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Abstract

This paper studies the eventual periodicity of solutions to the initial and boundary value problem for the KdV equation on a half-line and with
periodic boundary data. We derive a representation formula for solutions to the linearized KdV equation and rigorously establish the eventual
periodicity of these solutions. Numerical experiments performed on the full KdV equation indicate that its solutions are also eventually periodic.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with the eventual periodicity of
solutions to the initial- and boundary-value problem (IBVP) for
the KdV equation on the half-line:ut + ux + uux + uxxx = 0, x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0.

(1.1)

Assuming the boundary data g is a periodic function of period
T > 0, we investigate whether the corresponding solution u of
(1.1) is eventually periodic, in the sense that

lim
t→∞

(u(x, t + T ) − u(x, t)) = 0

for any x > 0.
This study was partially motivated by an observation of

experiments involving surface water waves generated by a
wavemaker mounted at one end of a water channel [1]. When
the wavemaker oscillates periodically with a period T , it
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appears that the wave amplitude at each point down the channel
becomes periodic after a certain amount of time. Our goal is
to establish this experimental phenomenon as a mathematically
rigorous fact for the IBVP (1.1).

We first point out that the eventual periodicity concerned
here is not a trivial property. In contrast to the pure initial-
value problem for the KdV equation on the whole line, solutions
to the IBVP (1.1) do not decay in time. In fact, when g is
periodic of period T , the L2-norm of the corresponding solution
to (1.1) grows at the order of

√
t (see [3]). It remains an open

problem whether the L∞-norm of the solution is bounded for all
time. To deal with this difficulty, Bona, Sun and Zhang studied
in [2] the eventual periodicity of an equation obtained by
appending the damping term u to the KdV equation. Assuming
the boundary data is not too large, they were able to establish
the eventual periodicity for this equation. In the work of Bona
and Wu [3], the large-time behaviour of the KdV equation,
the BBM equation and their counterparts with Burgers-type
dissipation were comprehensively investigated. In particular,
the eventual periodicity for solutions to the linearized version
of these equations were established.

Our investigation on the eventual periodicity problem of
(1.1) is carried out in two stages. In the first stage, we focus
on the IBVP for the linearized KdV equation, namely
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ut + ux + uxxx = f, x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0.

(1.2)

For each x > 0 and t ∈ [0, T ], we consider the sequence
{u(x, t + nT )}∞1 and study its limit

lim
n→∞

u(x, t + nT ). (1.3)

This limit, if it exists, would specify the time-dependent
equilibrium that is reached in the channel. The eventual
periodicity then follows as a special consequence. To compute
this limit, we first derive the following representation formula
for solutions of (1.2):

u(x, t) =

∫
∞

0
Γ (x, y, t)u0(y)dy

+

∫ t

0

∫
∞

0
Γ (x, y, t − τ) f (y, τ )dydτ

+

∫ t

0
Φ(x, t − τ)g(τ )dτ,

where Γ and Φ are two explicit kernel functions. The approach
to deriving this formula is different from that in [3]. Instead
of taking the Laplace transform with respect to t , we follow
the idea of Hayashi, Kaikina and Guardado Zavala [5] by
performing the Laplace transform with respect to x . We
note that the authors of [5] focused on the KdV equation
without the convection term ux and that the process is more
complex when ux is present. We then analyse the large-time
behaviour of the kernel functions Γ and Φ and establish suitable
asymptotic estimates through the theory of stationary phase.
These estimates allow us to prove the existence of the limiting
function in (1.3), which is periodic of period T and assumes
the boundary data g at x = 0. As a special consequence,
we conclude the eventual periodicity of the linearized KdV
equation.

We remark that the study of the linearized KdV equation
is our first step towards a complete theory on the eventual
periodicity of water waves. The results presented in this paper
will be useful in the investigation of the eventual periodicity
of the full KdV equation. In fact, our idea to deal with the full
KdV equation is to use the representation formula here to recast
the equation in an integral form and to apply the contraction
mapping principle on a suitable functional setting such as a
Banach space of functions satisfying the eventual periodicity.

At the second stage, we investigate the eventual periodicity
of (1.1) through numerical experiments. We numerically
compute the solutions of (1.1) corresponding to suitably chosen
data and then plot these solutions and analyse their large-
time behaviour. When we do the actual computations, we
approximate this half-line problem by a two-point boundary
value problem on the interval [0, L] for sufficiently large
L . We then scale the problem from [0, L] to [−1, 1] and
compute the solutions of the resulting problem using the Dual
Petrov–Galerkin method proposed by Shen [8]. The numerical
experiments indicate that the solutions of (1.1) corresponding
to the selected boundary data are eventually periodic. We also
computed solutions of the linearized KdV equation for the
purpose of verifying our theory in the first stage. In addition,
we included two dissipative versions of the KdV equation in our
numerical study: the KdV-Burger equation (the KdV equation
with the damping term uxx ) and the equation with the damping
term u. The numerical results of these equations imply that
these terms significantly damp the amplitudes of the solutions
but maintain the pattern of eventual periodicity.

The rest of this paper is organized as follows. Section 2 is
devoted to the theoretical study on the eventual periodicity of
the linearized KdV equation. Section 3 contains the results of
the numerical experiments on the eventual periodicity of the
full KdV equation. Some background materials on the Laplace
transform and some detailed asymptotic analysis on oscillatory
integrals are provided in the Appendices.

2. The linearized KdV equation

This section is concerned with the eventual periodicity of the
IBVP for the linearized KdV equation:ut + ux + uxxx = f, x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0.

(2.1)

We start our investigation by deriving a solution formula for
this problem. It involves convolutions of two kernel functions
Γ (x, y, t) and Φ(x, t) with the data u0 and g. We then establish
the large-time asymptotics of Γ and Φ. As a consequence,
we prove the convergence of any solution of (2.1) to a time-
dependent periodic equilibrium, which implies, in particular,
the eventual periodicity. We end this section by mentioning the
solution representation formula for the IBVP of the linearized
KdV-Burgers equation.

We start by fixing several notations. Let η be a complex
number with the real part Re(η) > 0. The cubic equation

ξ3
+ ξ + η = 0

always has two roots ξ1 and ξ2 with Re(ξ1) ≥ 0 and Re(ξ2) ≥ 0,
and a third root ξ3 with Re(ξ3) < 0.

We use extensively the Laplace transform and the inverse
Laplace transform. For a piecewise continuous function F =

F(y) on y ≥ 0, the Laplace transform of F is defined by

(LF)(ξ) = F̂(ξ) =

∫
∞

0
e−ξ y F(y)dy. (2.2)

If the transform F̂(ξ) is known, then F(y) is called the inverse
Laplace transform of F̂(ξ) and we write

F = L−1 F̂ .

The general inverse formula is given by

F(y) = (L−1 F̂)(y) =
1

2π i

∫ a+i∞

a−i∞
eyξ F̂(ξ)dξ. (2.3)

The integral here is a complex contour integral taken over the
infinite straight line (called a Bromwich path) in the complex
plane from a − i∞ to a + i∞. The number a is any real
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number for which the resulting Bromwich path lies to the
right of any singularities of F̂(ξ). More details on the inverse
Laplace transform can be found in the book [7]. For notational
convenience, we will omit a but still adopt this convention. We
now state the major results of this section.

Theorem 2.1. Assume that

u0 ∈ L1(0, ∞), g ∈ L∞(0, ∞) and

f ∈ L∞(0, ∞; L1(0, ∞)). (2.4)

Then the solution u of the IBVP (2.1) can be written as:

u(x, t) =

∫
∞

0
Γ (x, y, t)u0(y)dy

+

∫ t

0

∫
∞

0
Γ (x, y, t − τ) f (y, τ )dydτ

+

∫ t

0
Φ(x, t − τ)g(τ )dτ,

where the kernel functions Γ and Φ are given by

Γ (x, y, t) =
1

2π i

∫ i∞

−i∞
e−(ξ3

+ξ)t eξ(x−y)dξ

−
1

2π i

∫ i∞

−i∞
eηt eξ3x (e−ξ1 yξ ′

1 + e−ξ2 yξ ′

2)dη, (2.5)

Φ(x, t) =
1

2π i

∫ i∞

−i∞
e−(ξ3

+ξ)t eξ x (ξ2
+ 1)dξ

−
1

2π i

∫ i∞

−i∞
eηt eξ3x (2ξ2

3 ξ ′

3)dη. (2.6)

Corollary 2.2. The kernel functions Γ and Φ can be written in
the following more compact form:

Γ (x, y, t) = −
1

2π i

∫ i∞

−i∞
eηt eξ3x (e−ξ1 yξ ′

1

+ e−ξ2 yξ ′

2 + e−ξ3 yξ ′

3)dη, (2.7)

Φ(x, t) =
1

2π i

∫ i∞

−i∞
e−(ξ3

+ξ)t eξ x (3ξ2
+ 1)dξ. (2.8)

Theorem 2.3. Let Γ and Φ be defined as in (2.5) and (2.6):

(1) There exists a constant C such that

|Γ (x, y, t)| ≤
C

t1/2 (2.9)

uniformly for x, y ∈ [0, ∞) and for sufficiently large t;
(2) For any compact set [A1, A2] with 0 < A1 < A2 < ∞,

there exists a constant C = C(A1, A2) such that

|Φ(x, t)| ≤
C

t3/2 (2.10)

uniformly for x ∈ [A1, A2] and for sufficiently large t.

The results of the above theorems allow us to show that any
solution of the IBVP (2.1) with a periodic boundary datum g
converges to a time-dependent equilibrium periodic function
when f is identically zero.
Theorem 2.4. Let f ≡ 0, u0 ∈ L1(0, ∞) and g ∈ C1(0, ∞).
Assume g is periodic of period T > 0. Let u be the
corresponding solution of the IBVP (2.1). Then, for any x > 0
and t > 0, the limit

lim
n→∞

u(x, nT + t) = u∞(x, t)

exists for some function u∞ that is periodic of period T and
satisfies

u∞(0, t) = g(t).

As a special consequence, u is eventually periodic in the sense
that

lim
t→∞

(u(x, T + t) − u(x, t)) = 0

for any x > 0 and uniformly for x ∈ [A1, A2] with 0 < A1 <

A2 < ∞.

Remark. As we shall see in the proof of this theorem, the
initial datum u0 does not contribute to the time-dependent
equilibrium u∞.

For the clarity of presentation, we divide the rest of this
section into three subsections.

2.1. Solution representation

This subsection derives the solution representation formula
given in Theorem 2.1.

Proof of Theorem 2.1. We denote the Laplace transform of
u(x, t) with respect to x by û(ξ, t), namely

û(ξ, t) =

∫
∞

0
e−xξ u(x, t)dx .

Taking the Laplace transform of the linear KdV equation with
respect to x and applying Proposition A.2 of Appendix A, we
obtain:
∂ û
∂t

(ξ, t) + (ξ3
+ ξ )̂u(ξ, t) = f̂ (ξ, t) + (ξ2

+ 1)g(t)

+ ξux (0, t) + uxx (0, t),

where f̂ (ξ, t) denotes the Laplace transform of f with respect
to x . Integrating with respect to t yields:

û(ξ, t) = e−(ξ3
+ξ)t û0(ξ) + e−(ξ3

+ξ)t
∫ t

0
e(ξ3

+ξ)τ f̂ (ξ, τ )dτ

+ e−(ξ3
+ξ)t

∫ t

0
e(ξ3

+ξ)τ ((ξ2
+ 1)g(τ )

+ ξux (0, τ ) + uxx (0, τ ))dτ. (2.11)

To find u(x, t), we take the inverse Laplace transform of û(ξ, t).
If the inverse Laplace transform exists, then the growth rate
of û(ξ, t) in terms of |ξ | for Re(ξ) ≥ 0 should be at most
algebraic, according to Proposition A.3 of Appendix A. To
make this requirement precise, we rewrite û(ξ, t) as:

û(ξ, t) = e−(ξ3
+ξ)t

[
û0(ξ) +

∫
∞

0
e(ξ3

+ξ)τ ( f̂ (ξ, τ )
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+ (ξ2
+ 1)g(τ ) + ξux (0, τ ) + uxx (0, τ ))dτ

]
−

∫
∞

t
e−(ξ3

+ξ)(t−τ)( f̂ (ξ, τ ) + (ξ2
+ 1)g(τ )

+ ξux (0, τ ) + uxx (0, τ ))dτ.

Therefore, for Re(ξ) ≥ 0 and Re(ξ3
+ ξ) < 0,

û0(ξ) +

∫
∞

0
e(ξ3

+ξ)τ ( f̂ (ξ, τ ) + (ξ2
+ 1)g(τ )

+ ξux (0, τ ) + uxx (0, τ ))dτ = 0. (2.12)

Setting ξ3
+ ξ = −η implies that:

û0(ξ) +

∫
∞

0
e−ητ ( f̂ (ξ, τ ) + (ξ2

+ 1)g(τ )

+ ξux (0, τ ) + uxx (0, τ ))dτ = 0 (2.13)

for any Re(η) > 0 and Re(ξ) ≥ 0 satisfying

ξ3
+ ξ = −η.

Note that the cubic equation ξ3
+ ξ = −η with Re(η) > 0

always has two roots ξ1 and ξ2 with Re(ξ1) ≥ 0 and Re(ξ2) ≥ 0,
and a third root ξ3 with Re(ξ3) < 0. Therefore, (2.13) is then
reduced to the following two equations:

û0(ξ j ) +

∫
∞

0
e−ητ ( f̂ (ξ j , τ ) + (ξ2

j + 1)g(τ )

+ ξ j ux (0, τ ) + uxx (0, τ ))dτ = 0, j = 1, 2.

Settinĝ̂f (ξ, η) =

∫
∞

0
e−ητ f̂ (ξ, τ )dτ and

ĝ(η) =

∫
∞

0
e−ητ g(τ )dτ,

the equations can then be written as:

ξ j

∫
∞

0
e−ητ ux (0, τ )dτ +

∫
∞

0
e−ητ uxx (0, τ )dτ = R(ξ j ),

j = 1, 2, (2.14)

where

R(ξ j ) = −û0(ξ j ) −
̂̂f (ξ j , η) − (1 + ξ2

j )ĝ(η). (2.15)

It then follows from (2.14) that:∫
∞

0
e−ητ ux (0, τ )dτ =

R(ξ1) − R(ξ2)

ξ1 − ξ2
,∫

∞

0
e−ητ uxx (0, τ )dτ =

ξ1 R(ξ2) − ξ2 R(ξ1)

ξ1 − ξ2
,

which are the Laplace transform of ux (0, t) and uxx (0, t) with
respect to t . We take the inverse Laplace transforms of these
equations to find ux (0, t) and uxx (0, t) and then insert them
back in (2.11). Since we need the combination ξux (0, t) +

uxx (0, t), we consider:∫
∞

0
e−ητ (ξux (0, τ ) + uxx (0, τ ))dτ

= ξ
R(ξ1) − R(ξ2)

ξ1 − ξ2
+

ξ1 R(ξ2) − ξ2 R(ξ1)

ξ1 − ξ2
. (2.16)
Using (2.15), we can sort the terms in (2.16) into three groups:∫
∞

0
e−ητ (ξux (0, τ ) + uxx (0, τ ))dτ = I1 + I2 + I3, (2.17)

where

I1 =
(ξ2 − ξ )̂u0(ξ1) + (ξ − ξ1)̂u0(ξ2)

ξ1 − ξ2
,

I2 =
(ξ2 − ξ)

̂̂f (ξ1, η) + (ξ − ξ1)
̂̂f (ξ2, η)

ξ1 − ξ2
,

I3 = (ξ1ξ2 − ξξ1 − ξξ2 − 1)ĝ(η).

(2.18)

Taking the inverse Laplace transform of (2.17), we find:

ξux (0, t) + uxx (0, t) =
1

2π i

∫ i∞

−i∞
eηt (I1 + I2 + I3)dη.

Inserting this equation in (2.11) yields:

û(ξ, t) = J1 + J2 + J3, (2.19)

where

J1 = e−(ξ3
+ξ)t û0(ξ)

+

∫ t

0
e−(ξ3

+ξ)(t−τ)

[
1

2π i

∫ i∞

−i∞
eητ I1dη

]
dτ,

J2 =

∫ t

0
e−(ξ3

+ξ)(t−τ)

[
f̂ (ξ, τ ) +

1
2π i

∫ i∞

−i∞
eητ I2dη

]
dτ,

J3 =

∫ t

0
e−(ξ3

+ξ)(t−τ)

[
(ξ2

+ 1)g(τ )

+
1

2π i

∫ i∞

−i∞
eητ I3dη

]
dτ.

When u0, g and f satisfy (2.4), the growth rate of û(ξ, t) is
at most algebraic and its inverse Laplace transform yields u. In
order to find a formula for u, we simplify the terms above and
then take the inverse Laplace transform. For I1, we exchange
the order of integrals to obtain:

J1 = e−(ξ3
+ξ)t û0(ξ) + e−(ξ3

+ξ)t 1
2π i

×

∫ i∞

−i∞

e(ξ3
+ξ)t+ηt

− 1
ξ3 + ξ + η

I1dη.

We now apply Cauchy’s theorem to show that∫ i∞

−i∞

I1

ξ3 + ξ + η
dη = 0.

The idea is to approximate the integral by∫ iR

−iR

I1

ξ3 + ξ + η
dη (2.20)

and then close the contour with a semicircle in the right half-
plane. Since there are no poles of the integrand inside this
contour that the integral vanishes due to Cauchy’s theorem. It
then remains to show that the integrand decays sufficiently fast
in η as |η| → ∞. For this purpose, we insert:

û0(ξi ) =

∫
e−ξi x u0(x)dx, i = 1, 2
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in (2.18) to obtain

I1 =

∫
Q(ξ, η, x)u0(x)dx

where

Q(ξ, η, x) =
(ξ2(η) − ξ)e−ξ1(η)x

+ (ξ − ξ1(η))e−ξ2(η)x

ξ1(η) − ξ2(η)
.

For |η| sufficiently large, ξ1(η) and ξ2(η) obeys the
asymptotics:

ξ1(η) = |η|
1
3 ei θ+π

3 + o(|η|
1
3 ),

ξ2(η) = |η|
1
3 ei θ+5π

3 + o(|η|
1
3 )

in the case when η = |η|eiθ with θ ∈ [0, π/2), and

ξ1(η) = |η|
1
3 ei θ+5π

3 + o(|η|
1
3 ),

ξ2(η) = |η|
1
3 ei θ+3π

3 + o(|η|
1
3 )

in the case when η = |η|eiθ with θ ∈ (3π/2, 2π ]. In both cases,

|Q(ξ, η, x)| ≤ C(ξ)e−C |η|
1
3 x

holds for any Re(ξ) ≥ 0, Re(η) > 0 and x > 0. When u0 ∈

L1(0, ∞), we conclude that the integral in (2.20) vanishes.
J1 is then reduced to

J1 = e−(ξ3
+ξ)t û0(ξ) +

1
2π i

∫ i∞

−i∞

eηt I1

ξ3 + ξ + η
dη. (2.21)

Similarly, J2 and J3 can be simplified to

J2 =

∫ t

0
e−(ξ3

+ξ)(t−τ) f̂ (ξ, τ )dτ

+
1

2π i

∫ i∞

−i∞

eηt I2

ξ3 + ξ + η
dη, (2.22)

J3 =

∫ t

0
e−(ξ3

+ξ)(t−τ)(ξ2
+ 1)g(τ )dτ

+
1

2π i

∫ i∞

−i∞

eηt I3

ξ3 + ξ + η
dη. (2.23)

Inserting (2.21)–(2.23) in (2.19) and then taking the inverse
Laplace transform of (2.19), we obtain

u(x, t) = K1 + K2 + K3,

where Km denotes the inverse Laplace transform of Jm ,
namely:

Km =
1

2π i

∫ i∞

−i∞
eξ x Jm dξ, m = 1, 2, 3.

Since û0 is the Laplace transform of u0, namely:

û0(ξ) =

∫
∞

0
e−ξ yu0(y)dy

we obtain after exchanging the order of integrals

K1 =

∫
∞

0
Γ (x, y, t)u0(y)dy,
where the kernel function Γ is given by

Γ (x, y, t) =
1

2π i

∫ i∞

−i∞
eξ(x−y)e−(ξ3

+ξ)t dξ

+
1

2π i

∫ i∞

−i∞
eξ x

[
1

2π i

∫ i∞

−i∞

eηt

ξ3 + ξ + η

×

(
(ξ2(η) − ξ)e−ξ1(η)y

+ (ξ − ξ1(η))e−ξ2(η)y

ξ1(η) − ξ2(η)

)
dη

]
dξ.

(2.24)

Similarly, K2 can be represented as follows:

K2 =

∫ t

0

∫
∞

0
Γ (x, y, t − τ) f (y, τ )dydτ.

We now find a compact expression for K3. Inserting I3 in J3
yields

J3 =

∫ t

0
e−(ξ3

+ξ)(t−τ)(ξ2
+ 1)g(τ )dτ

+
1

2π i

∫ i∞

−i∞

eηt

ξ3 + ξ + η
(ξ1ξ2 − ξ(ξ1 + ξ2) − 1)ĝ(η)dη.

Noting that

1
2π i

∫ i∞

−i∞
eητ ĝ(η)dη = g(τ ),

we use the basic property of the Laplace transformL−1(F̂ Ĝ) =

F ∗ G to find

J3 =

∫ t

0
e−(ξ3

+ξ)(t−τ)(ξ2
+ 1)g(τ )dτ

+

∫ t

0

[
1

2π i

∫ i∞

−i∞

eη(t−τ)

ξ3 + ξ + η
(ξ1ξ2 − ξ(ξ1 + ξ2) − 1)dη

]
× g(τ )dτ.

Therefore, K3, the inverse Laplace transform of J3, can be
represented as

K3 =

∫ t

0
Φ(x, t − τ)g(τ )dτ,

where

Φ(x, t) =
1

2π i

∫ i∞

−i∞
eξ x e−(ξ3

+ξ)t (ξ2
+ 1)dξ

+
1

2π i

∫ i∞

−i∞
eξ x

[
1

2π i

∫ i∞

−i∞

eηt

ξ3 + ξ + η

× (ξ1ξ2 − ξ(ξ1 + ξ2) − 1)dη

]
dξ.

We further simplify Γ and Φ. We need to compute the
integrals

1
2π i

∫ i∞

−i∞

eξ x

ξ3 + ξ + η
dξ and

1
2π i

∫ i∞

−i∞

eξ xξ

ξ3 + ξ + η
dξ.

Fix η with Re(η) > 0 and let R > 0 be large. Consider the
contour Ω consisting of the Bromwich path from −iR to iR
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and the connecting left half circle. According to the Residue
theorem, we have:

1
2π i

∫ i∞

−i∞

eξ x

ξ3 + ξ + η
dξ = lim

R→∞

1
2π i

∫ iR

−iR

eξ x

ξ3 + ξ + η
dξ

= lim
R→∞

1
2π i

∫
Ω

eξ x

ξ3 + ξ + η
dξ

=
eξ3(η)x

3ξ2
3 (η) + 1

.

Using the relation (3ξ2
3 (η) + 1)ξ ′

3(η) = −1, we have

1
2π i

∫ i∞

−i∞

eξ x

ξ3 + ξ + η
dξ = −eξ3(η)xξ ′

3(η).

Similarly,

1
2π i

∫ i∞

−i∞

eξ xξ

ξ3 + ξ + η
dξ = −eξ3(η)xξ ′

3(η)ξ3(η).

Inserting these relations in the second integral of (2.24), we
obtain

Γ (x, y, t) =
1

2π i

∫ i∞

−i∞
eξ(x−y)e−(ξ3

+ξ)t dξ

+
1

2π i

∫ i∞

−i∞
eηt eξ3xξ ′

3
(ξ3 − ξ2)e−ξ1 y

+ (ξ1 − ξ3)e−ξ2 y

ξ1 − ξ2
dη.

(2.25)

The kernel function Φ can be similarly simplified. In fact,

Φ(x, t) =
1

2π i

∫ i∞

−i∞
eξ x e−(ξ3

+ξ)t (ξ2
+ 1)dξ

+
1

2π i

∫ i∞

−i∞
eηt eξ3xξ ′

3(ξ1ξ3 + ξ2ξ3 − ξ1ξ2 + 1)dη.

The roots ξ1, ξ2 and ξ3 of ξ3
+ ξ + η = 0 satisfy

ξ1 + ξ2 + ξ3 = 0, ξ1ξ2 + ξ1ξ3 + ξ2ξ3 = 1,

ξ1ξ2ξ3 = −η, ξ ′

1(ξ1 − ξ2)(ξ1 − ξ3) = −1,

ξ ′

2(ξ2 − ξ1)(ξ2 − ξ3) = −1,

ξ ′

3(ξ3 − ξ1)(ξ3 − ξ2) = −1.

(2.26)

The first three equations reflect the relationship between the
roots and the coefficients and the second three are easy
consequences of the first three. Differentiating the equation
ξ3

+ ξ + η = 0 with respect to η and setting ξ = ξ1, we get

ξ ′

1(3ξ2
1 + 1) = −1.

Combining the first two equations yields 3ξ2
1 + 1 = (ξ1 −

ξ2)(ξ1 − ξ3) and thus

ξ ′

1(ξ1 − ξ2)(ξ1 − ξ3) = −1.

Using these equations, we find

Γ (x, y, t) =
1

2π i

∫ i∞

−i∞
eξ(x−y)e−(ξ3

+ξ)t dξ

−
1

2π i

∫ i∞

−i∞
eηt eξ3x (e−ξ1 yξ ′

1 + e−ξ2 yξ ′

2)dη,
Φ(x, t) =
1

2π i

∫ i∞

−i∞
eξ x e−(ξ3

+ξ)t (ξ2
+ 1)dξ

−
1
π i

∫ i∞

−i∞
eηt eξ3xξ ′

3ξ
2
3 dη.

This completes the proof of Theorem 2.1. �

Finally we derive the compact form of Γ and Φ given in
Corollary 2.2. By Cauchy’s formula,

1
2π i

∫ i∞

−i∞

eηt

ξ3 + ξ + η
dη = e−(ξ3

+ξ)t .

Therefore,

1
2π i

∫ i∞

−i∞
eξ(x−y)e−(ξ3

+ξ)t dξ

=
1

2π i

∫ i∞

−i∞
eξ(x−y)

[
1

2π i

∫ i∞

−i∞

eηt

ξ3 + ξ + η
dη

]
dξ.

Changing the order of the integrals and applying the Residue
Theorem, we have

1
2π i

∫ i∞

−i∞
eξ(x−y)e−(ξ3

+ξ)t dξ = −
1

2π i

∫ i∞

−i∞
eηt eξ3(x−y)ξ ′

3dη.

Inserting this equation in (2.5) then yields (2.7) of Corol-
lary 2.2. Similarly, we have

1
2π i

∫ i∞

−i∞
eξ x e−(ξ3

+ξ)t (ξ2
+ 1)dξ

= −
1

2π i

∫ i∞

−i∞
eηt eξ3x (ξ2

3 + 1)ξ ′

3dη.

Combining this equation with (2.6) then leads to (2.8).

2.2. Time-decay estimates for the kernel functions

We prove the large-time asymptotics of Γ and Φ stated in
Theorem 2.3 by the method of stationary phase.

Proof of Theorem 2.3. We start with the first integral in Γ . For
notational convenience, we label this integral as Γ1. Letting
ξ = iσ , we have

Γ1 =
1

2π

∫
∞

−∞

eiσ(x−y)ei(σ 3
−σ)t dσ = Γ11 + Γ12

where

Γ11 =

∫
∞

0
eiσ(x−y)ei(σ 3

−σ)t dσ and

Γ12 =

∫ 0

−∞

eiσ(x−y)ei(σ 3
−σ)t dσ.

Although the integrands in these integrals do not die away as
σ → ±∞, the integrals converge because the increasingly
rapid oscillations. Since Γ12 is the complex conjugate of Γ11,
it then suffices to consider Γ11. We further split Γ11 into two
integrals:

Γ11 =

∫ 1
√

3

0
eiσ(x−y)ei(σ 3

−σ)t dσ +

∫
∞

1
√

3

eiσ(x−y)ei(σ 3
−σ)t dσ.
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To apply the method of stationary phase, we further change the
variable σ to −σ in the first integral:∫ 1

√
3

0
ei(σ 3

−σ)t eiσ x dσ =

∫ 0

−
1

√
3

eit (σ−σ 3)e−iσ x dσ.

Direct applications of the method of stationary phase allows the
inferences:∫ 0

−
1

√
3

ei(σ−σ 3)t e−iσ(x−y)dσ ∼

√
πe

π i
4 e

i
√

3
(x−y−

2
3 t)

2 4√3
√

t
, (2.27)

∫
∞

1
√

3

ei(σ 3
−σ)t eiσ(x−y)dσ ∼

√
πe

π i
4 e

i
√

3
(x−y−

2
3 t)

2 4√3
√

t
(2.28)

as t → ∞. For readers’ convenience, the method of stationary
phase are recalled in Appendix B and the details leading to these
asymptotic estimates are also provided in Appendix B.

We now estimate the second part in Γ :

Γ2 ≡
1

2π i

∫ i∞

−i∞
eηt eξ3x (e−ξ1 yξ ′

1 + e−ξ2 yξ ′

2)dη.

We first represent ξ1 and ξ2 in terms of ξ3. It follows from (2.26)
that:

ξ1 =

−ξ3 −

√
−4 − 3ξ2

3

2
, ξ2 =

−ξ3 +

√
−4 − 3ξ2

3

2
.

Making the substitution η = iσ , we obtain:

Γ2 =
1

2π

∫
∞

−∞

eiσ t eξ3x

×

e
1
2 (ξ3+

√
−4−3ξ2

3 )y

−
1
2

+
3ξ3

2
√

−4 − 3ξ2
3


+ e

1
2 (ξ3−

√
−4−3ξ2

3 )y

−
1
2

−
3ξ3

2
√

−4 − 3ξ2
3

 dσ.

To analyse this integral, we break it into four parts Γ21,Γ22,Γ23
and Γ24 representing the integrals over the intervals:(

−∞, −
2

3
√

3

]
,

(
−

2

3
√

3
, 0
]

,(
0,

2

3
√

3

]
,

(
2

3
√

3
, ∞

)
,

respectively. We will consider Γ22 and Γ24 since Γ21 and Γ23
can be similarly treated. Since ξ3(iσ) is the root of ξ3

+ξ+iσ =

0 with a negative or zero real part, its real part s and imaginary
part ρ satisfies:

s = −

√
3ρ2 − 1, 8ρ3

− 2ρ + σ = 0

for σ ∈

(
−∞, −

2

3
√

3

]
, ρ ≥

1
√

3
;

s = 0, ρ3
− ρ − σ = 0

for σ ∈

[
−

2

3
√

3
,

2

3
√

3

]
, ρ ∈

[
−

1
√

3
,

1
√

3

]
;

s = −

√
3ρ2 − 1, 8ρ3

− 2ρ + σ = 0

for σ ∈

[
2

3
√

3
, ∞

)
, ρ ≤ −

1
√

3
.

To consider Γ22, we make the change of variables

σ = r − r3, r ∈

[
−

1
√

3
, 0
]

.

Noticing that σ is a monotonic function of r , we have:

ρ(r) = −r, ρ′(σ ) =
1

3ρ2 − 1
=

1
3r2 − 1

,

dσ = (1 − 3r2)dr

and Γ22 becomes

Γ22 = −

∫ 0

−
1

√
3

ei(r−r3)t e−ir x

×

[
e

i
2 (−r+

√
4−3r2)y

(
−

1
2

−
3r

2
√

4 − 3r2

)
+ e

i
2 (−r−

√
4−3r2)y

(
−

1
2

+
3r

2
√

4 − 3r2

)]
dr.

It then follows from the theory of stationary phase that

Γ22 ∼

√
πe

i( π
4 +

x
√

3
−

y
√

3
−

2
3
√

3
t)

2 4√3
√

t
as t → ∞.

We now consider Γ24:

Γ24 =

∫
∞

2
3
√

3

eiσ t eξ3x (e−ξ1 yξ ′

1 + e−ξ2 yξ ′

2)dσ. (2.29)

Recall that for σ ∈ [
2

3
√

3
, ∞),

ξ3 = s + iρ with s = −

√
3ρ2 − 1 and

8ρ3
− 2ρ + σ = 0

and

ξ1 = −s + iρ and ξ2 = −2iρ.

We make the change of variables in (2.29),

σ = 8z3
− 2z, z ∈

[
1

√
3
, ∞

)
.

Since σ is a monotonic function of z, we have

ρ(z) = −z, ξ3 = −

√
3z2 − 1 − iz,

ξ1 =

√
3z2 − 1 − iz, ξ2 = 2iz.

Thus,

Γ24 =

∫
∞

1
√

3

ei(8z3
−2z)t e(−

√
3z2−1−iz)x e(−

√
3z2−1+iz)y

×

(
3z

√
3z2 − 1

− i
)

dz

+

∫
∞

1
√

3

ei(8z3
−2z)t e(−

√
3z2−1−iz)x e−2izy(−2i)dz.
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As in Appendix B, the theory of stationary phase yields:

Γ24 ∼

√
πe

i( π
4 −

x
√

3
+

y
√

3
+

2
3
√

3
t)

2 4√3
√

t
+

√
πe

i( π
4 −

x
√

3
−

2y
√

3
+

2
3
√

3
t)

3t

as t → ∞. Putting together all these estimates yields (2.9).
We now derive (2.10). Making the substitution ξ = iσ in Φ

(defined in (2.8)), we obtain

Φ(x, t) =
1

2π

∫
∞

−∞

eiσ x ei(σ 3
−σ)t (1 − 3σ 2)dσ

=
i

2π t

∫
∞

−∞

eiσ x d
dσ

ei(σ 3
−σ)t dσ.

The last expression is interpreted in the sense of distributions.
According to a property of the Fourier transform on the
derivatives of a function,

Φ(x, t) =
x

2π t

∫
∞

−∞

eiσ x ei(σ 3
−σ)t dσ.

To further analyse the large-time behaviour of Φ, we
decompose the integral above into three parts:∫

∞

−∞

eiσ x ei(σ 3
−σ)t dσ

=

(∫
−

1
√

3

−∞

+

∫ 1
√

3

−
1

√
3

+

∫
∞

1
√

3

)
eip(σ )t q(σ )dσ,

where p(σ ) = σ 3
− σ and q(σ ) = eiσ x . We then apply the

theory of stationary phase to each part. For example:∫
∞

1
√

3

eip(σ )t q(σ )dσ ∼

√
πe

i( π
4 +

x
√

3
−

2
3
√

3
t)

2 4√3
√

t

as t → ∞. Therefore, as t → ∞,

Φ(x, t) ∼
x

2
√

π
4√3t3/2

(
e

i( π
4 +

x
√

3
−

2
3
√

3
t)

+ e
i( π

4 −
x

√
3
+

2
3
√

3
t)
)

.

This completes the derivation of (2.10). �

2.3. Eventual periodicity

Let f ≡ 0 and u0 ∈ L1(0, ∞). Let g ∈ C1(0, ∞) be a
periodic function of period T . Let u the corresponding solution
of (2.1). Consider the sequence {u(x, nT +t)} and we show that

lim
n→∞

u(x, nT + t) = u∞(x, t)

for some function u∞ that is periodic of period T and satisfies
u∞(0, t) = g(t). By Theorem 2.1, u can be represented as

u(x, nT + t) =

∫
∞

0
Γ (x, y, nT + t)u0(y)dy

+

∫ nT +t

0
Φ(x, nT + t − τ)g(τ )dτ. (2.30)

Using the estimates in Theorem 2.3, we have∣∣∣∣∫ ∞

0
Γ (x, y, t + nT )u0(y)dy

∣∣∣∣ ≤
C

√
nT + t

‖u0‖L1([0,∞))
and thus

lim
n→∞

∫
∞

0
Γ (x, y, nT + t)u0(y)dy = 0.

Denote the second integral in (2.30) by ug(x, nT + t) and
consider the series

ug(x, t) +

∞∑
k=1

[
ug(x, (k + 1)T + t) − ug(x, kT + t)

]
. (2.31)

Since g is periodic of period T ,

ug(x, (k + 1)T + t) − ug(x, kT + t)

=

∫ (k+1)T +t

kT +t
g(t − τ)Φ(x, τ )dτ.

Therefore, by the estimate of Φ in Theorem 2.3,

|ug(x, (k + 1)T + t) − ug(x, kT + t)|

≤ C
T

(kT + t)3/2 ‖g‖L∞ .

Thus the series in (2.31) converges and consequently the limit

lim
n→∞

ug(x, nT + t)

exists and we denote this limit by u∞. To show that u∞ is
periodic of period T , we write:

u∞(x, T + t) − u∞(x, t)

= [u∞(x, T + t) − u(x, (n + 1)T + t)]

+ [u(x, (n + 1)T + t) − u(x, nT + t)]

+ [u(x, nT + t) − u∞(x, t)]

and then let n → ∞. Finally, the fact that u(0, nT + t) = g(t)
leads to the condition u∞(0, t) = g(t). This completes the
proof of Theorem 2.4.

3. Numerical results

In this section we present the results of our numerical
experiments investigating the eventual periodicity of the full
KdV equation and of the equations obtained by appending the
KdV equation with two different types of dissipation.

More precisely, we compute the numerical solutions of the
IBVP for the KdV equation:ut + ux + uux + uxxx = 0, x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0,

(3.1)

for suitable boundary data g. Since the initial data u0 is not
essential in determining the eventual periodicity, we simply set
it to zero. We then plot the numerical solutions to examine their
eventual periodicity. To understand how dissipation influences
the eventual periodicity, we also compute the solutions of the
IBVP for the KdV-Burgers equation:ut + ux + uux + uxxx − uxx = 0, x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0
(3.2)
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Fig. 1. u(x, t) at x = −0.95067 (left graph) and at x = −0.80846 (right graph).

Fig. 2. u(x, t) at x = −0.58728 (left graph) and at x = −0.30872 (right graph).
and the solutions to the following IBVP:ut + u + ux + uux + uxxx = 0, x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0.

(3.3)

Since any solution u(x, t) of these IBVPs converges to 0
as x → ∞, we first approximate these IBVPs by the
corresponding two-point boundary value problems for x ∈

[0, L] and then rescale the resulting problems to the interval
[−1, 1]. More precisely, we compute solutions of the following
scaled problems:

ut + αux + βuux + γ uxxx = 0, x ∈ [−1, 1], t ∈ [0, T ],

u(0, t) = g(t),
u(1, t) = ux (1, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [−1, 1],

(3.4)

ut + αux + βuux

+γ uxxx − δuxx = 0, x ∈ [−1, 1], t ∈ [0, T ],

u(0, t) = g(t),
u(1, t) = ux (1, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [−1, 1],

(3.5)

and
ut + ηu + αux

+βuux + γ uxxx = 0, x ∈ [−1, 1], t ∈ [0, T ],

u(0, t) = g(t),
u(1, t) = ux (1, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [−1, 1],

(3.6)

where α, β, γ , δ and η are parameters. For u0 ≡ 0, (3.4)–(3.6)
are valid approximations of (3.1)–(3.3), respectively, until the
moment when the wave-front generated by the boundary data g
reaches the right boundary point x = 1.
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Fig. 3. u(x, t) at x = 0 (left graph) and at x = 0.99965 (right graph).

Fig. 4. u(x, t) at x = −0.95067 (left graph) and at x = −0.80846 (right graph).
The solutions of (3.4)–(3.6) are computed using the Dual
Petrov–Galerkin Method proposed by Shen in [8]. This method,
suitable for third and higher odd-order equations, is very
accurate and efficient. Detailed convergence estimates and
numerical results exhibiting the accuracy and efficiency can be
found in [8].

In our first set of experiments, we computed the solutions of
the linearized KdV equation, namely (3.4) with β = 0. Plotted
here are the solutions of (3.4) with

α = 1.0, γ = 10−5 and g(t) = sin(20π t) tanh(5t).

(3.7)

The six graphs in Figs. 1 through 3 record the amplitudes
u(x, t) for x = −0.95067, −0.80846, −0.58728, −0.30872,
0 and x = 0.99965, and for 0 < t < 1.8. In these graphs, the x-
axis represents time t and the y-axis represents the amplitude u.
The boundary data g in (3.7) are not exactly periodic
but become periodic. These graphs clearly show the eventual
periodicity of the amplitudes at x = −0.95067, −0.80846,
−0.58728, −0.30872 and 0. The last plot in Fig. 3 shows that
the amplitude at x = 0.99965 remains zero. The purpose of
this plot is to show that the wave front has not reached the right
boundary for t = 1.8 and thus the validity of the amplitudes at
x = −0.95067, −0.80846, −0.58728, −0.30872 and 0.

In the second set of experiments, we computed solutions of
(3.4) with

α = 1.0, β = 0.05, γ = 10−5 and

g(t) = sin(20π t) tanh(5t).

We plot in Figs. 4 through 6 the amplitudes u(x, t)
corresponding to x = −0.95067, −0.80846, −0.58728,
−0.30872, 0 and x = 0.99965, and for 0 < t < 1.8. The
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Fig. 5. u(x, t) at x = −0.58728 (left graph) and at x = −0.30872 (right graph).

Fig. 6. u(x, t) at x = 0 (left graph) and at x = 0.99965 (right graph).
graphs in these figures clearly indicate the eventual periodicity
of the amplitudes at these positions. By comparing these plots
with the ones for the linearized KdV equation, we also noticed
the effects of the nonlinear term, which significantly “lifted” the
amplitudes.

The third set of numerical experiments are performed on
the IBVP for the KdV-Burgers equation (3.5). We recorded the
results corresponding to

α = 1.0, β = 0.05, γ = 10−5,

δ = 10−4 and g(t) = sin(20π t) tanh(5t).

in Figs. 7 through 9. Again we observe the pattern of eventual
periodicity in u(x, t) at all selected positions. The effects of the
Burgers type dissipation are reflected in the damped amplitude.

We have also computed the solutions of the IBVP (3.6) in
order to understand the effects of the dissipative term ηu on
the eventual periodicity for a general boundary data. We plot in
Figs. 10 through 12 the solutions of (3.6) corresponding to

η = 5, α = 1, β = 0.05, γ = 10−4 and
g(t) = sin(20π t) tanh(5t)

and at the positions x = −0.95067, −0.80846, −0.58728,
−0.30872, 0 and x = 0.58728. We notice that the amplitudes
are significantly damped by the dissipation but the pattern of
eventual periodicity is still maintained.
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Fig. 7. u(x, t) at x = −0.95067 (left graph) and at x = −0.80846 (right graph).

Fig. 8. u(x, t) at x = −0.58728 (left graph) and at x = −0.30872 (right graph).
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Appendix A

This appendix provides several elementary properties of the
Laplace and inverse Laplace transforms.

For a real- or complex-valued function F of x ≥ 0, its
Laplace transform F̂ is defined by (2.2), namely

(LF)(ξ) = F̂(ξ) =

∫
∞

0
e−ξ x F(x)dx .

The first property concerns the convergence of this integral. We
recall that a function F is said to be of exponential order α if
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Fig. 10. u(x, t) at x = −0.95067 (left graph) and at x = −0.80846 (right graph).

Fig. 11. u(x, t) at x = −0.58728 (left graph) and at x = −0.30872 (right graph).
there exist constants M > 0 and α such that for some x0 ≥ 0,

|F(x)| ≤ Meαx , x ≥ x0.

Proposition A.1. Assume that F is piecewise continuous on
[0, ∞) and of exponential order α. Then:

(1) LF defined in (2.2) exists and converges absolutely for
Re(ξ) > α. In addition, the convergence is uniform for
Re(ξ) ≥ x0 > α;

(2) F̂(ξ) → 0 as Re(ξ) → ∞.

Proposition A.2. Let n ≥ 0 be an integer. Suppose that F,
F ′, . . . , F (n−1) are continuous on [0, ∞) and of exponential
order, while F (n) is piecewise continuous on [0, ∞). Then:

(LF (n))(ξ) = ξn(LF)(ξ) − ξn−1 F(0+)

− ξn−2 F ′(0+) − · · · − F (n−1)(0+).
The inverse Laplace transform defined in (2.3) maps the
Laplace transform of a function back to the original function.
The following proposition states necessary and sufficient
conditions for a given function to have a convergent inverse
Laplace transform. This result can be found in [4].

Proposition A.3. The necessary and sufficient conditions for a
given function H(ξ) to have an inverse Laplace transform h(x)

that is continuous and of exponential order α are:

(a) H(ξ) is analytic for Re(ξ) > α;

(b) ‖H(b + i·)‖L1(−∞,∞) < ∞ for any b > α;

(c) For any ε > 0 and b0 > α, there exist M > 0 and m > 0
such that

|H(ξ)| ≤ Meεb(1 + |ξ |
m), b > b0.
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Fig. 12. u(x, t) at x = 0 (left graph) and at x = 0.58728 (right graph).
When these conditions are satisfied, h(x) can be computed by:

h(x) =
1

2π i

∫ b+i∞

b−i∞
eξ x H(ξ)dξ

for any b > α.

Appendix B

This appendix offers an expanded commentary on the
asymptotic analysis of the various oscillatory integrals arising
in Section 2.2. The asymptotic analysis relies upon standard
results in the theory of stationary phase, e.q. Theorem 13.1
in Olver’s book [6]. For readers’ convenience, we recall this
theory here.

Suppose that in the integral

I (t) =

∫ b

a
eitp(y)q(y)dy

the limits a and b are independent of t , a being finite and b(> a)

finite or infinite. The functions p(y) and q(y) are independent
of t , p(y) being real and q(y) either real or complex. We also
assume that the only point at which p′(y) vanishes is a. Without
loss of generality, both t and p′(y) are taken to be positive;
cases in which one of them is negative can be handled by
changing the sign of i throughout. We require:

(i) In (a, b), the functions p′(y) and q(y) are continuous,
p′(y) > 0, and p′′(y) and q ′(y) have at most a finite
number of discontinuities and infinities:

(ii) As y → a+,

p(y) − p(a) ∼ P(y − a)µ, q(y) ∼ Q(y − a)λ−1,

(B.1)

the first of these relations being differentiable. Here P , µ

and λ are positive constants, and Q is a real or complex
constant;
(iii) For each ε ∈ (0, b − a),

Va+ε,b

{
q(y)

p′(y)

}
≡

∫ b

a+ε

∣∣∣∣( q(y)

p′(y)

)′
∣∣∣∣ dy < ∞;

(iv) As t → b−, the limit of q(y)/p′(y) is finite, and this limit
is zero if p(b) = ∞.

With these conditions, the nature of asymptotic approximation
to I (t) for large t depends on the sign of λ − µ. In the case
λ < µ, we have the following theorem:

Theorem B.1. In addition to the above conditions, assume that
λ < µ, the first of (B.1) is twice differentiable, and the second
of (B.1) is differentiable, then

I (t) ∼ eλπ i/(2µ) Q
µ

Γ
(

λ

µ

)
eitp(a)

(Pt)λ/µ

as t → ∞.

We now provide the details leading to (2.27). It suffices to
check the conditions of Theorem B.1. Setting

a = −
1

√
3
, b = 0, p(σ ) = σ − σ 3 and

q(σ ) = e−iσ x ,

we have

(i) p, p′, p′′, q and q ′ are all continuous in (−1/
√

3, 0), and
p′(σ ) > 0.

(ii) As σ → −
1

√
3
+,

p(σ ) − p
(

−
1

√
3

)
∼

√
3
(

σ +
1

√
3

)2

,

q(σ ) ∼ e
i 1
√

3
x
.

That is, P =
√

3, µ = 2, Q = e
i 1
√

3
x

and λ = 1.
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(iii) For any fixed ε > 0, V
−

1
√

3
+ε,0(q/p′) < ∞. In fact,

V
−

1
√

3
+ε,0

(
q
p′

)
=

∫ 0

−
1

√
3
+ε

∣∣∣∣( q(σ )

p′(σ )

)′
∣∣∣∣ dσ

=

∫ 0

−
1

√
3
+ε

∣∣∣∣ ix(3σ 2
− 1) + 6σ

(1 − 3σ 2)2

∣∣∣∣ dσ < ∞.

(iv) As σ → 0−, q/p′
= e−iσ x/(1 − 3σ 2) → 1.

Theorem B.1 then implies:∫ 0

−
1

√
3

ei(σ−σ 3)t e−iσ(x−y)dσ ∼ e
π i
4

1
2

e
i x−y

√
3 Γ

(
1
2

)
e

it (− 2
3
√

3
)

(
√

3t)1/2

=

√
πe

π i
4 e

i
√

3
(x−y−

2
3 t)

2 4√3
√

t
.

The estimate (2.28) also follows from Theorem B.1. The
conditions can be similarly checked for this integral. In fact,
for

a =
1

√
3
, b = ∞, p(σ ) = σ 3

− σ and

q(σ ) = eiσ x ,

we have

p(σ ) − p
(

1
√

3

)
∼

√
3
(

σ −
1

√
3

)2

and q(σ ) ∼ e
i 1
√

3
x

as σ →
1

√
3
+. Other conditions can also be verified.

Theorem B.1 then says∫
∞

1
√

3

ei(σ 3
−σ)t eiσ(x−y)dσ ∼ e

π i
4

1
2

e
i x−y

√
3 Γ

(
1
2

)
e

it (− 2
3
√

3
)

(
√

3t)1/2

=

√
πe

π i
4 e

i
√

3
(x−y−

2
3 t)

2 4√3
√

t
.
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