MATH 4910/5010

Topological Data Analysis

INTRODUCTION

Data Analysis

Data

2019 NFL Game Stats

HomeTeam	AwayTeam	Total	H-RushAtt	H-RushYards	H-PassYards	H-Turnover	H-Score	A-RushAtt	A-RushYards	A-PassYards	A-Turnover	A-Score
ARI	DET	45.5	23	112	308	1	27	32	116	385	2	<u>2</u> 27
CAR	LAR	49.5	23	127	239	3	27	32	166	186	1	30
СНІ	GNB	47	15	46	228	1	3	22	47	203	C) 10
CLE	TEN	44	20	102	285	3	13	28	123	248	C) 43
DAL	NYG	44	30	89	405	0	35	17	151	323	2	<u>י</u> 17
JAX	KAN	49	16	81	350	2	26	26	113	378	C) 40
LAC	IND	44.5	21	125	333	2	30	33	203	190	C) 24
MIA	BAL	41	12	21	190	3	10	46	265	379	C) 59
MIN	ATL	47	38	172	98	0	28	17	73	304	3	3 12
NOR	HOU	52	21	148	370	1	30	23	180	268	1	28
NWE	PIT	49	29	99	373	0	33	13	32	276	1	1 3
NYJ	BUF	41	21	68	175	1	16	25	128	254	4	l 17
ΟΑΚ	DEN	42.5	28	98	259	0	24	23	95	268	C) 16
PHI	WAS	44	31	123	313	0	32	13	28	380	C) 27
SEA	CIN	44	25	72	195	1	21	14	34	418	3	3 20
TAM	SFO	51	26	121	194	4	17	32	98	166	2	2 31
ATL	PHI	53	17	57	320	3	24	21	49	255	3	3 20

Data Analysis

Visualizing Data

Passing Yards

Data Analysis

Data Analysis

Passing Yards

The Shape of Data

Data can have shape and structure!

The Shape of Data

Location of Earthquakes Over the Past 30 Days

Longitude

The Shape of Data

Courtesy of Arnaldo Valdés et al, Flight Path 2050 and ACARE Goals for Maintaining and Extending Industrial Leadership in Aviation: A Map of the Aviation Technology Space

Topological Data Analysis

lssues

What if patterns are hard to find?What about high dimensional data?

Topological Data Analysis

Goal

• Develop effective algorithms for data analysis through a topological lens.

History

Seven Bridges of Königsberg

What is Topology?

What is Topology?

In Einstein's general relativity the structure of space can change but not its topology. Topology is the property of something that doesn't change when you bend it or stretch it as long as you don't break anything.

— Edward Witten —

AZQUOTES

What is Topology?

Geometry

Defined by distances and angles

- How long/big?
- What shape?
- Curvature?

Topology

Defined by overall structure of space

- Is it connected?
- How many pieces?
- Are their "holes"?
- Does it have boundary?

Motivating Examples I

Texture Mapping

Motivating Examples II

Medical Imaging

Courtesy of Singh et al, Topological data analysis in medical imaging: current state of the art

Motivating Examples III

Computer Vision

Courtesy of Carlsson et al, On the local behavior of spaces of natural images

Motivating Examples IV

Sensor Networks

Courtesy of Sarkar et al., Covering space for in-network sensor data storage

Motivating Examples V

[Wolynes et al., Folding and Design 1996]

Motivating Examples VI

Graph Reconstruction

Input: GPS trajectories

density field + discrete Morse

Output: Road network

MATH 4910/5010

Goals:

- Understand the basics of computational topology
- Introduce persistence homology and related techniques used in topological data analysis(TDA)
- Explore how to use TDA analyze data
- Study applications of these methods to research
- Get hands on experience analyzing data in RStudio

The Plan

- 1. Introduction to Topology
- 2. Simplicial (and related) complexes
- 3. (Simplicial) homology
- 4. Persistent homology
- 5. Point cloud data analysis (if time allows)
- 6. TDA in action

Course Structure

Class activities

- Lectures
- R Demonstrations

Assignments

- Take-home labs using Rstudio (about 4-5)
- First Presentations
 - Exercises using concepts from lecture
 - Around weeks 5-7
- Second Presentations
 - Applications of TDA in research
 - Around weeks 14-15

Text and References

Main Text

- Computational Topology for Data Analysis, by T. K. Dey and Y. Wang, Cambridge University Press, 2022.
- Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the Data Scientist by T. Mailund, Apress Berkeley, CA, 2022. (Available online through Edmon Low Library)

Other references:

• Computational Topology: An Introduction, by H. Edelsbrunner and J. Harer, AMS Press, 2009.

Important Links

Couse Website

- https://canvas.okstate.edu
- <u>https://math.okstate.edu/people/jjohnson/courses/2023fall_tda.php</u>

RStudio Links:

- <u>https://cran.rstudio.com</u>
- <u>https://posit.co/downloads</u>