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Abstract

It is known that some periodic solutions of the complex KdV equation with smooth initial data blow up in
finite time. In this paper, we investigate the effect of dissipation on the regularity of solutions of the complex KdV
equation. It is shown here that if the initial datum is comparable to the dissipation coefficientZiA-ttarm, then
the corresponding solution does not develop any finite-time singularity. The solution actually decays exponentially
in time and becomes real analytic as time elapses. Numerical simulations are also performed to provide detailed
information on the behavior of solutions in different parameter ranges.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Consider the complex KdV equation with a periodic boundary condition
u, + 2uu, + Sty = 0, ulx,t) =ulx+1,1), (1.2)

whered > 0 is a parameter angd = u(x, t) is complex-valued. It is known that there exists a smooth
initial datumug such that the solution of the initial-value problem (IVP)&f1) with

u(x, 0) = up(x) (1.2)
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blows up in a finite time. In fact, a class of elliptic solutions represented by the Weienstfasstion
develop finite-time singularitig4,2]. Numerical computations §6] also indicate finite-time singularities
for a special series-type solution.

It is worth pointing out that the complex KdV equation is much more sophisticated than its real
counterpart. For the real KdV equation, the hierarchy of infinite conservation laws provides global in
time bounds for its solutions in any Sobolev sp&tewith k£ > 0 [5]. Thus, no finite-time singularity is
possible and the real KdV equation is well-posed. In contrast, the complex KdV equation is equivalent to
a system of two nonlinearly coupled equations and the conservation laws no longer allow the deduction
of global bounds. In fact, we do not know if a solution of the I{4P1) and (1.2as a finiteL?-norm for
all time even if it is initially in L2. This is precisely where the problem arises.

In this paper, we conduct a theoretical and numerical study to investigate the effects of dissipation on
the regularity of solutions of the complex KdV equation. More precisely, we examine solutions of the
dissipative complex KdV equation of the form

u; + 2uuy + Sty + V(—A)*u = 0, ulx,t) =ulx+1,1), (1.3)

wherev > 0 and ( A)* is a Fourier multiplier operator, namely for each Z
(=) u()) = |21 (),

where the Fourier transforimi$ defined by
1
a(l, ) = / e 27 4y (x. 1) dl,
0

andu can be recovered fromthrough the inverse transform, namely

ux, )= > 2™, r).

[=—0c0

Whena = 1, the dissipation becomes the Burgers tefou,,.

It was shown in a previous woilé] that theL2-norm of any solution of the complex KdV-Burgers
equation dominates its normsHf for anyk > 1. Therefore, any solutiamof the complex KdV-Burgers
equation withug € H* remains inH* as long as itd.?-norm remains bounded. This result suggests that
attention be focused on tHe?-norm. In this paper, we prove rigorously thaviéind the initial datunag
satisfy for some constat

v > Clluoll 2, (1.4)

then theL2-norm of the solution of1.3) with u(x, 0) = ug(x) is bounded uniformly for all time. When

(1.4) holds, the solution decays exponentially in time and becomes real analytic for large time.
Systematic numerical computations are also performed on the complex KdV-Burgers equation to

provide detailed information on the behavior of its solutions in different parameter ranges. The numerical

results are consistent with our theory.
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2. Global existence result
The goal of this section is to prove a global existence and uniqueness result for the IVP of the complex
KdV-Burgers type equation
u; + 2uy + Sy, + V(—A)*u = 0, ulx,t) =u(x+1,1), u(x, 0) = ug(x). (2.2)

The initial datumug is periodic, square integrable and has mean zero, namely

1
/ uo(x) dx = 0,
0

Theorem 2.1. Lets > 0,v > Oanda > 1. Assume thatg is in H* with s > 1, periodic and has mean
zera Assume that andug further satisfy

v > Colluoll 2, (2.2)

whereC, = 2% /7*~1/2, Then the IVR2.1) has a unique global solution u satisfying
u € L=([0, o0); H*) N L?([0, oo); H*™).

Remark Note that the conditio2.2) does not depend ah Thus, this theorem also holds for the case
5 = 0, namely the complex Burgers equation.

Proof. The tool is the Galerkin approximatigd]. Let N > 1 and|/| < N. Consider the sequence
{un(l, 1)} solving the equations

d . . . . .
aitN(l, 1) = —v|2ml|®in(, 1) + 18rl)%ian(, 1) — dmi > din(la, laiin(l2, 1) (2.3)
l1+1p=1

with the initial condition
un(l,0)=uon(l), Il <N,

where the sum ifR.3)is restricted tg/;| < N and|l;| < N. Thisis a finite system of ordinary differential
equations (ODE) for y(l, r). Since the right-hand side (.3)is a locally Lipschitz function of y(/, 1),
the basic ODE theory asserts that there exists>a0 such that there is a unique continuous function
uy(l, 1) on [0, T] solving (2.3).

To establish global existence fag(l, r), we now show that (1, r) is bounded uniformly. Dotting
(2.3)with a (I, £)*, summing ovet and adding the complex conjugate, we obtain

d . -
g 22 AN 0l 420y 2 lan (@ 0° = K
l l

with

K =-8riR> an(l.1)" > iin(l. Dlitn(lz, 1),
1 l1+1=1
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whereR denotes the real part. Now define the periodic, mean zero funatign, ) by its Fourier
transformu’y (1, ),

uy(xe, 1) = > €™y (1) (2.4)

[l|l=N

ThenK can be written as
1
K =—4R / u (e, 1) e, 0 (v, 1)) .
0
Integrating by parts yields
1 1
K = —4/ lu® (x, t)lzRuiV(x, fdx = —4/ (Ru™)? + (Zu™)?)(Ru™), dx
0 0
— 4 / (T2 (Ru™), dx.
By the Schwarz inequality and the estimate thAliZ.. < 2|| f||.z || f|l .2 for anyf with mean zero,
K| < AT | o 1170 || 2l (Ru )il 2 < 4V/20Zu™ 1557 1@ )| 2N (RuY N e
Because:y (0, r) = 0, the Poinca¥ inequality implies that
N 1 N
1Zu™ |2 < ?II(IM )allzz.
T
Therefore,
K = 2 TV e Tl 2 N RN Yol < o T 2 Y 12
= ﬁ L x| L xlILZ2 = ﬁ L x 2.
Identifying

lu GO =Y lan@ n)? and [(—2A)2u™||7. = |127l/*|an(l. 1),
l l

we obtain
d N 2 /2, N2 2 N Ny2
a ™, )llz2 + 20 [(=A)“u™ 72 < = I Zu ™ |l 2 oy 72 (2.5)
Applying Poincaé’s inequality
1
lul (172 < P (= A)2uMN |12, (2.6)
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(2.5)can then be written as

; 1 072 < =200 = CallZull2) (= 4)"2u™ 72, @.7)
whereC, = 2'~/7*~1/2, Whenu satisfieq2.2), then

v > Cq [ Zuoll 2,
and(2.7)implies that||u™ (-, #)|| .- decreases @grows. Thus,

I (D)2 < llug e < lluoll 2.

That is,||u" || ;2 is bounded uniformly it and in the order of the approximatidh
In addition, the following inequality holds

t
/o (= 2)*2u™(-, 7)1 dr < Co, 2.8)

whereCy is a constant depending enandv only. Thus, for any > 0, there is a subsequeng® and
a L? functionu(x, ) such that; converges weakly ta(x, ¢). It is easily verified thak(x, ) is a weak
solution of(2.1), namelyu(x, ¢) satisfieq2.1)in the distributional sense.

We now show thak(x, ¢) actually satisfieg2.1)in the classical sense. The first step is to boupd
Recall thatt" defined in(2.4) satisfies

du™ + 2PN (™ - u) + sul  + v(—A)ud =0, u™(x,0) = uf (x), (2.9

where Py denotes the projection onto the space spanned by the n{nei%l@é}u,SN. Now, differentiate
(2.9)and take the.?-norm,

d _ _
p N 12, 4+ 2v)|(—A) 2|2, = 2/145 lu|? dx — 4/uNuNIu§V dx. (2.10)

X XX

For notational convenience, we label the terms on the right-hand side as | and Il. Applying the @oincar
inequality

(= A)2u ) 2,

N
luelle <

1
(27-[)0171
we obtain

3 5/2 1/2 5/2 2 1/2
1< 20135 < 2v/20u 127 16 1175 < Callu 1257 11(— Ay 2|77,

whereC, = 2,/2/(27)*~1. By Young’s inequality,

v
I < én(—A)“/zu;V 122 + Callu 192, (2.11)
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whereCs is a constant depending arandv only.
Nul/2y Nu3/2, N v 2 Ny 2 N N3
I < V2012 N 1 Nl < 50 (=A)P2uf 152 + Callu™ 1z e |3z (2.12)

Inserting the estimatg2.11) and (2.12)n (2.10) we obtain

d
N |2 2. N2 N 10/3 N N |13
& M 122 + vIl(—A)"2u |72 < Colul 1127 + Callu™ || 2llu 1172,

which, in particular, implies that

d
N N 7/3 N N2
— lluy 2 < Callul 11,2+ Csllu™ (| g2 (u) [172-

dr
Integrating with respect tband noticing(2.6) and (2.8)we obtain for any > 0

N N N 1/3
suplluy (-, Dlizz < llugellzz + Ce suplluy (-, 7)lI;2 + Co.
<t <t

This inequality allows us to conclude that
lu (- D)l L2 < Ca,

whereCg is a constant depending o) v and |uq |2 only. Thus, we conclude that the limit of u?,
must also has square integrable derivatives at anyttime
The boundedness for the general ndjiafj ;s can be proved by iteration. We omit the details. O

Global solutions infheorem 2.Jactually decay exponentially in time.

Theorem 2.2. Lets > 0,v > Oanda > 1. Assume thaty € H* (s > 1) is periodic and has mean zero
If ug further satisfies

v > Cq lluoll 2,

then the corresponding solution u (@.1) decay exponentially if.?
-, )2 < € Hluoll 2 (2.13)

for all # > 0, whereC = (27)*(v — C,||Zuoll12). In addition, there exist a timey and a constan€ such
that for anyr > 1,

lax (-, )ll2 < € uoell - (2.14)

Proof. Combining(2.5)with (2.6)and lettingV — oo, we find thatu satisfies

d
A L D22 + 2v[|(=A)2u||2, < 2C,||Zull 2 [|[(—A)*"?u|2..
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Applying Poincae’s inequality yields
d 2 > 2 d 2
@ lu(, DlIzz + 2C llu(-, )72 < P (-, D72

+2(v — Cy | Zuoll 22) |(— 2)*?u|2, < O,

which immediately implies the inequality {2.13)
To show(2.14) we recall that there exists a constéigtdepending o, v and||uq, || 72 only such that

t
lus( )l < Co and / litas (-, 7)]I22 AT < Ceo.
0

Sinceu satisfieq2.1), u, obeys

d _ _
g I NIZ2 + 2v(=A)u, |2, = 2 / Uy lug|?dx — 4 / i Tu, dx.

To bound the termgd; and J, on the right-hand side, we use the Gagliardo—Nirenberg type inequalities
followed by Poincag’s inequality

3 5/4 7/4 2
J1 < 2luellFs < Crollull3s Nuaell s < Calull 2 a2,

2 12 12
Jo =< 4||”xx||L2||ux”L4 < Coolluscll 12 ”””LZ ||MX||L2 |t x|l 2.2

1/2 1/2 2 1/2 2
= Cozllullyz lluxllyz luxellze = Casllullyz lluxxllze-

We thus have established that

d 2v 2
g s D2 + s Nl e < Cualulle + Nl s 2

Sincellu(, 1)| .2 decays exponentially i we can choosg such that for any > ¢,

Gy~ CrluCs Dz + e DIEE) = 0 (2.15)

Therefore, for > 1,
d 2, +C 2,<0
allux(-, 7z + Clluw(-, )72 <0,

whereC denotes the quantity on the left-hand sidé25) This inequality then leads {@.14) O

The following theorem further asserts that the global solutions become analytic as time elapses. For the
sake of a concise presentation, we focus on the €asd., namely the complex KdV-Burgers equation.

Theorem 2.3.Let§ > 0,v > Oanda = 1. Letup € H*(s > 1) be periodic of period. and have mean
zera Assume thai satisfies

v > Cq lluol L2
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Then there existg > 0 such that the solution u ¢2.1)is real analytic fort > 9. More preciselyu can
be expanded into the complex plane such that the extenéior) is analytic in

S,={z=x+iy:xe]0,1],y € [—v(t — 1), v(t — 10)]}. (2.16)

Proof. According toTheorem 2.2there exist$, > 0 such that|u. (-, 7)| .= decays exponentially itifor
t > to. Because

1/2 1/2
Z|ﬁ(1,r)|s<2|l|2) (Z|l|2|a(z,r)|2) = Cllux(-, Dll7,

1#0 1#0 1#0

there exists a time (still denoteg) such that

> a0l < v. (2.17)

1#0
Now, consider the functions

Y() =Y la, 0)le™=  z@) =" i |a(, 1)) e,
10 10

Noticing thatu{/, r) satisfies the equation
d. R . 3 . - N
—ii(l, 1) = —v|2nl|a(l, 1) + i8rl)%a(l, 1) — 4mi > i(ly, Dlzi(la, 1),
dt I +1=I

we obtain after some manipulations tiveandZ satisfies

dy ()
— Z(O)(v —Y() <O0.

Because 0f2.17) namelyY(zp) < v, this equation then implies tha(t) is a non-increasing function of
t for ¢ > r9. We thus conclude that for any> 19

Y() =" la(l, )] e <y,
10

That is, u(z, t), the extension ofi(x, r) to the complex plane, is analytic in the sgt defined in
(2.16) O

3. Numerical results

In this section, we present several representative results from our numerical experiments performed or
the complex KdV—Burgers equation, naméy1) with « = 1 ands = 1/47°. The initial data are of the
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Time

0.2

6

0 0.1
Time

0.2

6

Fig.1.a=8,v=1,n = 1024 and = 1078,

uo(x) = a €.

Time

0.2

We have used the spectral method with an FFT algorithm designed for areal KdV ed@ltgpropriate
modifications have been made to suit the complex equation. The numerical results are consistent with
our theory. We computed the solutions for a range’'sfandv’'s. When the conditiorf2.2) is satisfied,

the corresponding solutions decay exponentially. Howeverjsfsufficiently small, then the solutions
appear to blow up.

Table 1
avs.v (n = 1024 andc = 107%)
a Ve
6 0.095
8 0.225
10 0.375
12.6 0.55
1375 0.65
15 0.75
16.25 0.85
175 0.925
18.75 1.05
20 1.125
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t=0 t=0.01
10 100

50

-100
0 02 04 06 08 1
X X
t=0.015 10.02
800
8000
600
6000
400
£ 200 g 4000
>3 3
o 2000
0 \
-200
] Wr
_400— —2000—1
0 02 04 06 08 1 0 02 04 06 08 1
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Fig. 2.a =8,v=0.2,n = 1024 andk = 10°8. The solid curves represent the real gaahd the dashed curves represent the
imaginary parg.

1.4

a

Fig. 3. avs. v (n = 1024 andc = 1078). The line isv, = —0.368+ 0.0746x.
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In Fig. 1, a =8, v =1, n = 1024 andk = 108, wheren represents the number of modes dnd
the time step. The plots clearly indicate that th&norms ofu, its real partf and imaginary part
g all decay exponentially in time from the beginning. The exponential decay isf asserted in
Theorem 2.2

In Fig. 2 a=8, v=0.2, n = 1024 andk = 10°8. Obviously, v « C,a. That is, the condition
(2.2) in Theorem 2.1is violated. Both the real paftand the imaginary parj quickly lose shapes
and increase very rapidly. At= 0.02, the numerical instability kicks in anfdand g appear to blow
up. This computation was then repeated using 2048 and the same behavior fodnd g occurred
again.

For a ranging from 6 to 20, we computed the corresponding solutions associated with a range of
Our purpose has been to find the critica= vc(a) such that the solutions appear to blow upfot v,
and the solutions are bounded for v.. The results are given ifable 1 To see how. depends on the
corresponding, Table 1is plotted inFig. 3. It is clear thatv. anda, the L2-norm of the initial data are
linearly related.
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