MATH 4910/5010 Exercises

Chapter 1

Exercise 1: Consider the metric space $\left(\mathbb{R}^{2}, d_{s}\right)$. For each of the following subsets of \mathbb{R}^{2}, find the closure, interior, and boundary of the subset. Then, determine if the subset is open of closed in \mathbb{R}^{2}.

1. $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<4\right\}$
2. $B=\left\{(x, y) \in \mathbb{R}^{2} \mid y=2 x-1\right\}$
3. $C=\left\{(x, y) \in \mathbb{R}^{2}|y<1-|x|\right.$ and $y \geq 0\}$
4. $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \in \mathbb{Q}\right\}$ where \mathbb{Q} is the set of rational numbers.
5. $E=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \notin \mathbb{Z}\right\}$ where \mathbb{Z} is the set of integers.

Exercise 2: Consider $\left(\mathbb{R}^{1}, d_{s}\right)$. For each positive integer n, let Q_{n} be the open interval $\left(-\frac{1}{n}, \frac{1}{n}\right)$. Is each Q_{n} open in \mathbb{R}^{1} ? Is the intersection of all the intervals Q_{n} open in \mathbb{R}^{1} ?

Exercise 3: Consider \mathbb{Q} as a subspace of \mathbb{R}. Give an example of a subset which is both open and closed in \mathbb{Q} which isn't the empty set or the total space \mathbb{Q}.

Exercise 4: Complete exercise 2 on page 24.
Exercise 5: For each pair of spaces give an explicit homeomorphism between them.

1. $(0,1)$ and $S^{1}-\{(1,0)\}$
2. \mathbb{R}^{2} and \mathbb{B}^{2}

Exercise 6: Complete exercise 7 on page 24.
Exercise 7: Complete exercise 10a on page 25.

Chapter 2

Exercise 8: Write the set notation of the abstract simplicial complex realized by the geometric complex in Figure 2.9b on page 46.

Exercise 9: Let P be the set of the following points in \mathbb{R}^{2}.

$$
A=(0,0) \quad B=(2,-2) \quad C=(3,4) \quad D=(4,0) \quad E=(8,2)
$$

1. Compute and draw the Čech complex $\mathbb{C}^{2.5}(P)$ and the Vietoris-Rips complex $\mathbb{V} \mathbb{R}^{2.5}(P)$.
2. How many triangles are there in $\mathbb{V}^{3.5}(P)$?

Exercise 10: Give an example of a simplicial complex with vertices in a finite subset $L \subset P$ where a simplex is weakly witnessed but some of its faces are not weakly witnessed.

Exercise 11: Let $\delta=0.5$. Color in some of the points of a δ-sparse δ-sample in the picture below.

Exercise 12: Complete exercise 3 on page 58.
Exercise 13: Complete exercise 4 on page 58.
Exercise 14: Complete exercise 5 on page 58.
Exercise 15: Complete exercise 10 on page 59.

