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We study the global regularity of solutions to the 2D Boussinesq equations
with fractional dissipation, given by (−1)α/2u in the velocity equation and
by (−1)β/2θ in the temperature equation. We establish the global regularity
for 2

3 <α<1, α+β >1 and α> 1
1+β . This result is for the subcritical regime

α+β > 1 and the point here is to obtain the global regularity for the largest
possible range of α.

1. Introduction

This paper examines the global (in time) well-posedness problem on the 2D Boussi-
nesq equations with fractional dissipation. The Boussinesq equations concerned
here model large scale atmospheric and oceanic flows that are responsible for cold
fronts and the jet stream (see the books by Gill [1982], Majda [2003], Pedlosky
[1979]). In addition, the Boussinesq equations also play an important role in the
study of Rayleigh–Benard convection [Constantin and Doering 1999]. The standard
2D Boussinesq equations with Laplacian dissipation can be written

(1-1)


ut + u · ∇u+∇ p = ν 1u+ θe2,

θt + u · ∇θ = κ 1θ,

∇ · u = 0,

where u denotes the 2D velocity field, p the pressure, θ the temperature in the
context of thermal convection and the density in the modeling of geophysical fluids,
ν the viscosity, κ the thermal diffusivity, and e2 = (0, 1) is the unit vector in the
vertical direction.

The 2D Boussinesq equations have recently attracted considerable attention in the
community of mathematical fluid mechanics due to their mathematical significance.
Mathematically the 2D Boussinesq equations serve as a lower-dimensional model
of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations retain
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some key features of the 3D Euler and Navier–Stokes equations such as the vortex
stretching mechanism. The inviscid 2D Boussinesq equations are identical to the
Euler equations for the 3D axisymmetric swirling flows (away from the symmetry
axis) (see, e.g., [Majda and Bertozzi 2001]).

Our attention will be focused on the 2D Boussinesq equations with fractional
dissipation

(1-2)


ut + u · ∇u+3αu+∇ p = θe2,

θt + u · ∇θ +3βθ = 0,
∇ · u = 0,
u(x, 0)= u0(x), θ(x, 0)= θ0(x),

where3= (−1)1/2 and the general fractional Laplacian operator3α can be defined
via the Fourier transform

3̂α f (ξ)= |ξ |α f̂ (ξ).

This generalization allows us to study a family of equations simultaneously and
may be physically relevant. In fact, there are geophysical circumstances in which
the Boussinesq equations with fractional Laplacian may arise. Flows in the middle
atmosphere traveling upward undergo changes due to the changes of atmospheric
properties, although the incompressibility and Boussinesq approximations are appli-
cable. The effect of kinematic and thermal diffusion is attenuated by the thinning
of atmosphere. This anomalous attenuation can be modeled by using the space
fractional Laplacian (see [Gill 1982; Caputo 1967]).

One of the fundamental problems concerning the Boussinesq system is whether
or not its solutions remain smooth for all time or they blow up in a finite time.
This problem could be extremely difficult. A standard approach to the global
regularity problem is to first obtain the local existence and regularity and then
extend the local solution to a global one by establishing global a priori bounds for
the solution. Due to the divergence-free condition ∇ ·u= 0, any solution (u, θ) with
sufficiently smooth data admits a global L2-bound for u and a global Lq-bound
for θ (q ∈ [1,∞]). However, when the dissipation or the thermal diffusion is
not sufficient, it can be extremely difficult to obtain global bounds for suitable
derivatives of u or θ . When the Boussinesq equations are inviscid (no velocity
dissipation or thermal diffusion), the equations of ω =∇ × u and ∇⊥θ ,{

∂tω+ (u · ∇)ω = ∂x1θ,

∂t∇
⊥θ + (u · ∇)∇⊥θ = (∇⊥θ · ∇)u,

resemble the 3D Euler vorticity equation

∂tω
E
+ (uE

· ∇)ωE
= (ωE

· ∇)uE ,

where ∇⊥ = (−∂x2, ∂x1), and uE and ωE denote the 3D Euler velocity and the
corresponding vorticity, respectively.
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When 1u and 1θ are present, the global regularity can then be established
following a similar proof as that for the 2D Navier–Stokes equations. The issue that
arises naturally is how much dissipation is really needed for the global regularity.
This problem has attracted considerable interest recently and important progress
has been made (see, e.g., [Adhikari et al. 2010; 2011; 2014; Cao and Wu 2013;
Constantin and Vicol 2012; Danchin and Paicu 2011; Hmidi et al. 2010; 2011; Hou
and Li 2005; KC et al. 2014; Lai et al. 2011; Larios et al. 2013; Li et al. 2016; Li
and Titi 2016; Miao and Xue 2011; Ohkitani 2001; Stefanov and Wu 2018; Wu and
Xu 2014; Wu et al. 2016; 2015; Yang et al. 2014; Ye 2017; Ye and Xu 2016; Zhao
2010; Zhou 2018; Zhou and Li 2017]). Various approaches and techniques have
been developed to obtain the global regularity for (1-2) with smaller and smaller
α ∈ (0, 2) and β ∈ (0, 2).

As pointed out in [Jiu et al. 2014], it is useful to classify α and β into three
categories: the subcritical case when α+β > 1, the critical case when α+β = 1
and the supercritical case when α+β < 1. This classification gives us a sense of the
level of difficulty for different parameter ranges. The global regularity problem for
the supercritical regime α+β < 1 appears to be out of reach at this moment. Current
results for this regime address the eventual regularity of weak solutions [Yang et al.
2014; Wu et al. 2016]. There are exciting developments for the critical regime. Two
special critical cases, α = 1, β = 0 and β = 1, α = 0, were studied and resolved in
[Hmidi et al. 2010; 2011]. More general critical cases with α+β = 1 and α ∈ (0, 1)
were dealt with by Jiu, Miao, Wu and Zhang [Jiu et al. 2014], who established
the global regularity for (1-2) with α+β = 1 and 1> α > α0 ≡

23−
√

145
12 ≈ 0.9132.

Stefanov and Wu improved the result of Jiu, Miao, Wu and Zhang by further
enlarging the range of α with α+β = 1 and 1> α >

√
1777−23

24 ≈ 0.7981 [2018]. A
very recent work of Wu, Xu, Xue and Ye assesses the global regularity for α+β = 1
and α ∈ (0.7692, 1) [Wu et al. 2016].

This paper focuses on the subcritical regime α+ β > 1. The global regularity
problem, even in this regime, can be difficult, and there are ranges of subcritical
regime for which the global regularity of (1-2) remains unknown. To give an
accurate account of current results, we further divide the subcritical regime into two
cases: α ≥ β and α < β. We refer to the first case as velocity dissipation dominated
and the second case as thermal diffusion dominated. For the velocity dominated
case, Miao and Xue [2011] was able to establish the global regularity of (1-2) with

α ∈
(

6−
√

6
4

, 1
)
, β ∈

(
1−α, min

{
(7+2

√
6)α

5
− 2, α(1−α)√

6−2α
, 2− 2α

})
.

Note that 6−
√

6
4 ≈ 0.8876. Ye [2017] was able to enlarge the range to

0.7351< α < 1, β ∈
(

1−α, min
{

3− 3α, α
2
,

3α2
+4α−4

8(1−α)

})
.
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For the thermal diffusion dominated case, Constantin and Vicol obtained as a
consequence of their nonlinear maximum principle for fractional Laplacian operators
the global regularity of (1-2) with β > 2

2+α . In addition, Yang, Jiu and Wu [Yang
et al. 2014] obtained the global regularity for a larger range of β, and Ye and Xu
[2016] made further improvements on the range of β.

This paper focuses on the velocity dissipation dominated case, α ≥ β. Our
primary goal has been to obtain the global regularity for the smallest possible
α ∈ (0, 1) with α+β > 1 and α > β > 0. Our main result is stated in Theorem 1.2.
A slightly weaker result with a smaller range of α is stated in Theorem 1.1. The
main reason for keeping Theorem 1.1 is that Theorem 1.2 is built upon Theorem 1.1
and its proof.

Theorem 1.1. Let s> 2. Assume that u0 ∈ H s(R2) and ∇·u0= 0, and θ0 ∈ H s(R2).
Consider the fractional Boussinesq equations (1-2) with α and β satisfying

(1-3) 0< α, β < 1, α >
2

β+2
,

then (1-2) has a unique global (in time) solution (u, θ) satisfying

(u, θ) ∈ C([0, T ]; H s(R2)).

Theorem 1.2. Let s> 2. Assume that u0 ∈ H s(R2) and ∇·u0= 0, and θ0 ∈ H s(R2).
Consider the fractional Boussinesq equations (1-2) with α and β satisfying

(1-4) 2
3
< α < 1, 0< β < 1, α >

1
β+1

,

then (1-2) has a unique global (in time) solution (u, θ) satisfying

(u, θ) ∈ C([0, T ]; H s(R2)).

The proof of Theorem 1.1 relies on the equation for a combined quantity and
the nonlinear maximum principle for fractional Laplacian operators developed by
Córdoba and Córdoba [2004] and by Constantin and Vicol [2012]. Due to the
presence of the “vortex stretching” term ∂x1θ , energy estimates on the vorticity
equation

∂tω+ (u · ∇)ω+3αω = ∂x1θ

with α ∈ (0, 1) would not yield any global bound on ω. A well-known practice is
to eliminate ∂x1θ by considering the combined quantity

G = ω−Rαθ with Rα = ∂13
−α,

which satisfies

G t + u · ∇G+3αG = [Rα, u · ∇]θ +3β−α∂1θ,

where [Rα, u · ∇]θ denotes the standard commutator. Combining this equation
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with that of ∇θ , applying the nonlinear maximum principle for fractional Laplacian
operators and invoking commutator estimates, one derives differential inequalities
for ‖G(t)‖L∞ and ‖∇θ(t)‖L∞ , which yields Theorem 1.1. Theorem 1.2 involves
improved arguments. Its proof makes use of the global L2 bound for G whenever
α > 2

3 and α+β > 1, and the pointwise lower bound

f (x) ·3α f (x)≥ 1
2
3α| f (x)|2+

| f (x)|2+pα/d

c‖ f ‖pα/d
L p

.

This lower bound is in terms of the L p-norms of the functions instead of the L p-
norm of the antiderivative of f , and thus has a higher power than the corresponding
lower bound in terms of the L p-norm of the antiderivative.

The rest of this paper is divided into two sections. Section 2 proves Theorem 1.1
while Section 3 proves Theorem 1.2. Two appendices are also attached. The first
one provides the frequency localization operators and Besov spaces, and related
facts. Appendix B supplies the proofs for some of the facts used in Sections 2 and 3.

2. Proof of Theorem 1.1

This section proves Theorem 1.1. To do so, we make several preparations. The first
is a pointwise inequality for fractional Laplacian operators in [Constantin and Vicol
2012; Córdoba and Córdoba 2004].

Lemma 2.1. Let α ∈ (0, 2) and q ∈ [1,∞]. There exists C = C(d, α, q) such that,
for any function f = f (x) with x ∈ Rd that is sufficiently smooth and decays at
infinity,

∇ f (x) ·3α∇ f (x)≥ 1
2
3α|∇ f (x)|2+

|∇ f (x)|2+qα/(d+q)

C ‖ f ‖qα/d+q
Lq

, x ∈ Rd .

The next lemma states an interpolation inequality between Besov spaces (see,
e.g., [Bahouri et al. 2011; Miao et al. 2012; Hajaiej et al. 2011]). The definition of
Besov spaces is provided in Appendix A.

Lemma 2.2. Let s1 < s2 be real numbers and let γ ∈ (0, 1). Let p ∈ [1,∞]. Then,
there exists a constant C = C(s1, s2, γ ) such that

‖ f ‖
Ḃ
γ s1+(1−γ )s2
p,1

≤ C ‖ f ‖γ
Ḃ

s1
p,∞
‖ f ‖1−γ

Ḃ
s2
p,∞
.

In particular, for any σ ∈ (0, 1) and p ∈ [1,∞],

‖3σ f ‖L p ≤ ‖ f ‖Ḃσp,1
≤ C ‖ f ‖1−σB0

p,∞
‖ f ‖σB1

p,∞
≤ C ‖ f ‖1−σL p ‖∇ f ‖σL p .

We will also need the commutator estimates stated in the following lemma. This
lemma is taken from [Li et al. 2016, Lemma 2.2].
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Lemma 2.3. Let j ≥ 0 be an integer. Let α ∈ (0, 2). Assume q ∈ [2,∞] and
q1, q2 ∈ [2,∞] satisfy 1

q =
1
q1
+

1
q2

. Assume ∇ · u = 0. Then

(2-1) ‖1 j [Rα, u · ∇]θ‖Lq ≤ C 2(1−α) j
‖∇u‖Lq1 ‖1 jθ‖Lq2

+ C ‖∇u‖Lq1

∑
k≤ j−1

2k− j 2(1−α)k ‖1kθ‖Lq2

+ C ‖∇u‖Lq1

∑
k≥ j−1

2(2−α)( j−k)2(1−α)k‖1kθ‖Lq2

+ C ‖∇u‖Lq1

∑
k≥ j−1

2 j−k 2(1−α)k‖1kθ‖Lq2 ,

where C’s are constants. In addition, (2-1) still holds if Rα is replaced by 31−α. A
special consequence of (2-1) is the bound

(2-2) ‖[Rα, u · ∇]θ‖Lq ≤ C ‖∇u‖Lq1‖θ‖B1−α
q2,1
.

Similarly,
‖[31−α, u · ∇]θ‖Lq ≤ C ‖∇u‖Lq1‖θ‖B1−α

q2,1
.

Alternatively, the commutator can also be bounded as follows. A proof is
provided in Appendix B.

Lemma 2.4. Let α ∈ (0, 1). Then,

‖[∂13
−α, u · ∇]θ‖B0

∞,1
≤ C(‖ω‖2+‖ω‖∞)‖θ‖B1−α+ε

∞,1
+C‖u‖2‖θ‖2.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. . It suffices to establish a global a priori bound on ‖(u, θ)‖H s .
As we know, if one of the global bounds, for any t > 0,

(2-3)
∫ t

0
‖∇ω(τ)‖L∞ dτ <∞ or

∫ t

0
‖∇θ(τ )‖L∞ dτ <∞

holds, then ‖(u, θ)(t)‖H s is globally bounded. The rest of the proof verifies the
bounds in (2-3).

The following global bounds follow easily from (1-2):

‖θ(t)‖Lq ≤ ‖θ0‖Lq for any q ∈ [1,∞],

‖u(t)‖2L2 +

∫ t

0
‖3

α
2 u(τ )‖2L2 dτ ≤ (‖u0‖L2 + t ‖θ0‖L2)2.

However, direct energy estimates on (1-2) or on the equation of the vorticity
ω =∇ × u, {

ωt + u · ∇ω+3αω = ∂1θ,

θt + u · ∇θ +3βθ = 0,
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would not yield the desired global bound in (2-3), due to the vortex stretching
term ∂1θ . As in [Hmidi et al. 2010; 2011; Miao and Xue 2011; Jiu et al. 2014], the
idea is to eliminate ∂1θ and work with the combined quantity

(2-4) G = ω−Rαθ with Rα = ∂13
−α,

which satisfies

(2-5) G t + u · ∇G+3αG = [Rα, u · ∇]θ +3β−α∂1θ,

where we have used the standard commutator notation

[Rα, u · ∇]θ =Rα(u · ∇θ)− u · ∇Rαθ.

Following the idea of [Constantin and Vicol 2012], we obtain the differential
inequality for ‖G(t)‖L∞ ,

(2-6) d
dt
‖G‖L∞+C

‖G‖1+α/2L∞

(‖u‖L2+‖3−αθ‖L2)α/2
≤‖[Rα,u·∇]θ‖L∞+‖3

β−α∂1θ‖L∞

and for ‖∇θ‖L∞ ,

(2-7) d
dt
‖∇θ‖L∞ + C

‖∇θ‖
1+β
L∞

‖θ‖
β

L∞
≤ ‖∇u‖L∞‖∇θ‖L∞ .

We briefly explain the derivation of (2-6). Without loss of generality, we assume G
is smooth and decays to zero at infinity. Multiplying (2-5) by G and applying
Lemma 2.1 with q = 2, we have

(2-8) ∂t |G|2+ u · ∇|G|2+3α|G|2+C
|G|1+α/2

(‖u‖L2 +‖3−αθ‖L2)α/2

≤ 2(‖[Rα, u · ∇]θ‖L∞ +‖3
β−α∂1θ‖L∞)|G|.

For each t > 0, there exists x̄ = x̄(t) ∈ R2 such that

G(x̄(t), t)= ‖G(t)‖L∞ =max
x∈R2
|G(x, t)|.

As explained in [Córdoba and Córdoba 2004] and [Constantin et al. 2015, Appen-
dix B],

(∂t |G|)(x̄(t), t)= d
dt

G(x̄(t), t)= d
dt
‖G(t)‖L∞ .

In addition, we recall the facts that (u ·∇)|G|(x̄(t), t)= 0 and (3α|G|2)(x̄(t), t)≥ 0.
Therefore, setting x= x̄(t) in (2-8) and invoking the aforementioned facts yields (2-6).
The inequality (2-7) is obtained in a similar fashion.

The terms in (2-6) can be further bounded as follows:

‖u(t)‖L2 ≤ ‖u0‖L2 + t ‖θ0‖L2, ‖3−αθ‖L2 ≤ C ‖θ‖L2/(1+α) ≤ C ‖θ0‖L2/(1+α) .
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By (2-2) of Lemma 2.3 and Lemma 2.2,

‖[Rα, u · ∇]θ‖L∞ ≤ C ‖∇u‖L∞ ‖θ‖B1−α
∞,1

≤ C ‖∇u‖L∞ ‖θ‖
α
B0
∞,∞
‖θ‖1−αB1

∞,∞

≤ C ‖∇u‖L∞ ‖θ‖
α
L∞ ‖∇θ‖

1−α
L∞

and
‖3β−α∂1θ‖L∞ ≤ ‖3

β−α∂1θ‖Ḃ0
∞,1
≤ C ‖θ‖α−βL∞ ‖∇θ‖

1+β−α
L∞ .

Inserting the bounds above in (2-6) yields

d
dt
‖G‖L∞ +C1(t) ‖G‖

1+α/2
L∞ ≤ C ‖∇u‖L∞ ‖∇θ‖

1−α
L∞ + C ‖∇θ‖1+β−αL∞ ,

d
dt
‖∇θ‖L∞ +C2 ‖∇θ‖

1+β
L∞ ≤ ‖∇u‖L∞‖∇θ‖L∞,

where

C1(t)=
1

(‖u0‖L2 + t ‖θ0‖L2 +‖θ0‖L2/(1+α))α/2
.

Furthermore, according to Constantin and Vicol [2012],

(2-9) ‖∇u(t)‖L∞ ≤ C (1+‖ω(t)‖L∞)+ C ‖ω(t)‖L∞)

log
(

1+
∫ t

0
(1+‖u(τ )‖L2 +‖ω(τ)‖L∞ +‖∇θ(τ )‖L2)γ (α,β) dτ

)
,

where γ (α, β) > 0 is a constant depending on α and β. Due to

(2-10) ‖ω‖L∞ ≤ ‖G‖L∞ +‖Rαθ‖L∞ ≤ ‖G‖L∞ +C ‖θ‖αL∞ ‖∇θ‖
1−α
L∞ ,

we obtain
d
dt
‖G‖L∞ +C1‖G‖

1+α/2
L∞ ≤ C2‖G‖L∞ ‖∇θ‖

1−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞)(2-11)

+C3 ‖∇θ‖
2−2α
L∞ L(‖G‖L∞, ‖∇θ‖L∞)+C4‖∇θ‖

1+β−α
L∞ ,

d
dt
‖∇θ‖L∞ +C5 ‖∇θ‖

1+β
L∞ ≤ C6 ‖G‖L∞ ‖∇θ‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)(2-12)

+C7‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞),

where, for notational convenience, we have written

(2-13) L(‖G‖L∞, ‖∇θ‖L∞)= 1+ log
(

1+
∫ t

0
(1+‖G‖L∞+‖∇θ‖L∞)

γ (α,β)ds
)
.

We combine (2-11) and (2-12) to prove the global bound (2-3). The argument is as
follows. For each t ≥ 0, we consider two cases:

(2-14) 1
2C5‖∇θ‖

β

L∞ > C6 ‖G‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)
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and

(2-15) 1
2C5‖∇θ‖

β

L∞ ≤ C6 ‖G‖L∞ L(‖G‖L∞, ‖∇θ‖L∞).

We start with the first case when (2-14) holds. We split this case into two cases,
either

(2-16) C7 ‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞)≤

1
2C5 ‖∇θ‖

1+β
L∞

or

(2-17) C7 ‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞) >

1
2C5 ‖∇θ‖

1+β
L∞ .

When (2-16) is valid, then (2-12) becomes

d
dt
‖∇θ‖L∞ +

( 1
2C5 ‖∇θ‖

1+β
L∞ −C6 ‖G‖L∞ ‖∇θ‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)

)
< 0,

which, due to (2-14), implies that ‖∇θ‖L∞ <∞. Then (2-11) implies ‖G‖L∞ <∞.
When (2-17) is valid,

C7 L(‖G‖L∞, ‖∇θ‖L∞) >
1
2C5 ‖∇θ‖

1+β−(2−α)
L∞ .

Since 1+β − (2−α)= α+β − 1> 0, we have

(2-18) ‖∇θ‖
1+β−(2−α)
L∞ ≤ 2C−1

5 L(‖G‖L∞, ‖∇θ‖L∞).

Due to (2-14), L only grows logarithmically in ‖∇θ‖L∞ and thus (2-18) implies
that ‖∇θ‖L∞ <∞. Then (2-11) implies ‖G‖L∞ <∞. We now turn to the second
case when (2-15) holds. We also split this case into two cases: either

(2-19) L(‖G‖L∞, ‖∇θ‖L∞)≤ C ‖G‖εL∞

or

(2-20) L(‖G‖L∞, ‖∇θ‖L∞) > C ‖G‖εL∞,

where ε > 0 is small such that (2-22) below holds. When (2-19) holds, (2-11)
becomes

(2-21) d
dt
‖G‖L∞ +C1‖G‖

1+α/2
L∞

≤ C̃2 ‖G‖
1+(1−α/β)+ε̃
L∞ + C̃3 ‖G‖

(2−2α/β)+ε̃
L∞ + C̃4‖G‖

(1+β−α/β)+ε̃
L∞ ,

where C̃2, C̃3 and C̃4 are constants, and

ε̃ = ε max
{

1+ 1−α
β

, 1+ 2−2α
β

,
1+β−α

β

}
.

Due to (1-3) or α > 2
2+β , we can choose ε > 0 small such that

(2-22) 1+ α
2
>max

{
1+ 1−α

β
,

2−2α
β

,
1+β−α

β

}
+ ε̃.
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Then (2-21) implies ‖G‖L∞ <∞ and (2-19) implies ‖∇θ‖L∞ <∞. When (2-20)
holds, (2-15) and the logarithmic growth of L in ‖G‖L∞ implies ‖G‖L∞ < ∞.
Therefore, for each case, the global bounds in (2-3) hold. This argument here can
also be understood as a continuation argument. One starts with initial data that falls
into one of the cases. Obviously, the corresponding solution can be continued as
long as the solution remains in the same case. If, at a certain time, the solution
evolves into the opposite case, the solution can also be continued. That is, the
solution can be continued forever. The proof of Theorem 1.1 is complete. �

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We first prove a proposition
stating the global L2-bound for G. This result was obtained by Ye [2017], but we
provide a slightly simpler and more transparent proof.

Proposition 3.1. Consider the equation of G in (2-5). Assume that α and β satisfy
2
3 < α < 1, 0< β < 1, α+β > 1.

Then we have the following global bounds, for any t > 0,

‖G(t)‖L2 <∞,

∫ t

0
‖3α/2G(τ )‖2L2 dτ <∞,

sup
j≥−1

∫ t

0
22β j
‖1 jθ(τ )‖

2 dτ <∞, especially,
∫ t

0
‖3σ θ(τ )‖2L2 dτ <∞,

where 0< σ < β.

In order to prove Proposition 3.1, we state a lemma and its corollary first.

Lemma 3.2. Assume β > 0. Assume θ solves

θt + u · ∇θ +3βθ = 0, θ(x, 0)= θ0(x).

Then,

(3-1) sup
j≥−1

∫ t

0
22β j
‖1 jθ(τ )‖

2 dτ ≤ C ‖θ0‖
2
Bβ/22,∞
+ C̃

∫ t

0
‖ω(τ)‖2L2 dτ,

where ω denotes the vorticity, and C , C̃ are constants depending on the initial data.

A special consequence of Lemma 3.2 is the following corollary.

Corollary 3.3. Assume that α and β satisfy

0< α, β < 1, α+β > 1.

Then

(3-2) sup
j≥−1

∫ t

0
22β j
‖1 jθ(τ )‖

2 dτ ≤ C(t, ‖(u0, θ0)‖H1)+C
∫ t

0
‖G(τ )‖2L2 dτ.
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In particular, for any 0< σ < β,

(3-3)
∫ t

0
‖3σ θ(τ )‖2L2 dτ ≤ C(t, ‖(u0, θ0)‖H1)+C

∫ t

0
‖G(τ )‖2L2 dτ.

We provide the proof of Lemma 3.2 and Corollary 3.3.

Proof of Lemma 3.2 and Corollary 3.3. Applying the Fourier localization operator
1 j with j ∈ Z and j ≥ −1 to the equation of θ and then dotting the resulting
equation with 1 jθ yields

1
2

d
dt
‖1 jθ‖

2
L2+22β j

‖1 jθ‖
2
L2=−

∫
1 jθ [1 j ,u·∇θ ]dx≤‖1 jθ‖L2 ‖[1 j ,u·∇θ ]‖L2 .

Applying a standard commutator estimate (see, e.g, [Hmidi et al. 2011, p. 443])

‖[1 j , u · ∇]θ‖L2 ≤ C ‖θ‖B0
∞,∞
‖∇u‖L2,

we obtain
d
dt
‖1 jθ‖L2 + 2β j

‖1 jθ‖L2 ≤ C ‖θ0‖L∞ ‖ω‖L2 .

Integrating in time yields

‖1 jθ(t)‖L2 ≤ C e−2β j t
‖1 jθ0‖L2 +C

∫ t

0
e−2β j (t−τ)

‖ω(τ)‖L2 dτ.

Taking the L2-norm in time and applying Young’s inequality for convolution, we
have[∫ t

0
‖1 jθ(τ )‖

2
L2 dτ

] 1
2

≤ C 2−
1
2β j
‖1 jθ0‖L2 +C 2−β j

[∫ t

0
‖ω(τ)‖2L2 dτ

] 1
2

.

Multiplying each side by 2β j and then squaring each side yields∫ t

0
22β j
‖1 jθ(τ )‖

2
L2 dτ ≤ C 2β j

‖1 jθ0‖
2
L2 +C0

∫ t

0
‖ω(τ)‖2L2 dτ.

Taking the supremum with respect to j yields (3-1). To show (3-2), we note that

(3-4) ‖ω‖L2 ≤ ‖G‖L2 +‖31−αθ‖L2 .

For any σ < β, we choose a large integer j0 such that∑
j≥ j0+1

22(σ−β) j <
1

4C̃
.
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Then

(3-5) ‖3σ θ‖2L2 =

∑
j≤ j0

22σ j
‖1 jθ‖

2
L2 +

∑
j≥ j0+1

22(σ−β) j 22β j
‖1 jθ‖

2
L2

≤ C( j0, ‖θ0‖L2)+
1

4C̃
sup
j≥−1

22β j
‖1 jθ‖

2
L2 .

Inserting (3-4) and (3-5) in (3-1) yields (3-2), and (3-3) follows from (3-5). This
completes the proof of Lemma 3.2 and Corollary 3.3. �

We also need the following lemma (see [Stefanov and Wu 2018]).

Lemma 3.4. Let 1> α > 1
2 , 1< p2 <∞, 1< p1 <∞, and 1< p3 ≤∞, so that

1
p1
+

1
p2
+

1
p3
= 1. For every s1 (0 ≤ s1 < 1− α) and s2 (s2 > 1− α− s1), there

exists a C = C(p1, p2, p3, s1, s2), such that

(3-6)
∣∣∣∣∫

Rd
F[Rα, uG · ∇]θ dx

∣∣∣∣≤ C‖3s1θ‖L p1‖F‖W s2,p2‖G‖L p3 .

Similarly, for every s1 (0≤ s1 < 1−α) and s2 (s2 > 2− 2α− s1), we have

(3-7)
∣∣∣∣∫

Rd
F[Rα, uθ · ∇]ψ dx

∣∣∣∣≤ C‖3s1θ‖L p1‖F‖W s2,p2‖ψ‖L p3 .

Here uG denotes the velocity associated with G, namely uG = ∇
⊥(−1)−1G, and

uθ =∇⊥(−1)−1∂13
−αθ . The definition of G implies that u = uG + uθ .

We now prove Proposition 3.1.

Proof of Proposition 3.1. This proof is obtained by modifying that for the global
L2 bound of G in Stefanov and Wu [2018]. Dotting (2-5) with G and integrating
by parts yields

(3-8) 1
2

d
dt
‖G‖2L2 +‖3

α/2G‖2L2 = J1+ J2,

where

J1 =

∫
G3β−α∂1θ dx, J2 =

∫
G [Rα, u · ∇]θ dx .

By Hölder’s inequality and Corollary 3.3 with σ =β+1− 3
2α
(
σ < β since α > 2

3

)
,

|J1| ≤ ‖3
α/2G‖L2 ‖3β+1−3α/2θ‖L2 ≤

1
4‖3

α/2G‖2L2 +‖3
β+1−3α/2θ‖2L2 .

As in [Jiu et al. 2014] and [Stefanov and Wu 2018], we write

u =∇⊥1−1ω =∇⊥1−1G+∇⊥1−1Rαθ ≡ uG + uθ .
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J2 is then split into two parts accordingly. The term with uG part is estimated
as in [Stefanov and Wu 2018]. For α > 2

3 , we choose 1− α < s < α
2 and apply

Lemma 3.4,∣∣∣∣∫ G [Rα, uG · ∇]θ dx
∣∣∣∣≤ C ‖θ0‖L∞ ‖G‖L2 ‖G‖Hα/2 ≤

1
4‖3

α/2G‖2L2 +C ‖G‖2L2 .

To bound the term associated with uθ , we apply Lemma 3.4 with s1 = β + 1− 3
2α

and s2 =
1
2(1− β). Since α > 2

3 and α+ β > 1, we have s1 < β and s2 <
α
2 , and

s1+ s2 > 2− 2α. Therefore∣∣∣∣∫ G [Rα, uθ · ∇]θ dx
∣∣∣∣≤ C ‖3s1θ‖L2 ‖θ‖L∞ ‖G‖H s2

≤ C ‖θ0‖L∞ ‖3
β+1−3α/2θ‖L2 ‖G‖Hα/2

≤
1
4 ‖3

α/2G‖2L2 +C ‖3β+1−3α/2θ‖2L2 .

Inserting the bounds above in (3-8), and applying Corollary 3.3 with σ =β+1− 3
2α

and Gronwall’s inequality yields the desired global bound. �

In order to prove Theorem 1.2, we also need the following lower bound for
the fractional Laplacian operator. The proof of this lemma follows the lines of
Constantin and Vicol [2012] and will be provided in Appendix B.

Lemma 3.5. Let α ∈ (0, 2). For any smooth function f that decays sufficiently fast
at infinity, suppose that x̄ ∈R2 is a point at which | f (x)| attains its maximum. Then,

f 3α f ≥ C
| f (x̄)|2+α

‖ f ‖αL2

for a constant C = C(α).

Proof of Theorem 1.2. Making use of Lemma 3.5, we obtain, as in the derivation
of (2-6),

d
dt
‖G‖L∞ +C

‖G‖1+αL∞

‖G‖αL2

≤ C ‖∇u‖L∞ ‖∇θ‖
1−α
L∞ +C ‖∇θ‖β+1−α

L∞ ,

d
dt
‖∇θ‖L∞ +C

‖∇θ‖
1+β
L∞

‖θ‖
β

L∞
≤ ‖∇u‖L∞‖∇θ‖L∞ .

We further use (2-9) and (2-10) to obtain

d
dt
‖G‖L∞+C1(t)‖G‖1+αL∞ ≤C2 ‖G‖L∞ ‖∇θ‖

1−α
L∞ L(‖G‖L∞,‖∇θ‖L∞)

+C3 ‖∇θ‖
2(1−α)
L∞ L(‖G‖L∞,‖∇θ‖L∞)+C4 ‖∇θ‖

1+β−α
L∞ ,
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d
dt
‖∇θ‖L∞ + C5 ‖∇θ‖

1+β
L∞ ≤ C6 ‖G‖L∞ ‖∇θ‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)

+C7 ‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞),

where C1(t)= C (‖G(t)‖L2)−1, C5 = C (‖θ‖L∞)
−1, and L is as defined in (2-13).

We can then argue in a similar fashion as in the proof of Theorem 1.1 that the global
bounds ‖G‖L∞ <∞ and ‖∇θ‖L∞ <∞ hold if α and β satisfy (1-4). In fact, if
2
3 < α < 1 and α > 1

1+β , then

α >
1−α
β

, 1+α >
2− 2α
β

, 1+α >
1+β −α

β

and the argument in the proof of Theorem 1.1 works here. This completes the proof
of Theorem 1.2. �

Appendix A. Frequency localization and Besov spaces

This appendix provides the definition of the Littlewood–Paley decomposition and
the definition of Besov spaces. Some related facts used in the previous sections
are also included. The material presented in this appendix can be found in several
books and many papers (see, e.g., [Bahouri et al. 2011; Bergh and Löfström 1976;
Miao et al. 2012; Runst and Sickel 1996; Triebel 1992]).

We start with several notational conventions. S denotes the usual Schwarz class
and S ′ its dual, the space of tempered distributions. To introduce the Littlewood–
Paley decomposition, we write for each j ∈ Z,

A j = {ξ ∈ Rd
: 2 j−1

≤ |ξ |< 2 j+1
}.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions
{8 j } j∈Z ∈ S such that

supp 8̂ j ⊂ A j , 8̂ j (ξ)= 8̂0(2− jξ) or 8 j (x)= 2 jd80(2 j x),

and
∞∑

j=−∞

8̂ j (ξ)=

{
1 if ξ ∈ Rd

\ {0},
0 if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∞∑

j=−∞

8̂ j (ξ)ψ̂(ξ)= ψ̂(ξ) for ξ ∈ Rd
\ {0}.

We now choose 9 ∈ S such that

9̂(ξ)= 1−
∞∑
j=0

8̂ j (ξ), ξ ∈ Rd .
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Then, for any ψ ∈ S,

9 ∗ψ +

∞∑
j=0

8 j ∗ψ = ψ

and hence

(A-1) 9 ∗ f +
∞∑
j=0

8 j ∗ f = f

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

(A-2) 1 j f =


0 if j ≤−2,

9 ∗ f if j =−1,

8 j ∗ f if j = 0, 1, 2, · · · .

Besides the Fourier localization operators 1 j , the partial sum S j is also a useful
notation. For an integer j,

S j ≡

j−1∑
k=−1

1k .

For any f ∈ S ′, the Fourier transform of S j f is supported on the ball of radius 2 j. It
is clear from (A-1) that S j → Id as j→∞ in the distributional sense. In addition,
the notation 1̃k , defined by

1̃k =1k−1+1k +1k+1,

is also useful and has been used in the previous sections.

Definition A.1. The inhomogeneous Besov space Bs
p,q with s ∈R and p, q ∈[1,∞]

consists of f ∈ S ′ satisfying

‖ f ‖Bs
p,q
≡ ‖2 js

‖1 j f ‖L p‖lq <∞,

where 1 j f is as defined in (A-2).

Many frequently used function spaces are special cases of Besov spaces. The
following proposition lists some useful equivalence and embedding relations.

Proposition A.2. For any s ∈ R,

H s
∼ Bs

2,2.

For any s ∈ R and 1< q <∞,

Bs
q,min{q,2} ↪→W s

q ↪→ Bs
q,max{q,2}.

For any noninteger s > 0, the Hölder space C s is equivalent to Bs
∞,∞.
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Bernstein’s inequalities are useful tools in dealing with Fourier localized functions.
These inequalities trade integrability for derivatives. The following proposition
provides Bernstein type inequalities for fractional derivatives. The upper bounds
also hold when the fractional operators are replaced by partial derivatives.

Proposition A.3. Let α ≥ 0. Let 1≤ p ≤ q ≤∞.

(1) If f satisfies
supp f̂ ⊂ {ξ ∈ Rd

: |ξ | ≤ K 2 j
},

for some integer j and a constant K > 0, then

‖(−1)α f ‖Lq (Rd ) ≤ C1 22α j+ jd(1/p−1/q)
‖ f ‖L p(Rd ).

(2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd
: K12 j

≤ |ξ | ≤ K22 j
}

for some integer j and constants 0< K1 ≤ K2, then

C1 22α j
‖ f ‖Lq (Rd ) ≤ ‖(−1)

α f ‖Lq (Rd ) ≤ C2 22α j+ jd(1/p−1/q)
‖ f ‖L p(Rd ),

where C1 and C2 are constants depending on α, p and q only.

Appendix B. Proofs of facts used in the previous sections

This appendix provides the proofs of several facts used in Sections 2 and 3.
We first provide several pointwise inequalities involving fractional Laplacian

operators. These lower bounds here are in terms of the L p-norms of the functions
instead of the L p-norms of the antiderivatives. Therefore, these lower bounds have
higher powers than the corresponding lower bounds in terms of the antiderivatives.
The proofs of these lower bounds follow the ideas of Constantin and Vicol [2012].

Lemma B.1. Let p∈[1,∞). Assume f ≥0, f ∈ L p(Rd) and f ∈C1(Rd). Suppose
that f attains its maximum value at the point x̄ . Then,

(B-1) 3α f (x̄)≥
f (x̄)1+αp/d

c‖ f ‖αp/d
L p

for some constant c = c(d, α, p).

Proof. Let χ be a radially nondecreasing smooth cut-off function, which vanishes
on |x | ≤ 1 and is identically 1 on |x | ≥ 2, and |∇χ | ≤ 4. Let R > 0 be a number to
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be specified later. We estimate

3α f (x̄)= cd,α

∫
Rd

f (x̄)− f (x̄ − y)
|y|d+α

dy

≥ cd,α f (x̄)
∫

Rd

χ(y/R)
|y|d+α

dy− cd,α

∣∣∣∣∫
Rd

f (x̄ − y)
χ(y/R)
|y|d+α

dy
∣∣∣∣

≥ cd,α f (x̄)
∫
|y|≥2R

1
|y|d+α

dy− cd,α‖ f ‖L p

(∫
Rd

∣∣∣∣χ(y/R)
|y|d+α

∣∣∣∣p′

dy
)1/p′

≥ c1
f (x̄)
Rα
− c2
‖ f ‖L p

Rα+d/p ,

where c1 = c1(d, α), and c2 = c2(d, α, δ) are positive constants, which may be
computed explicitly. Letting Rd/p

= 2c2‖ f ‖L p/(c1 f (x̄)) concludes the proof. �

Lemma B.2. Let α∈(0, 2) and let p∈[1,∞). Assume f ∈ L p(Rd) and f ∈C1(Rd).
Then we have the pointwise bound

(B-2) f (x) ·3α f (x)≥ 1
23

α
| f (x)|2+

| f (x)|2+pα/d

c‖ f ‖pα/d
L p

for some positive constant c = c(d, α, p).

Proof. Recall the pointwise identity (see [Constantin and Vicol 2012])

(B-3) f (x) ·3α f (x)= 1
23

α(| f |2)(x)+ 1
2 D,

where

(B-4) D = cd,αPV
∫

Rd

| f (x)− f (x + y)|2

|y|d+α
dy.

For χ defined as in the previous proof,

D ≥ cd,α

∫
Rd

| f (x)− f (x + y)|2

|y|d+α
χ(y/R)dy

≥ cd,α| f (x)|2
∫

Rd

χ(y/R)
|y|d+α

dy− 2cd,α | f (x)|
∣∣∣∣∫

Rd
f (x + y)

χ(y/R)
|y|d+α

dy
∣∣∣∣

≥ cd,α| f (x)|2
∫
|y|≥R

1
|y|d+α

dy− 2 cd,α| f (x)| ‖ f ‖L p

(∫
Rd

∣∣∣∣χ(y/R)
|y|d+α

∣∣∣∣p′

dy
)1/p′

≥ c1
| f (x)|2

Rα
− c2
| f (x)| ‖ f ‖L p

Rα+d/p ,
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for some positive constants c1 and c2 which depend only on d, α, and p. Letting

Rd/p
=

c2‖ f ‖L p

2c1| f (x)|

concludes the proof of this lemma. �

A special consequence is the following lower bound.

Corollary B.3. Let α ∈ (0, 2). Assume f is smooth and decays sufficiently fast
at infinity. Assume that x̄ ∈ Rd is a maximum point at which | f (x)| attains its
maximum. Then,

f (x̄) ·3α f (x̄)≥
| f (x̄)|2+pα/d

c‖ f ‖pα/d
L p

where c = c(d, α, p).

Next we provide the proof of Lemma 2.4.

Proof. Write Rα = ∂x13
−α, then 1kRα = 2(1−α)khk , where hk(x) = 2dkh0(2k x)

and h0(x) ∈ C∞0 (R
d). By the notion of paraproducts,

(B-5) 1k[Rα,u·∇]θ=
∑
| j−k|≤2

1k[Rα, S j−1u·∇]1 jθ+
∑
| j−k|≤2

1k[Rα,1 j u·∇]S j−1θ

+

∑
j≥k−4

[Rα,1 j u·∇]1̃ jθ := J1+J2+J3.

We estimate the L∞-norm of the terms on the right.

‖J1‖L∞ ≤ C2(1−α)k‖|x |2kdh0(2k x)‖L1 ‖∇Sk−1u‖L∞ ‖1k∇θ‖L∞

≤ C2−αk
‖∇1kθ‖L∞

(
‖∇1−1‖L∞ +

k−2∑
j=0

‖1 j∇u‖L∞

)
≤ C2−αk

‖∇1kθ‖∞(‖u‖L2 + k‖ω‖L∞).

For J2 and J3, we have

‖J2‖L∞ ≤ C‖1kRα(1ku · ∇Sk−1θ)−1k(1ku · ∇Rα(Sk−1θ −1−1))‖L∞

+‖1k(1ku · ∇Rα1−1θ)‖L∞

≤ C2(1−α)k‖|x |2dkh0(2k x)‖L1‖∇1ku‖L∞‖∇Sk−1θ‖L∞

+C‖1ku‖L∞‖∇Rα1−1θ‖L∞

≤ C2−kα
‖1kω‖L∞

( k−2∑
j=−1

‖∇1 jθ‖L∞

)
+C‖θ‖L2‖1ku‖L∞ .
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‖J3‖L∞ ≤
∑
j≤1

‖∇ ·1kRα(1 j u1̃ jθ)‖L∞ +‖∇ ·1k(1 j uRα1̃ jθ)‖L∞

+

∑
j≥max(2,k−4)

‖1kRα(1 j u ·∇1̃ jθ)‖L∞+‖1k∇·(1 j u ·Rα1̃ jθ)‖L∞

≤ C‖u‖L2‖θ‖L2 +

∑
j≥max(2,k−1)

2(1−α)k‖1 j u‖L∞‖∇1̃ jθ‖L∞

+ 2k
‖1 j u‖L∞‖Rα1̃ jθ‖L∞ .

Therefore,

‖[Rα, u · ∇]θ‖B0
∞,1
≤

∑
k≥−1

‖J1‖L∞ +
∑

k≥−1

‖J2‖L∞ +
∑

k≥−1

‖J3‖L∞ := I1+ I2+ I3

and

I1≤C(‖ω‖L2+‖ω‖L∞)
∑

k≥−1

2(1−α)+εk‖1kθ‖L∞ ≤C(‖ω‖L2+‖ω‖L∞)‖θ‖B1−α+ε
∞,1

,

I2≤C
∑

k≥−1

‖1kω‖L∞

k−2∑
j=−1

2α( j−k)2−α j
‖∇1 jθ‖L∞+C‖θ‖L2

∑
k≥0

2−k
‖1kω‖L∞+C

≤C‖ω‖L∞‖θ‖B1−α+ε
∞,1
+C‖ω‖L∞,

I3≤C‖u||L2‖θ‖L2+C
∑

k≥−1

∑
j≥max(2,k−1)

2(1−α)(k− j)
‖1 j∇u‖L∞2−α j

‖∇1̃ jθ‖L∞

+C
∑

k≥−1

∑
j≥max(2,k−1)

2k− j
‖∇1 j u‖L∞2(1−α) j

‖1̃ jθ‖L∞

≤C‖u‖L2‖θ‖L2+C‖ω‖L∞‖θ‖B1−α
∞,1
.

Combining these estimates, we have

‖[Rα, u · ∇]θ‖B0
∞,1
≤C(‖ω‖L2 +‖ω‖L∞)‖θ‖B1−α+ε

∞,1
+C‖u‖L2‖θ‖L2

for any ε > 0. �
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