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Abstract. This paper extends the dual-Petrov-Galerkin method proposed by
Shen [21], further developed by Yuan, Shen and Wu [27] to general fifth-order
KdV type equations with various nonlinear terms. These fifth-order equations
arise in modeling different wave phenomena. The method is implemented to
compute the multi-soliton solutions of two representative fifth-order KdV equa-
tions: the Kaup-Kupershmidt equation and the Caudry-Dodd-Gibbon equa-
tion. The numerical results imply that this scheme is capable of capturing,
with very high accuracy, the details of these solutions such as the nonlinear
interactions of multi-solitons.

1. Introduction. Numerical simulation is an indispensable tool in the study of
many nonlinear dispersive partial differential equations. In [21] Shen proposed the
dual-Petrov-Galerkin method for the third and higher odd-order equations such
as the KdV and higher-order KdV type equations. This is a spectral Galerkin
method with innovative choices of test and trial function spaces. Numerical tests
performed on soliton solutions of the KdV equation indicate that the dual-Petrov-
Galerkin method is very efficient and accurate [21]. In a recent work of Yuan,
Shen and Wu [27] a numerical scheme based on the dual-Petrov-Galerkin method
was implemented for the Kawahara and modified Kawahara equations, two fifth-
order KdV type equations. Numerical experiments involving some computationally
challenging solitary and oscillatory solitary waves demonstrate that this method
can compute the solutions of these equations accurately and efficiently.

This paper intends to further develop the dual-Petrov-Galerkin method to cover
more general fifth-order KdV type equations of the form

ut − uxxxxx = F (x, t, u, ux, uxx, uxxx).
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Fifth-order KdV type equations arise naturally in modeling many different wave
phenomena such as gravity-capillary waves, the propagation of shallow water waves
over a flat surface and magneto-sound propagation in plasmas (see e.g. [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 23, 24]). The numerical scheme is implemented on two
representative fifth-order KdV equations: the Kaup-Kupershmidt (KK) equation

ut + uxxxxx + 10u uxxx + 25ux uxx + 20 u2 ux = 0 (1)

and the Caudrey-Dodd-Gibbon (CDG) equation

ut + uxxxxx + 30u uxxx + 30ux uxx + 180u2 ux = 0. (2)

There is a large literature on these equations ([3, 4, 12, 14, 15, 16, 18, 19, 20, 23]).
We remark that although these two equations have close resemblance, they are
actually quite different and can not be converted into each other through scaling.

Numerical tests are focused on the multi-soliton solutions of these equations.
Various methods have been employed to find the analytic formulas for multi-soliton
solutions of these equations ([7, 8, 9, 10, 12, 18, 19, 20, 23, 25]). However, for N ≥ 3,
the analytic computations of N -soliton solutions are complicated and extremely
lengthy. The dual Petrov-Galerkin scheme presented in this paper provides a very
efficient and accurate numerical method for simulating these multi-soliton solutions.
We are not aware of any other effective numerical methods for these fifth-order
equations.

To simulate the multi-soliton solutions of (1) and of (2), we approximate the
initial-value problem by an initial- and boundary-value problem (IBVP) for x ∈
[−L, L] as long as the solitons does not reach the boundaries. By setting (x̃, t̃) =
(−L−1x, L−1t), it suffices to consider the IBVP for the equation

ut −
1

L4
uxxxxx −

β

L2
u uxxx −

γ

L2
ux uxx − ν u2 ux = 0 (3)

in the space-time domain [−1, 1]× [0, T ] with the initial and boundary data of the
form

u(−1, t) = g(t), ux(−1, t) = h(t), u(1, t) = ux(1, t) = uxx(1, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [−1, 1]. (4)

In addition, if u solves (3) and (4), then

w(x, t) = u(x, t) − v(x, t)

with

v(x, t) =
(1 − x)3

8

[(

h(t) +
3

2
g(t)

)

(x + 1) + g(t)

]

solves an IBVP with homogeneous boundary conditions. Therefore, it is enough to
consider the following IBVP with homogeneous boundary condition

α ut −
1

L4
uxxxxx −

β

L2
u uxxx −

γ

L2
ux uxx − ν u2 ux = 0, x ∈ I, t ∈ (0, T ],

u(±1, t) = ux(±1, t) = uxx(1, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ I, (5)

where I = [−1, 1]. The dual Petrov-Galerkin method is implemented on the IBVP
(5). A crucial component of this method is the choice of the test and trial function
spaces and their basis functions. The trial functions satisfy the boundary conditions
of the differential equations while the test functions satisfy the “dual” boundary
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conditions so that no additional boundary terms are generated when integrating by
parts. By choosing “compact” combinations of Legendre polynomials, the resulting
linear problem is compactly sparse and well conditioned. The time is discretized by
the Crank-Nicholson-leap-frog scheme.

The method is applied to compute 1-soliton, 2-soliton and 3-soliton solutions of
(1) and 1-soliton and 2-soliton solutions of (2). Besides plotting the graphs of the
numerical simulation of these solutions, we also track the L2-errors between the
analytic solutions and their corresponding numerical solutions for a range of time
steps. The tables constructed for these errors clearly demonstrate that the scheme
is second-order in time. In the case of multi-soliton solutions, special attention is
paid to the phase shifts of the solitons after the their interactions. As a measure
of the accuracy of the method, we compare the theoretical phase shifts against the
corresponding numerical phase shifts and find that they are very close. This is
an indication that this method can capture the nonlinear behavior of these multi-
solitons to extreme accuracy.

The rest of this paper is divided into two sections. Section 2 describes the dual-
Petrov-Galerkin method while Section 3 presents the numerical results.

2. Numerical methods. We start with some notation. Let I = (−1, 1) and let
ω = ω(x) be a positive function in I. For m = 0,±1, · · · , we use Hm

ω (I) to denote
the weighted Sobolev space of order m with its norm given by ‖·‖m,ω. For example,

H0
ω(I) = L2

ω(I) ≡ {u : (u, u)ω :=

∫

I

u2(x)ω(x)dx < +∞}

with ‖ · ‖ω = (u, u)
1

2

ω . For any constants α and β, let ωα,β(x) = (1 − x)α(1 + x)β

be the Jacobi weight function with index (α, β). We define a set of non-uniformly
weighted Sobolev spaces as follows:

Hm
ωα,β (I) = {u ∈ L2

ωα,β (I) : ∂l
xu ∈ L2

ωl−α,l−β (I), 1 ≤ l ≤ m}. (6)

Let PN denote the space of polynomials of degree ≤ N and set

WN = {u ∈ PN : u(±1) = ux(±1) = uxx(1) = 0},

W ∗
N = {u ∈ PN : u(±1) = ux(±1) = uxx(−1) = 0}.

(7)

Let ΠN be the orthogonal projection from L2
ω−3,−2 onto WN defined by

(u − ΠNu, vN )ω−3,−2 = 0 for any vN ∈ WN .

With these notations at our disposal, we are ready to provide the numerical
scheme for the IBVP (5). The numerical scheme consists of a dual-Petrov-Galerkin
method in space and the second-order Crank-Nicholson-leap-frog discretization in
time. The dual-Petrov-Galerkin method generates a sequence of approximate solu-
tions that satisfy a weak form of the original differential equations as tested against
polynomials in a dual space. Assume (5) admits a unique solution u satisfying

u ∈ C3([0, T ]; L2
ω2,2(I)) ∩ C1([0, T ]; Hm

ω−3,−2(I)) with m ≥ 3.

This regularity assumption is backed by the rigorous theory of Goubet and Shen
[6] on the KdV equation and of Khanal, Wu and Yuan on fifth-order KdV type
equations [14]. For a given ∆t, we set tk = k∆t and let u0

N = ΠNu0 and u1
N be
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a suitable approximation of u(·, t1). Then, the second-order Crank-Nicolson-leap-
frog scheme in time with a dual-Petrov-Galerkin approximation in space reads: for
k = 1, 2, · · · , [T/∆t] − 1, find uk+1

N ∈ WN such that

α

2∆t
(uk+1

N − uk−1
N , ηN ) −

1

2
(∂2

x(uk+1
N + uk−1

N ), ∂3
xηN )

=
ν

3
((uk

N )3, ∂xηN ) + β (uk
N∂2

x uk
N , ∂xηN ) +

γ − β

2
((∂xuk

N)2, ∂xηN ) (8)

for any ηN ∈ W ∗
N . Notice that for any vN ∈ WN , we have ω−1,1vN ∈ W ∗

N . Thus,
the dual-Petro-Galerkin formulation in (8) is equivalent to the following weighted
spectral-Galerkin approximation: Find uN ∈ WN such that

α

2∆t
(uk+1

N − uk−1
N , vN )ω−1,1 −

1

2
(∂2

x(uk+1
N + uk−1

N ), ∂3
x(vNω−1,1))

=
ν

3
((uk

N )3, ∂x(vN ω−1,1)) + β (uk
N ∂2

x uk
N , ∂x(vNω−1,1))

+
γ − β

2
((∂xuk

N )2, ∂x(vNω−1,1)) (9)

for any vN ∈ WN . The dual-Petrov-Galerkin formulation (8) is most suitable for
implementation while the weighted Galerkin formulation (9) is more convenient for
error analysis.

3. Numerical results. This section presents the numerical results on N -soliton
solutions of the IBVPs for (1) and (2). Computed solutions are plotted and the
L2-errors between the numerical 1-soliton solutions and their analytic counterparts
at various times and corresponding to different time steps are recorded to test
the accuracy and the convergence rate of the scheme. In the case of multi-soliton
solutions, theoretical phase shifts of the solitons after their interaction are compared
against the numerical ones.

3.1. N-soliton solutions of the KK equation. We compute the 1-soliton, 2-
soliton and 3-soliton solutions of the KK equation

ut + uxxxxx + 10u uxxx + 25uxx ux + 20 u2 ux = 0 (10)

and compare them with the corresponding analytic formulas.

3.1.1. 1-soliton solution. The analytic formula for 1-soliton solution has previously
been obtained in many papers (see e.g. [7, 12, 16, 18, 19]). Following Hereman and
Nuseir [7], the 1-soliton solution is given by

u =
3

2

∂2

∂x2
ln f, f = 1 + exp(θ) +

1

16
exp(2θ), (11)

where θ = k x−k5 t+δ with k and δ being constants. More explicitly, setting δ = 0,
the 1-soliton solution u can be written as

uKK1(x, t, k) =
24k2 exp(k x − k5 t) [4 exp(k x − k5 t) + exp(2(k x − k5 t)) + 16]

[16 exp(k x − k5 t) + exp(2(k x − k5 t)) + 16]2
.

(12)

Our attention will be focused on the special case when k = 1,

uKK1S(x, t) =
24 exp(x − t) [4 exp(x − t) + exp(2(x − t)) + 16]

[16 exp(x − t) + exp(2(x − t)) + 16]2
. (13)
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As mentioned in the introduction, in order to apply the dual-Petrov-Galerkin scheme,
we rescale (10) with (x̃, t̃) = (−L−1x, L−1t) and still use (x, t) to denote (x̃, t̃). Then
we are led to consider the following IBVP:

ut −
1

L4
uxxxxx −

10

L2
uuxxx −

25

L2
ux uxx − 20 u2ux = 0, x ∈ (−1, 1),

u(±1, t) = ux(±1, t) = uxx(1, t) = 0,

u(x, 0) = uKK1S(−L x, 0) =
24 exp(−Lx) [4 exp(−Lx) + exp(−2Lx) + 16]

[16 exp(−Lx) + exp(−2Lx) + 16]2
.

(14)

The exact solution of (14) is given by

u(x, t) = uKK1S(−L x, L t).

We present the numerical results for L = 40. By taking N = 1000 in the dual-
Petrov-Galerkin scheme, the spatial error is negligible and the error is dominated
by the time discretization error. In Table 1, we list the L2−errors at different
times with two different time steps. The rate “4” in each row of the table is the
approximate ratio of the two L2-errors in that row. As the table shows, the L2-
errors quadruple when the time steps double. Therefore, Table 1 indicates that
the Crank-Nicholson-leap-frog scheme is of second-order in time. In Figure 1, we

Time L2-error(∆t=1.0E-4) L2-error(∆t=2.0E-4) rate
0.125 2.641E-6 1.057 E-5 4.0
0.25 2.881E-6 1.152E-5 4.0
0.375 3.007E-6 1.203E-5 4.0
Table 1. Errors for the 1-soliton solution of KK equation

plot the computed and exact solutions for the IBVP (14). The computed solutions
and the exact solutions are virtually indistinguishable. We remark that the actual
physical time corresponding to the plot marked “t = 0.375” is L t = 40∗0.375 = 15.
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Figure 1. 1-soliton solution of (14) with ∆t=1.0E-4
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3.1.2. 2-soliton solution. The analytic formula for the 2-soliton solution is much
more complex than the 1-soliton solution and is given by

uKK2(x, t, k1, k2) =
3

2

∂2

∂x2
ln f (15)

with

f = 1 + exp(θ1) + exp(θ2) +
1

16
(exp(2θ1) + exp(2θ2)) + a12 exp(θ1 + θ2)

+ b12 (exp(2θ1 + θ2) + exp(θ1 + 2θ2)) + b2
12 exp(2θ1 + 2θ2), (16)

where θi = (kix − k5
i t) + δi for i=1, 2 and k2 > k1 > 0, and

a12 =
2k4

1 − k2
1k2

2 + 2k4
2

2(k1 + k2)2(k2
1 + k1k2 + k2

2)
, (17)

b12 =
(k1 − k2)

2(k2
1 − k1k2 + k2

2)

16(k1 + k2)2(k2
1 + k1k2 + k2

2)
. (18)

It is easy to show that, for k2 > k1 > 0,

uKK2(x, t, k1, k2) ≈ uKK1(x, t, k1) + uKK1(x − η2, t, k2) as t → ∞, (19)

uKK2(x, t, k1, k2) ≈ uKK1(x − η1, t, k1) + uKK1(x, t, k2) as t → −∞, (20)

where η1 and η2 are the phase shift constants,

ηi = −
ln(16 b12)

ki

, i = 1, 2. (21)

That is, the collision between two solitons cause the large soliton to shift forward
by η2 along the x-direction and the small soliton to shift backward by η1. This type
of interaction is referred as the nonlinear interaction.

We focus on the special 2-soliton uKK2S(x, t) given by (15), (16), (17) and (18)
with k1 = 1, k2 = 1.5, δ1 = 0 and δ2 = −100. To compute this 2-soliton solution,
we apply the dual Petrov-Galerkin method to the IBVP:

ut −
1

L4
uxxxxx −

10

L2
uuxxx −

25

L2
ux uxx − 20 u2ux = 0, x ∈ (−1, 1),

u(±1, t) = ux(±1, t) = uxx(1, t) = 0,

u(x, 0) = uKK2S(−L x, 0).

(22)

The exact solution of this IBVP is given by

u(x, t) = uKK2S(−L x, L t).

We set L = 100 and choose N = 2500 in the dual-Petrov-Galerkin method. In
Figure 2, we plot the graph at t = 0 and that of the numerical solution of (22)
at t = 0.3 (solid lines). We also plot the two solitons without phase shift (dashed
lines). These plots clearly show that the colliding waves undergo phase shifts.

According to (21), the phase shift of the large soliton (shift in the x-direction) is
given by

η2 =
1

Lk2
ln(16 b12) =

1

150
ln(0.014737) = −0.028116

and that of the small soliton (shift in the x-direction) is

η1 = −
1

Lk1
ln(16 b12) = −

1

100
ln(0.014737) = 0.042174.
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As a comparison, we measure the corresponding numerical phase shifts to be 0.028098
and 0.042117, and the errors are 1.8 × 10−5 and 5.7 × 10−5, respectively.
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Figure 2. Two-soliton solutions of KK at t = 0 (left), with linear
interaction (- -) and with nonlinear interaction (-) at t = 0.3 with
∆t=1.0E-6 (right).

3.1.3. 3-soliton solution. The formula for 3-soliton solution can be found in ([7, 18,
19]). Following [7], the 3-soliton solution can be written as

uKK3 =
3

2

∂2

∂x2
ln f, f = 1 + f (1) + f (2) + f (3) + f (4) + f (5) + f (6) (23)

with

f (1) =

3
∑

i=1

exp(θi),

f (2) =
1

16

3
∑

i=1

exp(2θi) +
∑

1≤i<j≤3

aij exp(θi + θj),

f (3) =
∑

1≤i<j≤3

bij [exp(2θi + θj) + exp(θi + 2θj)] + c123 exp(θ1 + θ2 + θ3),

f (4) =
∑

1≤i<j≤3

b2
ij exp(2θi + 2θj) + 16[a23b12b13 exp(2θ1 + θ2 + θ3)

+ a13b12b23 exp(θ1 + 2θ2 + θ3) + a12b13b23 exp(θ1 + θ2 + 3θ3)],

f (5) = 162b12b13b23[b12 exp(2θ1 + 2θ2 + θ3) + b13 exp(2θ1 + θ2 + 2θ3)

+ b23 exp(θ1 + 2θ2 + 2θ3)],

f (6) = 16(16b12b13b23)
2 exp(2θ1 + 2θ2 + 2θ3).
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where

θi = (kix − k5
i t) + δi for i = 1, 2 and k3 ≥ k2 ≥ k1 > 0,

aij =
2k4

i − k2
i k2

j + 2k4
j

2(ki + kj)2(k2
i + kikj + k2

j )
, 1 ≤ i < j ≤ 3,

bij =
(ki − kj)

2(k2
i − kikj + k2

j )

16(ki + kj)2(k2
i + kikj + k2

j )
, 1 ≤ i < j ≤ 3,

c123 =
1

D

[

(2k4
1 − k2

1k
2
2 + 2k4

2)(k
8
3 + k4

1k
4
2)

+ (2k4
1 − k2

1k
2
3 + 2k4

3)(k
8
2 + k4

1k
4
3)

+ (2k4
2 − k2

2k
2
3 + 2k4

3)(k
8
1 + k4

2k
4
3)

]

−
1

2D

[

(k2
1 + k2

1)(k
4
1 + k4

2)(k
6
3 + k2

1k
2
2k

2
3)

+ (k2
1 + k2

3)(k
4
1 + k4

2)(k
6
2 + k2

1k
2
2k

2
3)

+ (k2
2 + k2

3)(k
4
2 + k4

3)(k
6
1 + k2

1k
2
2k

2
3) + 12k4

1k
4
2k

4
3

]

with

D = 4
∏

1≤i<j≤3

(ki + kj)
2(k2

i + kikj + k2
j ).

Asymptotically uKK3 can be approximated by the superposition of three solitons
(modulo phase shifts), namely

uKK3S =

3
∑

i=1

24k2
i exp(θi)[4 exp(θi) + exp(2θi) + 16]

[16 exp(θi) + exp(2θi) + 16]2
(24)

and the error between uKK3 and uKK3S is exponentially small ([5, 26]). After two
interactions, the phase shifts of these solitons are

the largest soliton : −
1

k3
[ln (16b13) + ln (16 b23)] , (25)

the middle soliton : −
1

k2
[ln (16b12) − ln (16 b23)] , (26)

the smallest soliton :
1

k1
[ln (16b12) + ln (16 b13)] . (27)

We consider the special 3-soliton solution with k1 = 1, k2 = 1.8, k3 = 2, δ1 = 12,
δ2 = −65 and δ3 = −165. We apply the dual-Petrov-Galerkin method to the scaled
problem as we did in the two-soliton case. Numerical results are presented for
L = 100 and N = 3000. The numerical solutions at t = 0 and t = 0.1 are plotted in
Figure 3. As a way to test the accuracy of the numerical method, we also compare
the numerical phase shifts with the phase shifts given by (25), (26) and (27). For
the scaled problems, the theoretical phase shifts are

1

k3 L
(ln(16 b13) + ln(16 b23)) = −0.05012329855, (28)

1

k2 L
(ln(16 b12) − ln(16 b23)) = 0.01982336314, (29)

−
1

k1 L
(ln(16 b12) + ln(16 b23)) = 0.06511810919 (30)
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for the largest, middle and smallest solitons, respectively. The corresponding actual
phase shifts in our numerical test are −0.049895498, 0.019727626, 0.06456454347
and the errors are 2.28 × 10−4, 9.57 × 10−5 and 6.62 × 10−4, respectively.
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Figure 3. Three-soliton solutions of KK at t = 0 (left), with linear
interaction (- -) and with nonlinear interaction (-) at t = 0.1 with
∆t = 5.0 × 10−7 (right).

3.2. N-soliton solutions of the CDG equation. This subsection focuses on the
1-soliton and 2-soliton solutions of the CDG equation:

ut + uxxxxx + 30u uxxx + 30uxuxx + 180u2 ux = 0. (31)

3.2.1. 1-soliton. Following [3, 18, 25], the 1-soliton solution of the CDG equation
assumes the form

uCDG1(x, t) =
k2
1 exp(k1(x − k4

1 t))

(1 + exp(k1(x − k4
1 t)))2

where k1 is a constant. We numerically compute the 1-soliton solution by applying
the dual-Petrov-Galerkin method to the IBVP for the scaled CDG equation:

ut − 180u2 ux −
30

L2
u uxxx −

30

L2
uxuxx −

1

L4
uxxxxx = 0, x ∈ (−1, 1),

u(±1, t) = ux(±1, t) = uxx(1, t) = 0, u(x, 0) = uCDG1(−Lx, 0).
(32)

The exact solution of this problem u(x, t) = uCDG1(−Lx, Lt). The numerical
solution with L = 100 for t = 0 and t = 0.04 are plotted in Figure 4. To check the
accuracy of the scheme, we construct a table of L2-errors at different times for two
time steps.
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Time L2-error(∆t=1.0E-6) L2-error(∆t=2.0E-6) rate
0.01 3.415E-6 1.366E-5 4.0
0.02 4.329E-6 1.733E-5 4.0
0.04 6.323E-6 2.534E-5 4.01

Table 2. Errors for the 1-soliton solution of the CDG equation
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Figure 4. The 1-soliton solution of (32) at t = 0 (-) and t = 0.04
(- -) with ∆t=1.0E-6

3.2.2. 2-soliton. According to [25], the 2-soliton solution of (31) is given by

uCDG2 =
∂2

∂x2
ln f, (33)

with

f = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2), (34)

where

a12 =
(k1 − k2)

2(k2
1 − k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
, θi = (kix − k5

i t) + δi for i = 1, 2. (35)

Our attention is focused on the special 2-soliton solution uCDG2S with k1 = 1 and

k2 = 2. The phase shifts after the interaction are given by − 1
k2

ln (a12) for the large

soliton and − 1
k1

ln (a12) for the small soliton.

To numerically compute this 2-soliton solution, we apply the dual-Petrov-Galerkin
method to the scaled CDG equation

ut − 180u2 ux −
30

L2
u uxxx −

30

L2
uxuxx −

1

L4
uxxxxx = 0, x ∈ (−1, 1),

u(±1, t) = ux(±1, t) = uxx(1, t) = 0, u(x, 0) = uCDG2S(−Lx, 0).
(36)
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The exact solution of this IBVP is given by

u(x, t) = uCDG2S(−L x, L t).

Setting L = 100 and choosing N = 2000 in the dual Petrov-Galerkin scheme, we
solve (36) and plot the initial data and the solution at t = 0.08 (see Figure 5).
Special attention is paid to the phase shifts after the interaction of the solitons.
The solid lines on the right of Figure 5 represent the numerical solution of (36) and
the dashed lines the solitons without phase shifts. The theoretical phase shifts are

1

k2 L
ln (a12) = 0.01522261219 (forward shift for the large soliton) (37)

1

k1 L
ln (a12) = 0.03044522438 (backward shift for the small soliton)(38)

and the numerical phase shifts are 0.01526530328 and 0.0304144155, correspond-
ingly. The errors are 4.3 × 10−5 and 3.1 × 10−5, respectively.
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Figure 5. Two-soliton solutions of CDG at t = 0 (left) and two-
soliton solutions of CDG with linear interaction (- -) and with non-
linear interaction (-) at t = 0.08 (right).
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