MATH 4910/5010 Exercises

Chapter 1

<u>Exercise 1:</u> Consider the metric space (\mathbb{R}^2, d_s) . For each of the following subsets of \mathbb{R}^2 , find the closure, interior, and boundary of the subset. Then, determine if the subset is open of closed in \mathbb{R}^2 .

- 1. $A = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 4\}$
- 2. $B = \{(x, y) \in \mathbb{R}^2 | y = 2x 1\}$
- 3. $C = \{(x, y) \in \mathbb{R}^2 | y < 1 |x| \text{ and } y \ge 0\}$
- 4. $D = \{(x, y) \in \mathbb{R}^2 | x, y \in \mathbb{Q}\}$ where \mathbb{Q} is the set of rational numbers.
- 5. $E = \{(x, y) \in \mathbb{R}^2 | x, y \notin \mathbb{Z}\}$ where \mathbb{Z} is the set of integers.

<u>Exercise 2</u>: Consider (\mathbb{R}^1, d_s) . For each positive integer n, let Q_n be the open interval $(-\frac{1}{n}, \frac{1}{n})$. Is each Q_n open in \mathbb{R}^1 ? Is the intersection of all the intervals Q_n open in \mathbb{R}^1 ?

Exercise 3: Consider \mathbb{Q} as a subspace of \mathbb{R} . Give an example of a subset which is both open and closed in \mathbb{Q} which isn't the empty set or the total space \mathbb{Q} .

Exercise 4: Complete exercise 2 on page 24.

<u>Exercise 5:</u> For each pair of spaces give an explicit homeomorphism between them.

- 1. (0,1) and $S^1 \{(1,0)\}$
- 2. \mathbb{R}^2 and \mathbb{B}^2

Exercise 6: Complete exercise 7 on page 24.

Exercise 7: Complete exercise 10a on page 25.

Chapter 2

<u>Exercise 8:</u> Write the set notation of the abstract simplicial complex realized by the geometric complex in Figure 2.9b on page 46.

Exercise 9: Let P be the set of the following points in \mathbb{R}^2 .

A = (0,0) B = (2,-2) C = (3,4) D = (4,0) E = (8,2)

- 1. Compute and draw the Čech complex $\mathbb{C}^{2.5}(P)$ and the Vietoris-Rips complex $\mathbb{VR}^{2.5}(P)$.
- 2. How many triangles are there in $\mathbb{VR}^{3.5}(P)$?

Exercise 10: Give an example of a simplicial complex with vertices in a finite subset $L \subset P$ where a simplex is weakly witnessed but some of its faces are not weakly witnessed.

Exercise 11: Let $\delta = 0.5$. Color in some of the points of a δ -sparse δ -sample in the picture below.

<u>Exercise 12</u>: Complete exercise 3 on page 58.
<u>Exercise 13</u>: Complete exercise 4 on page 58.
<u>Exercise 14</u>: Complete exercise 5 on page 58.
<u>Exercise 15</u>: Complete exercise 10 on page 59.