact.

Our algorithm is inspired by an algorithm of Calegari and Dunfield which can be applied to
any finitely presented group; if the group itself is not left-orderable, their algorithm will find an
obstruction in finite time [CD03; Dun19].

The braid group Bn is isomorphic to the mapping class group of the punctured disk Mod(Dn).
With this in mind braids can classified by their Nielsen-Thurston type as either periodic, pseudo-
Anosov, or reducible. The periodic braids are know to be order-preserving by Kin-Rolfsen. A
natural next class of 3-braids to consider are pseudo-Anosov braids.

Murasugi proved that every psuedo-Anosov 3-braid is conjugate to hdσ1σ
−a1
2 · · ·σ1σ−an

2 with
ai ≥ 0 with at least one ai ̸= 0 [Mur74] where h = (σ1σ2)

3 is the full twist. Considering this

classification, the simplest family of 3-braids to consider is σ1σ
−k
2 .We note that Kin-Rolsen showed

that when k = 1 the braid is not order-preserving; our Theorem 2 extends this result to an infinite
family when k is odd. One of our goals in creating and implementing the above algorithm is to
increase examples of braids known to be not order-preserving, especially among pseudo-Anosov
3-braids. Theorem 2 is a concrete step towards this goal.
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1.1. Motivation coming from 3-manifold topology. A 3-manifold is bi-orderable when its
fundamental group is a bi-orderable group. Orderability has played a significant role in studying
when a 3-manifold is an L-space, that is, a manifold with the simplest possible Heegaard Floer
homology, and when that manifold admits a geometric decomposition called a taut foliation. In
particular, the L-space Conjecture posits that a closed irreducible 3-manifold is not an L-space,
and admits a taut foliation, if and only if it is left-orderable [BGW13; Juh15]. It is another
question altogether how bi-orderability relates to Floer theoretic or topological properties of a
3-manifold.

Question 3. Is there a topological characterization of 3-manifolds with bi-orderable fundamental
group?

In the 1960’s, Lickorish-Wallace proved that any closed, orientable, connected 3-manifold may
be obtained by performing Dehn surgery on a link in S3 [Lic62; Wal60]. Bi-orderability makes
an appearance in this setting; a link, K, is said to be bi-orderable if π1(S

3 −K) is bi-orderable.
Clay and Rolfsen show that no Dehn surgery on a bi-orderable knot produces an L-space [CR12],
however this theorem is not true for links in general.

Problem 4. Classify bi-orderable links in S3.

A braided link is the closure β̂ of an n-strand braid β together with the braid axis, as pictured in
Figure 1a. Utilizing the structure of the braided link complement, the above classification problem
can be reinterpreted as the algebraic Question 1 about the action the braid group Bn on the free

group Fn. For a braid β ∈ Bn, the braided link β̂ is bi-orderable if and only if there is a bi-order
on Fn that is preserved by the action of β [KR18].

1.2. Organization of the paper. In Section 2 we define the explicit action of a braid on the
free group that we refer to throughout, and organize some background information about braids
and bi-orderings of groups. Finding a bi-ordering of the free group preserved by a braid can be
reduced to finding a certain order on zero-exponent sum words in the free group as we show in
Section 3. We describe our algorithm and its implementation in Section 4. In Section 5, we prove
Theorem 2.

1.3. Acknowledgments. This material is based upon work supported by the National Science
Foundation under Grant No. DMS-1929284 while the three authors were in residence at the
Institute for Computational and Experimental Research in Mathematics in Providence, RI, during
the ‘Braids’ program.
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ful to ICERM for making the collaboration possible and supporting our work. Part of this research
was conducted using computational resources and services at the Center for Computation and Vi-
sualization, Brown University. The second author was partially supported by an AMS-Simons
travel grant. The third author was also partially supported by Grant No. DMS-1745583.

2. Braids and orders

The braid group Bn embeds as a subgroup of the automorphism group Aut(Fn) of the free
group, Fn via the following action where Fn = ⟨x1, · · · , xn⟩.

(1) σi 7→


xi 7→ xi+1

xi+1 7→ x−1
i+1xixi+1

xj 7→ xj

This action comes from the identification of Bn with the mapping class group Mod(Dn) of the
n-punctured disk. Thus the braid group acts on π1(Dn) ∼= Fn.

We interpret an n-strand braid β as an automorphism of Fn, which we read from right to left so
that braids act on elements of Fn on the left. This also means that we read the action of σi on the
punctured disk by tracing the paths of the strands as we flow up the braid so that the ith puncture
passes in front of the (i+ 1)th puncture. Our convention for the generators of π1(Dn) is that the
basepoint is chosen along the bottom of the disk and the ith generator loops once in a clockwise
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(a) (b)

Figure 1. (A) The closure β̂ of of a 3-braid β together with its axis a forms a
braided link. (B) The Artin generator σi.

direction around the ith puncture. We note that the action of β on Fn with our convention is the
inverse automorphism which Kin-Rolfsen consider for the same β.

Definition 5. P is a positive cone for a bi-ordering of Fn if

(1) P · P ⊂ P ,
(2) Fn = P ⊔ P−1 ⊔ {1}, and
(3) gPg−1 = P for all g ∈ F .

A positive cone P determines a (bi-)order in the following way: say that f < g if and only if
f−1g ∈ P . This definition automatically guarantees the order will be left-invariant. Condidition
(1) assures transitivity, and (2) gives totality and strictness. Condition (3) is equivalent to < being
right-invariant. Thus defining < in this way from P gives a bi-ordering of Fn. One can show that
conversely, a bi-order on Fn determines a positive cone of Fn satisfying the three conditions.

Definition 6. An n-braid β is called order-preserving if there exists a positive cone P of Fn

preserved by β. That is β(P ) = P , set-wise.

Remark 7. Describing a positive cone is equivalent to describing a negative cone. Because of
this, you can always assume your favorite element x of Fn is in the positive cone since x ∈ P or
x ∈ −P .

For each braid β we obtain a link in S3 by taking the union of the closure β̂ of β with the braid
axis a; see Figure 1a.

Proposition 8 ([KR18]). The link β̂∪a is bi-orderable if and only if the action β on Fn preserves
some bi-ordering on Fn

2.1. Precones. Let k ≥ 1, and let Wk be the set of reduced words in x1 . . . , xn of length less
than of equal to k. We define a k-precone of Fn to be the part of a cone of Fn restricted to words
of length k, as made precise in the following definition.

Definition 9. A subset P is a k-precone of Fn if

(1) (P · P ) ∩Wk ⊂ P ,
(2) Wk = P ⊔ P−1 ⊔ {1}, and
(3) (gPg−1) ∩Wk ⊂ P for all g ∈Wk.

Notice that a k-precone is not necessarily closed under multiplication (or conjugation) since
many products of elements in the precone may be too long. Given a subset S of Fn there is an
action of the braid on this subset which we denote by β(S).

Definition 10. Given k ∈ N, a k-precone is preserved by an automorphsim φ if φ(P )∩Wk ⊂ Pk.

We point out that if P is a cone of Fn preserved by β, then P ∩Wk for any positive integer
k is a k-precone preserved by β by checking the definitions. There can be many different cones
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that have the same k-precone for a given k. The following proposition also asserts the converse
statement.

Proposition 11. β preserves a positive cone of F if and only if β preserves a k-precone of F for
every k ∈ N.

Proposition 11 is the crucial result used in our algorithm. To show a braid β does not preserve
a positive cone of Fn, it suffices to show that for some k, β does not preserve any k-precones of
F . For any fixed k, there are a finite number of k-precones of F , each with finite cardinality.
So Proposition 11 reduces the infinite problem to a finite problem – assuming the braid does not
preserve any order. The following Lemma is needed to prove Proposition 11.

Lemma 12. Suppose that for each positive integer k, we have a k-precone Pk of Fn preserved by
β. If Pk ⊂ Pl for all k ≤ l, then P =

⋃
Pk is a positive cone of F preserved by β.

Proof. To show that P is positive cone preserved by β we need to check the three conditions of
Definition 5, and finally to check that β preserves P .

To do these checks, it will be convenient first to show that P ∩Wk = Pk. For each k we certainly
have that Pk ⊂ P ∩Wk. Now suppose x ∈ P ∩Wk for some k. Since x ∈ P , x ∈ Pl for some l. If
l ≤ k then x ∈ Pl ⊂ Pk. Suppose l > k. Since x ∈ Wk, either x ∈ Pk, x ∈ P−1

k , or x = 1. Since

x ∈ Pl, x ̸= 1. Also, since P−1
k ⊂ P−1

l and x ∈ Pl, x cannot be in P−1
l , nor can x be in P−1

k .
Thus, we must have x ∈ Pk so P ∩Wk ⊂ Pk.

Condition (1): Suppose a, b ∈ P . For some large enough k, we must have a, b, and ab ∈ Wk.
Since Pk = P ∩Wk, a, b ∈ Pk. Since Pk is a precone, ab ∈ Pk ⊂ P as desired.

Condition (2): Since P = ∪Pk we also have that P−1 = ∪P−1
k ; we claim that P ⊔ P−1 ⊔

{1} = Fn. Suppose g ∈ Fn so g ∈ Wk for some k. Thus, either we have that g ∈ Pk ⊂ P ,
or g ∈ P−1

k ⊂ P−1, or g = 1. In any case, g is in P ⊔ P−1 ⊔ {1} and hence we have that
Fn = P ⊔ P−1 ⊔ {1}.

Condition (3): Suppose g ∈ Fn and x ∈ P . For some k,we have that x, gxg−1 ∈ Wk. Since
Pk = P ∩Wk and is a precone, we also have that gxg−1 ∈ Pk ⊂ P .

Preserved by β: Suppose x ∈ P . For some k, we have that x, β(x) ∈ Wk,. Since PkP ∩Wk

and is a precone, we have that β(x) ∈ Pk ⊂ P . □

Lemma 13. Suppose X is a compact space with a countable family C of closed nested subsets. If
each C ∈ C is nonempty then the intersection of all C ∈ C is also nonempty.

Proof. This follows from Theorem 26.9 of Munkres. □

Proof of Proposition 11. As noted in the discussion before Proposition 11, if β preserves a positive
cone P , then P ∩Wk is a k-precone preserved by β.

Now suppose that for each positive k, the braid β preserves k-precone for each k which are
nested. Consider 2F , the powerset of F . Each A ∈ 2F is identified with an indicator function
fA : F → {0, 1} defined as follows.

fA(g) =

{
1 g ∈ A

0 g /∈ A

2F can be given a topology by identifying it with the product topology on {0, 1}F . Here we use
the discrete topology on {0, 1}.

Given an element g ∈ F , define Ug to be the collection of subsets of F which contain g so
U c
g = 2F − Ug is the collection of sets which do not contain g. For each g, Ug and U c

g are open in

2F .
For each k, define Sk ⊂ 2F be the collection of all subsets A ⊂ F such that A∩Wk is a k-precone

of F preserved by β. This is a nested family as follows.

S1 ⊃ S2 ⊃ S3 ⊃ · · ·

Since β preserves a k-precone for each k, each Sk is nonempty.

Claim: Each Sk is a closed subset of 2K .
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Consider a “point” S in Sc
k = 2F − Sk; then S is a subset of F such that S ∩Wk is not a

k-precone. Since Wk is finite, the set

US =
( ⋂

g∈S∩Wk

Ug

)
∩
( ⋂

g/∈Sc∩Wk

U c
g

)
is open in 2F . Note that a set A is in the collection U if and only if A ∩Wk = S ∩Wk. It follows
that S ∈ US ⊂ Sc

k for each set S ∈ Sc
k. Thus, Sc

k is
⋃

S∈Sc
k
US . Since each US is open, Sc

k is open.

Therefore, Sk is closed.

Since the discrete topology on {0, 1} is compact, 2F is compact by the Tychonoff theorem.
Since each Sk is closed,

⋂
Sk is also nonempty by Lemma 13.

Let P ∈
⋂
Sk, and let Pk = P ∩Wk for each k ∈ Z+. Thus, P =

⋃
Pk, and when k ≤ l,

Pk ⊂ Pl. Since P ∈ Sk for each k, each Pk is a k-precone preserved by β. Therefore P is a positive
cone of F preserved by β by Lemma 12. □

3. Words with zero exponent sum

In order to improve the efficiency of our algorithm, we would like to minimize the number of
k-precones we need to consider. Towards this end, we focus on words in the free group with zero
exponent sum, a subgroup which we call K0. We prove the following general proposition which
will imply that certain bi-orders of K0 preserved by β are related to bi-orders on the free group
preserved by β.

Proposition 14. Suppose we have the short exact sequence where A is an abelian group.

1 → K → Fn
ϕ→ A→ 1

Let β be a braid (or more generally any automorphism of Fn) with the property β(K) = K.
A positive cone PK of K that is preserved by the action of β and invariant under conjugation by
elements of Fn exists if and only if a conjugate invariant positive cone PF of Fn preserved by β
exists.

Proof. (⇒) Given PK , the cone PF we seek is

PF := {x ∈ Fn |ϕ(x) ∈ PA, or ϕ(x) = 0 with x ∈ PK}
where PA is the conjugate invariant positive cone of A that is preserved by the ϕ-induced action

of β.
PF is invariant under action of β: Let x ∈ PF . If x /∈ K, then ϕ(x) ∈ PA. ϕ(β(x)) =

βϕ(x) ∈ PA since PA is closed under the action of β, so β(x) ∈ PF . If x ∈ K, then x ∈ PK . Since
PK is closed under the action of β, then β(x) ∈ PK and β(x) ∈ PF .
PF is conjugation invariant: Let g ∈ Fn and supposed x ∈ PF . If x ∈ K, or x ∈ PK ,

then by assumption gxg−1 ∈ PK (note that gxg−1 ∈ K as kernels are normal). If x /∈ K, then
ϕ(x) ̸= 0 ∈ PA and since A is abelian ϕ(gxg−1) = ϕ(x) ∈ PA.

(⇐) Suppose that we have a a conjugate invariant positive cone PF of Fn preserved by β. Then
we define PK := PF ∩ K. Since K and P are both conjugate invariant in Fn, PK is a positive
cone of K that is closed under conjugation by Fn. Since K is preserved by β by assumption, then
PK is preserved by β. □

Let t : Fn → Z be the exponent sum map. Taking K = K0 and ϕ to be t, the following
Corollary and Theorem follow directly from Proposition 14 and Lemma 15.

Lemma 15. For any braid β, we have that β(K0) = K0.

Proof. We see from equation (1) that the action of a generator σi preserves the exponent sum of
a word in Fn. It follows that for any braid β, we have that t(β(w)) = t(w) for w ∈ Fn. Since
K0 = ker t, we have β(K0) = K0. □

Corollary 16. A braid β preserves a bi-order of Fn if and only if it preserves a bi-order on K0,
the subgroup of zero exponent sum elements, which is conjugation invariant under elements of Fn.
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Theorem 17. An n-braid β preserves a positive cone of Fn if and only if β preserves a positive
cone P ′ where any word in Fn with positive exponent sum is in P ′.

In principle, this means that we can seed our k-precones immediately with all words of positive
exponent sum. In reality, our algorithm instead searches for intersections of k-precones with K0

which are preserved by β and are not only conjugate invariant in K0, but in the larger group Fn,
as in the following definition.

Definition 18. A subset Q of K0 is a k-zerocone of Fn if

(1) (Q ·Q) ∩Wk ⊂ Q,
(2) Q ⊔Q−1 ⊔ {1} =Wk ∩K0, and
(3) (gQg−1) ∩Wk ⊂ Q for all g ∈Wk.

Notice that the conjugation in condition (3) is by all elements of Wk, not just the ones in K0.
Now, to relate k-zerocones to k-precones of Fn, we define the set Posk(Q) obtained by adding to
Q all positive exponent sum words of length at most k as follows,

Posk(Q) := Q ∪
(
Wk ∩ t−1(Z+)

)
,

where t : Fn → Z is the exponent sum map.

Lemma 19. (a) If P is a k-precone, then the intersection P ∩K0 is a k-zerocone.
(b) Suppose Q is a k-zerocone. The set Posk(Q) is a k-precone.
(c) In particular, the set of k-zerocones of K0 are precisely the set of intersections of k-precones

of Fn and K0.

Proof. (a) Suppose P is a k-precone of Fn. We show that Q = P ∩K0 is a k-zerocone.
Condition (1): Suppose a, b ∈ Q. Then when ab ∈ Wk, we have that ab ∈ P . Thus since K0

is a subgroup of Fn, ab ∈ P ∩K0 = Q.
Condition (2):

Wk ∩K0 =
(
P ⊔ P−1 ⊔ {1}

)
∩K0

=
(
P ∩K0

)
⊔
(
P−1 ∩K0

)
⊔ {1}

=Q ⊔Q−1 ⊔ {1}

Condition (3): Suppose g ∈ Wk and x ∈ Q. When gxg−1 ∈ Wk, we have that gxg−1 ∈ P .
Thus since K0 is normal, gxg−1 ∈ P ∩K0 = Q.

(b) For the second statement, we show that Posk(Q) is a k-precone.
Condition (1): Suppose a, b ∈ Posk(Q). If a and b are both in Q then by definition of

a k-zerocone, when ab ∈ Wk, we have that ab ∈ Q ⊂ Posk(Q). If either a or b is not in Q,
then since Q ⊂ K0, and K0 = ker t, we have t(ab) > 0. Thus, when ab ∈ Wk, we have that
ab ∈Wk ∩ t−1(Z+) ⊂ Posk(Q).

Condition (2): First, we note that

Posk(Q)−1 = Q−1 ∪
(
Wk ∩ t−1(Z−)

)
.

For every element x in Wk, exactly one of t(x) > 0, t(x) < 0, or x ∈ K0 is true. Thus, we have
that

Wk =
(
Wk ∩ t−1(Z+)

)
⊔
(
Wk ∩K0

)
⊔
(
Wk ∩ t−1(Z−)

)
=
(
Wk ∩ t−1(Z+)

)
⊔Q ⊔ {1} ⊔Q−1 ⊔

(
Wk ∩ t−1(Z−)

)
=Posk(Q) ⊔ {1} ⊔ Posk(Q)−1

Condition (3): Suppose g ∈ Wk and x ∈ Posk(Q). If x ∈ Q then when by definition of a
k-zerocone, when gxg−1 ∈ Wk, we have that gxg−1 ∈ Q ⊂ Posk(Q). If x ∈ Wk ∩ t−1(Z+) then
t(gxg−1) = t(x) > 0. Thus, when gxg−1 ∈Wk, we have that gxg−1 ∈Wk ∩ t−1(Z+) ⊂ Posk(Q).
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(c) For the final statement, we have already shown that an intersection of a k-precone and K0 is a
k-zerocone by Part (a). For the other inclusion, we have that any k-zerocone Q is the intersection
Posk(Q) ∩K0 by definition of Posk(Q). □

Definition 20. We say a k-zerocone Qk of K0 is preserved by an automorphsim φ of Fn if
φ(Qk) ∩Wk ⊂ Qk.

Lemma 21. For each k ∈ N, the braid β preserves a k-precone of Fn if and only if β preserves a
k-zerocone of K0.

Proof. Suppose β preserves a k-precone Pk of Fn. Then, Qk = Pk ∩K0 is a k-zerocone by Lemma
19. Since β is a bijection, then β(Qk) = β(Pk ∩K0) = β(Pk)∩ β(K0) = β(P − k)∩K0. Using the
fact that β preserves Pk, we have β(Pk) ∩Wk ⊂ Pk, and so

β(Qk) ∩Wk =Wk ∩ β(Pk) ∩K0 ⊂ Pk ∩K0 = Qk.

Conversely, suppose β preserves a k-zerocone Qk of K0 so β(Qk) ∩ Wk ⊂ Qk. Define the
k-precone Pk as in Lemma 19 as follows.

Pk = Qk ∪
(
Wk ∩ t−1(Z+)

)
Since β is bijective and doesn’t affect exponent sum,

β(Pk) ∩Wk =
[
β(Qk) ∪

(
β(Wk) ∩ t−1(Z+)

)]
∩Wk

=
(
β(Qk) ∩Wk

)
∪
(
β(Wk) ∩ t−1(Z+) ∩Wk

)
⊂Qk ∪

(
t−1(Z+) ∩Wk

)
= Pk.

□

Combining Proposition 11 and Lemma 21, we can detect non-order-preserving braids by ob-
structing k-zerocones of K0 by the following proposition.

Proposition 22. The braid β is not order-preserving if and only if for some integer k we have
that β does not preserve any k-zerocone of K0.

4. Algorithms

Calegari and Dunfield described a theoretical algorithm for deciding the left-orderability of a
group [CD03, Section 8]. For a finitely presented group G with a solution to the word problem,
when G is not left-orderable group, their algorithm produces an obstruction to left-orderability
in finite time. When G is left-orderable, their algorithm does not halt. Dunfield implemented
this algorithm to obstruct left-orderability for many hyperbolic 3-manifold groups [Dun19]. His
implementation uses a PSL(2,C) representation to solve the word problem.

Taking inspiration from Calegari and Dunfield’s work, we describe and implement an algorithm
to answer the following question.

Question 23. Suppose β is an n-strand braid, and let k be a positive integer. Does β preserve a
k-precone of Fn in the sense of Definition 10?

By Proposition 11, a braid β is order-preserving if and only if the answer to Question 23 is “yes”
for every positive integer k. The recursive algorithm PreservePreCone(P ) defined in Algorithm
24 returns True or False when the answer to Question 23 is “yes” or “no” respectively. Note that
since we are working with the free group, we can solve the word problem by greedy reduction.

To understand Algorithm 24, recall that Wk is the set of words in Fn = ⟨x1, . . . , xn⟩ with word
length k or less, as defined in Section 2.1. Given a automorphism f ∈ Aut(Fn), and a set P ⊂ Fn,
define Sf (P ) as follows:

Sf (P ) := (P · P ) ∪
( n⋃

i=1

{xiPx−1
i }

)
∪ f(P ) ∪ f−1(P ).

When applied to a set P , the operation Sf returns a set that is not closed, but closer to
being closed under multiplication, conjugation, and the actions of f and f−1. The foundation of
Algorithm 24 is recursive applications of Sf , when f = β is an n-strand braid.
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Algorithm 24. PreservePreCone(P )

while Sβ(P ) ∩Wk ̸⊂ P do
P := Sβ(P ) ∩Wk

if 1 ∈ P then
returnFalse

if P ∪ P−1 ∪ {1} =Wk then
returnTrue

g := shortest word in Wk − (P ∪ P−1 ∪ {1})
returnPreservePreCone(P ∪ {g}) or PreservePreCone(P ∪ {g−1})

When executing Algorithm 24, every element of Wk must be placed in P at least once either
by the function Sβ or during the recursive branching step. Since the number of words in F with
length k is 6 · 5k−1, the time complexity of Algorithm 24 is at least exponential in k. When
implemented, this algorithm does not complete in a reasonable time for k > 6.

When β maps short words to significantly longer words, it is easy to find a k-precone Pk of the
free group where β(Pk) ∩Wk is small. (For example, the braid σ3

1σ
−3
2 σ1 maps x2 to a word of

length 21, and you wouldn’t see much of the braid action in Wk until k = 21 or higher.) In this
case, when β is non-order-preserving, k must be large for the answer to Question 23 to be “no”.
This means that in practice, Algorithm 24 is not so useful for obstructing order-preservingness of
most braids.

In our implementation, we make several modifications to improve the effectiveness of obstructing
order-preservingness. First, instead of using the action of β and β−1, we use automorphisms
b = ψ1 ◦ β and b′ = ψ2 ◦ β−1 where ψ1 and ψ2 are inner automorphisms. The automorphisms ψ1

and ψ2 are chosen to minimize the longest possible length of the images b(w) and b′(w). Lemma
25 describes that composition with an inner automorphism does not change a preserved positive
cone. So the choices of ψ1 and ψ2 only help us to find a contradiction sooner (for smaller k) by
changing the order in which elements are added to a precone.

Lemma 25. A positive cone P is preserved by β if and only if P is preserved by ϕ ◦ β for ϕ an
inner automorphism of Fn.

Proof. Suppose P is a positive cone. Since P is conjugate invariant, any inner automorphism will
preserve P . Thus, for any braid β and inner automorphism ϕ, we have that β(P ) = P if and only
if ϕ(β(P )) = P . □

Second, in light of Corollary 16, we only add words with exponent sum zero to our prospective
k-precone. While this doesn’t change the time complexity of the algorithm, it significantly reduce
the number of words we need to consider. To do this, instead of seeding our prospective precone
with shortest elements in Wk, we seed with words in Zk, the subset of words in Wk with zero
exponent sum.

Finally, instead of restricting ourselves to working with words at most length k, we allow our
algorithm to “remember” words of longer length without using these extra elements in the com-
putation to Sb(P ). This means for a given k our algorithm will find contradictions for preserving
larger precones without having to perform extra computations.

After these modifications we get Algorithm 26.

Algorithm 26. ModPreservePreCone(P ,E)

while S(P ) ∩ Zk ̸⊂ P do
P∗ := Sf (P ) ∩ Zk

E := E ∪ (Sf (P )− P∗) ▷ Tracking extra elements

if 1 ∈ P∗ ∪ E then
returnFalse

if P∗ ∪ P−1
∗ ∪ {1} = Zk then

returnTrue
g := shortest word in Zk − (P∗ ∪ P−1

∗ ∪ {1})
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Figure 2. Output of the implementation of Algorithm 26 applied to the braid
σ1σ

−3
2 with word length restriction to k = 4.

returnModPresPreCone(P ∪ {g},E) or ModPresPreCone(P ∪ {g−1},E)

If ModPreservePreCone({x−1
1 x2},∅) returns True, if the answer to Question 23 is “yes”. When

ModPreservePreCone({x−1
1 x2},∅) returns False, we can’t conclude that answer to Question 23 is

“no” for k, but we can conclude that answer to Question 23 is “no” for some positive integer
by Proposition 22. More importantly, the same proposition implies that when the algorithm
ModPreservePreCone({x−1

1 x2}, ∅) returns False, the braid β is not order-preserving.

4.1. Implemented outputs. Algorithms 24 and 26 are implemented in SageMath and Python
which will be available on Github [JST23]. When the implementation of Algorithm 26 returns
False, it also returns a proof that the braid is not order-preserving. Figure 2 shows the output
the of implemented Algorithm 26 applied to the braid σ1σ

−3
2 . The proof output is a binary tree

showing attempts to build precones. Each child node is an attempt to add the node element to
the precone. If the attempt was successful, there will be no proof information. If the attempt was
unsuccessful, the proof info will output two elements of the attempted precone that are inverses,
as well as instructions for how the elements were added to the precone. The algorithm proved
that σ1σ

−3
2 is not order-preserving, which is a new result.

Proposition 27. The braid σ1σ
−3
2 is not order-preserving.

Proof. Figure 2 shows the output the of implemented Algorithm 26 applied to the braid σ1σ
−3
2

with word length restriction to k = 4. Diagrammatically, the binary tree for σ1σ
−3
2 is depicted

below.

seeding element: y = x−1
1 x2

node element: α = x−1
2 x3

Contradiction elements:
x−1
3 x−1

2 x1x2 = β(x−1
3 αx3)

(x−1
3 x−1

2 x1x2)
−1 = αx−1

3 yx−1
3

node element: α−1 = (x−1
2 x3)

−1

Contradiction elements:
x−2
2 x1x2x3x

−1
2 = x2β(x2x3yx

−1
3 β(α−1)x−1

2 )x−1
2

(x−2
2 x1x2x3x

−1
2 )−1 = (x2α

−1x−1
2 )(x−1

2 αx2)
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This information is interpreted as a proof by supposing σ1σ
−3
2 preserves a precone P . As

stated in Remark 7, we may assume x−1
1 x2 is an element of P (this is the seeding element). If

α = x−1
2 x3 ∈ P (one node element) then the element x−1

3 x−1
2 x1x2 and its inverse (contradiction

elements) are both in P , which is a contradiction. If α−1 = (x−1
2 x3)

−1 ∈ P (the other node
element) then the element x−2

2 x1x2x3x
−1
2 and its inverse are both in P , which is a contradiction.

Thus no such P can exists and σ1σ
−3
2 is not order-preserving. □

In Section 5, we show how to mimic and generalize this computer generated proof to a proof
that all σ1σ

2k+1
2 are not order-preserving.

5. A Family of Non-Order-Preserving Braids

We prove that the braids σ1σ
2k+1
2 are not order-preserving. Our proof is based off the computer

generated proof resulting from the implemented Algorithm 26 applied to the braid σ1σ
−3
2 , as

discussed in Section 4.1 and shown in Figure 2.

Theorem 2. The braids σ1σ
2k+1
2 are not order-preserving for any integer k.

Proof. Let ψ ∈ Inn(F3) be conjugation by w−k where w = x−1
2 x1x2x3, let f be the automorphism

ψ ◦ β in Aut(F3) which is defined by the following action.

x1 7−→ w−kx2w
k x2 7−→ x−1

2 x1x2x3x
−1
2 x−1

1 x2

x3 7−→ x−1
2 x1x2

The automorphism f and the braid β preserve the same bi-orders of F3 by Lemma 25.
Suppose P is a positive cone of F3 preserved by f . We may assume without loss of generality

that x−1
1 x2 ∈ P .

Now, either x−1
2 x3 or x−1

3 x2 must be in P . Suppose first that x−1
2 x3 ∈ P . Then

f(x−1
2 x3) = x−1

2 x1x2x
−1
3 ∈ P.

Additionally, we have that x3x
−1
2 is in P by conjugating x−1

2 x3. However, since x−1
1 x2 is also in

P , we have that x−1
1 x2f(x

−1
2 x3)x3x

−1
2 = 1 ∈ P which is a contradiction.

On the other hand, suppose that that x−1
3 x2 ∈ P . Then, since x−1

1 x2 ∈ P ,

x3(x
−1
1 x2)x

−1
3 · f(x−1

3 x2) = x3x
−2
1 x2 ∈ P.

Since,

f(x3x
−2
1 x2) =x

−1
2 x1x2w

−kx−2
2 wkx−1

2 x1x2x3x
−1
2 x−1

1 x2

=x−1
2 x1x2w

−kx−2
2 wk+1x−1

2 x−1
1 x2,

we have that
x−2
2 w ∈ P

after conjugating by x−1
2 x1x2w

−k.
However, since x−1

1 x2 and x−1
3 x2 are in P , the elements x−1

2 x1 and x3x
−1
2 are in P−1. Thus,

x−1
2

[
x−1
2 (x−1

2 x1)x2 · x3x−1
2

]
x2 = x−2

2 w ∈ P−1

which is a contradiction. □

Once a braid is known to be order-preserving, or not order-preserving, there are many relations
to create new examples from the known examples. Many of of these relations follow from basic
order-preserving theory, or are proved in [KR18].

A braid β ∈ Bn is order-preserving if and only if

• any integer power of β is order-preserving, including β−1,
• β∆2k

n is order-preserving for ever k ∈ Z, where ∆n is the half twist,
• any conjugate of β is order-preserving (this includes any cyclic re-ordering of the braid

word for β),
• the braid tensor β ⊗ α is order-preserving, where α ∈ Bm is an order-preserving braid,

See Section 4.7 of [KR18],
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• the mirror of β is order-preserving.

Applying these relations to σ1σ
2k+1
2 gives several more examples of non-order-preserving braids.

Corollary 28. For all k, ℓ ∈ Z with ℓ ̸= 0, the following braids are not order-preserving.

a.) (σ±1
1 σ2k+1

2 )ℓ

b.) σ±1
1 σ2k+1

2 ∆2ℓ
3

c.) (σ2k+1
2 σ±1

1 )ℓ

d.) (σ±1
1 σ2k+1

2 )⊗ α for any braid α ∈ Bℓ
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