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1. INTRODUCTION

The complex Ginzburg�Landau (CGL for short) equation plays an impor-
tant role in describing spatial pattern formation and the onset of instabilities
in fluid dynamical systems [8]. A general form of the CGL equation
without driving is

�t u=(a+i&) 2u&(b+i+) |u| 2_ u, (x, t) # Rn_(0, �) (1.1)

where u is a complex-valued function of a space variable x # Rn and of a
time variable t # (0, �), and _>0, a>0, b>0, &>0, + are real parameters.

By taking a=b=0 in (1.1), the CGL equation formally becomes the
nonlinear Schro� dinger (NLS for short) equation

i �tv=&& 2v++ |v| 2_ v. (1.2)

Naturally the question of inviscid limit arises. Does the solution u of the
CGL equation (1.1) tend to (in an appropriate space norm) the solution v
of the NLS equation (1.2) as the parameters a and b tend to 0? What is
the convergence rate? The answers are not immediate especially when the
initial data for these equations are not smooth.

Because of its importance in both mathematical theory and physical
applications, the inviscid limit has been extensively investigated for many
partial differential equations such as Burgers' equation [3], the quasi-
geostrophic equation [17] and most notably the Navier�Stokes equations.
For smooth initial data and in absence of boundary, the inviscid limit of
the Navier�Stokes equations is the corresponding Euler equations and the
rate is the optimal O(&) where & is the viscosity coefficient ([2, 4, 13]). But
the situation changes if the initial data is not that smooth. It's shown in
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[5] that the convergence rate for vortex patch type data is only O(- &). If
the data is even less smooth, the inviscid limit of the Navier�Stokes
equations can be modified Euler equations or other equations we currently
do not know ([6, 7]). These inviscid limit results for the Navier�Stokes
equations turn out to be crucial in proposing corrections to the ``K-41''
Kolmogorov theory [1].

The CGL equation, derived from the Navier�Stokes equations via mul-
tiple scaling methods in convection [15], has been studied only recently
in problems related to existence and properties of solutions ([12, 10]).
Although there are claims in physics literature, it seems that the general
inviscid limit question has not been addressed directly before and we see no
mathematical proof existing. Here we should mention the recent work of
Cruz-Pacheco, Levermore and Luce who consider the persistence of
particular solutions (almost time-periodic, traveling wave and homoclinic
solutions) to the 1-D periodic NLS equation under the CGL perturbation.
Their technique is the Melnikov type method [9]. In this paper we are
mainly concerned with the global (in time) inviscid limit of the CGL
equation (1.1) in L2, L2_+2 and H 1 spaces while the initial data u0 is taken
in L2(Rn) or H1(Rn). The global existence results of the CGL equation
(1.1) with L2 or H1 initial data are newly available [12].

The expected inviscid limit, the NLS equation, is known to have finite
time blow-up solutions for critical and supercritical exponent _ in the
focusing case (+<0). Since our main interest is in global inviscid limit
results, the exponent _ is assumed to be subcritical or critical with small
initial data when +<0. The term ``critical'' (resp. ``subcritical'', resp. ``super-
critical'') at the level of L p indicates n_= p (resp. n_<p, resp. n_>p)
and at the level of Hr indicates _(n&2r)=2 (resp. _(n&2r)<2, resp.
_(n&2r)>2). In the subcritical case or the critical case for small data, the
H1-norm can be controlled through the conservation of the L2-norm and
of the energy for H1 solutions and therefore we have global existence. The
parameter dependence of estimates is reflected in our results and further
remarks on this point can be found in the sequel.

We approach the inviscid limit problem by employing extensive energy
estimates to bound the difference between the solutions of the CGL equa-
tion and the NLS equation in terms of the initial data and the parameters.
The initial data for the NLS equation is taken at least as regular as in H1(Rn)
so that the energy estimates make sense (see more details in Remark 3.3).
Furthermore, some assumptions on the parameters (like (3.1) in Section 3)
are necessary in order to obtain a closed equation for the normed difference.
Otherwise, only a hierarchy of differential equations, the so called ladder
structure, can be developed [10].

The remainder of this paper is organized as follows. In Section 2 we
review the existence and regularity of solutions to the CGL equation
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and the NLS equation. In Section 3 we establish two global L2 inviscid
limit results. The first theorem states that the L2 difference between solu-
tions of the CGL equation and the NLS equation is of order O(- a)+
O(b(2_+1)�(2(2_+2))) if the initial data for the NLS equation is taken in
H1(Rn) (see Theorem 3.1). The second theorem improves the convergence
rate to the optimal O(a)+O(b) by taking v0 # H2 (see Theorem 3.8 for
details). Section 4 treats the L2_+2 inviscid limit and the result is given in
Theorem 4.1. The main reason for considering and achieving this type of
inviscid limit is the special form of the nonlinear term in (1.1). In Sec-
tion 5 we investigate the H1 inviscid limit and obtain a convergence rate
depending on a&1

- b2++2 (see Theorem 5.1).

2. PRELIMINARIES

In this section we review the existence results and appropriate properties
concerning solutions of the CGL equation with initial data u0 belonging to
L2(Rn) or H1(Rn) and of the NLS equation with data in H 1(Rn) or
H2(Rn).

Theorem 2.1. Let u0 # L2(Rn). Then the CGL equation 1.1 with initial
data u0 has a global (in time) solution u satisfying

u # C([0, �); L2) & L2
loc([0, �); H1) & L2_+2

loc ([0, �); L2_+2) (2.1)

with u(0)=u0 . Furthermore, u satisfies the energy relation

1
2 &u(t)&2

L 2+a |
t

0
&{u(t$)&2

L 2 dt$+b |
t

0
&u(t$)&2_+2

L 2_+2 dt$= 1
2 &u0 &2

L2 (2.2)

for any t # [0, �).

This theorem is stated in [12] (Proposition 2.1, p. 197) and it can be
proved by using either Faedo�Galerkin method or smoothing approxima-
tions. The solution u is shown to be unique in the class (2.1) under the
assumption

}1+i
+
b }�

_+1
_

. (2.3)

See [12] (Proposition 3.1, p. 201) for a proof. The assumption (2.3) on b
and + turns out to be also important in showing inviscid limits in the
subsequent sections.
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The existence result of H1-solutions of the CGL equation is obtained only
very recently in [12] (Proposition 5.1, p. 215) and it states, in particular, that

Theorem 2.2. Assume that either +�0 or (n&2)_<2 and if n_>2

}1+i
&
a }�

n_
n_&2

.

Let u0 # H1(Rn) & L2_+2(Rn). Then the CGL equation 1.1 has a unique
solution u satisfying

u # C([0, �); H1 & L2_+2) & L2
loc([0, �); H2) & L4_+2

loc ([0, �); L4_+2)

with u(0)=u0 , and u satisfies (2.2).

The existence of solutions to the NLS equation with L2, H 1 or H 2 data
is now well-documented in monographs and survey papers (see e.g. [14,
11]). We shall only need the results concerning H 1 and H2 solutions.

Theorem 2.3. Let (n&2)_�2 for n�3. Then for every v0 # H 1(Rn),
there is a T*=T*(&v0&H 1)>0 and a solution v to the NLS equation 1.2 on
[0, T*) such that

v # C([0, T*); H1) & C1([0, T*); H&1) & L2_+2
loc ([0, T*); L2_+2)

with v(0)=v0 . Furthermore, for any t<T*,

E(v(t))=E(v0), &v(t)&L 2=&v0&L 2 (2.4)

where E(v) is the Hamiltonian

E(v)=
&
2

&{v&2
L2+

+
2_+2

&v&2_+2
L 2_+2 . (2.5)

In addition, in the defocusing case (+�0) or in the L2-subcritical focusing
case (+<0 and _<2�n) or in the L2-critical focusing case (+<0 and
_=2�n) with small data &v0&L 2 , the local solution is actually global (i.e.,
T*=�).

Theorem 2.4. Assume (n&4) _�2 for n�5. Then for any v0 # H 2(Rn),
there is a T*=T*(&v0&H2

)>0 and a unique solution u # C([0, T*); H 2) to
the NLS equation 1.2 with v(0)=v0 . Furthermore, for any T<T*,

&v(t)&H2�K &v0&H2 , t�T (2.6)

where K is a constant depending on T and sup[&u(t)&H1 , t�T].
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In addition, in the defocusing case (+�0) or in the L2-subcritical focusing
case (+<0 and _<2�n) or in the L2-critical focusing case (+<0 and
_=2�n) with small data &v0&L2 , the local solution is actually global (i.e.,
T*=�).

We notice that in Theorem 2.3 (resp. Theorem 2.4) the time T* of local
solutions can be estimated in terms of the H1 (resp. H 2) norm of v0 alone.
This implies that extending the local (in time) solutions to global ones relies
on apriori estimates of &v&H1 (resp. &v&H2). The assumptions associated
with the global results in these theorems are sufficient in controlling the H1

norm through the conservation laws. The H2 solution is global under the
same assumptions imposed for global H1 solution because &v&H2 is totally
controlled by &v&H 1 in view of (2.6). As we shall see, these conditions are
also imposed in the inviscid limit results so that they are all global (in
time).

In order to obtain inviscid limit results presented in the next few sections,
we use extensively the Gagliardo�Nirenberg inequalities [16] (p. 125)
which allow the control of L p norm through Lq norm of higher derivatives.
To illustrate, we state a particular important special case as a lemma and
then apply it to bound � |v| 2_+2.

Lemma 2.5. If

1
p

�
1
2

&
1
n

(2.7)

&v&L p�C( p) &{v&%
L 2 &v&1&%

L 2 , %=n \1
2

&
1
p+

for some constant C( p).

For (n&2) _�2, p=2_+2 satisfies (2.7). By Lemma 2.5,

&v&2_+2
L 2_+2�C(_) &{v&n_

L 2 &v&2_+2&n_
L 2

which also justifies the definition of E(v) in (2.4) for v # H1.

3. L2 INVISCID LIMIT

In this section we consider the inviscid limit of the CGL equation 1.1
with initial data u0 # L2 and we obtain two L2 inviscid limit results. First
the initial data v0 for the NLS equation is taken in H 1(Rn), which ensure
that energy estimates make sense. We then obtain the optimal convergence
rate by taking v0 # H 2.
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We start by stating the first inviscid limit result.

Theorem 3.1. Assume that _�2�(n&2) ( for n�3) if +�0 and _�2�n
if +<0, and b, + satisfy

}1+i
+
b }�

_+1
_

. (3.1)

Let u0 # L2(Rn) and v0 # H1(Rn) (&v0&L 2 should also be small if +<0 and
_=2�n). Consider the difference

w(x, t)=u(x, t)&v(x, t)

between a solution u of the CGL equation 1.1 with u(x, 0)=u0(x) and a
solution v of the NLS equation 1.2 with v(x, 0)=v0 . Then w obeys the
estimate for any T<� and t�T

&u(t)&v(t)&2
L 2�&u0&v0&2

L 2+aF(v0)t+C1(_) b(2_+1)�(2_+2) (1+b) G(v0) t

+C2(_) b(2_+1)�(2_+2) &u0&2
L 2 (3.2)

where C1 , C2 are constants depending on _ only, F(v0) and G(v0) (inde-
pendent of a and b) are bounds for &{v&2

L2 and &v&2_+2
L 2_+2 in terms of v0 ( given

explicitly below).
In particular, if &u0&v0 &2

L2 is of order O(a)+O(b(2_+1)�(2_+2)), then

&u&v&L 2=O(- a)+O(b(2_+1)�(2(2_+2))) (3.3)

for small a and b.

We make several remarks about this theorem.

Remark 3.2. The assumptions on _ in this theorem is inherited from
Theorem 2.3 to guarantee the global existence of solutions to the NLS
equation. The above theorem holds as long as the solution to the NLS
equation exists, therefore this inviscid limit result is global (in time).

Remark 3.3. In this theorem the initial data v0 # H 1. It seems that this
is the minimal regularity assumption on the initial data v0 such that the
energy estimates make sense. In fact, for v0 # H1, the solution of the NLS
equation v # C([0, T] ; H1) and �tv and the NLS equation itself holds in
C([0, T] ; H&1). The scalar product in L2 of the NLS equation with v is
well defined. If v0 # L2 only, the solution v is only a mild solution and the
regularity available may not be enough even if we go through a mollifying
and limiting process.

418 JIAHONG WU



File: DISTIL 334707 . By:DS . Date:19:01:98 . Time:07:14 LOP8M. V8.B. Page 01:01
Codes: 2399 Signs: 1486 . Length: 45 pic 0 pts, 190 mm

Remark 3.4. In general the assumption of the type (3.1) on b, + is
necessary in order to obtain a ``closed'' equation for � |w| 2. Otherwise, only
the ``ladder'' structure can be developed (see e.g. [10]).

Remark 3.5. The L2 convergence rate given in (3.3) is of order - a
(resp. b(2_+1)�(2(2_+2))) in a (resp. b). This rate can be improved to its
optimal O(a)+O(b) if we assume more regularity for the initial data of the
NLS equation, say, v0 # H 2(Rn). The optimal rate result will be given in
Theorem 3.8 below.

In order to prove Theorem 3.1, we need to estimate &{v&L 2 and &v&L2_+2 .
We have the following proposition

Proposition 3.6. Assume _>0, _�2�(n&2) for n�3 if +�0 and
_�2�n if +<0. Let v0 # H 1(Rn) (&v0 &L 2 should also be small if +<0 and
_=2�n). Then the solution of the NLS equation with the initial data v0

satisfies

| |{v| 2�F(v0), (3.4)

| |v| 2_+2�G(v0) (3.5)

where F(v0) and G(v0) are determined by the initial v0 but independent of a
and b (see their explicit expressions in the proof below).

Proof of Proposition 3.6. The idea of showing (3.4) and (3.5) is to use
both the conservation of the L2-norm and of the energy (see (2.4)). But we
need to distinguish between the defocusing (+�0) and the focusing (+<0)
case.

For +�0, both the H1-norm and the L2_+2-norm are easily controlled
by using the conservation laws. In fact, using Lemma 2.5,

&{v&2
L2�

2
&

E(v0)

| |v| 2_+2�C(_) &{v&n_
L 2 &v&2_+2&n_

L 2

�C(_) \E(v0)
& +

n_�2

&v0&2_+2&n_
L 2

where C(_) is a constant depending on _.
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For +<0, the bounds can still be obtained in the L2-subcritical case
(_<2�n) and in the L2-critical case (_=2�n) provided &v0 &L 2 is small
enough. Indeed, using Lemma 2.5,

E(v0)=
&
2 | |{v| 2+

+
2_+2 | |v| 2_+2

�
&
2 | |{v| 2+C(_) + \| |{v| 2+

n_�2

&v&2_+2&n_
L 2 . (3.6)

If n_=2 and &v0&L 2 is small enough, say,

&
2

+C(_) + &v0&2_+2&n_
L2 >0.

Then it follows from (3.6) that

| |{v| 2�\&
2

+C(_) + &v0&2_+2&n_
L 2 +

&1

E(v0).

If n_<2, we use the following simple lemma

Lemma 3.7. Let P, Q and ;<2 are all positive numbers. If y�0 satisfies

y2&Py ;�Q.

Then y is bounded by

y�max[(2P)1�(2&;), - 2Q].

Applying Lemma 3.7 to (3.6)

| |{v| 2�max[(C(_) &&1(&+) &v0&2_+2&n_
L 2 )2�(2&n_), 4&&1E(v0)].

The proof of this proposition is concluded if we denote by F(v0) and
G(v0) the bounds for � |{v| 2 and � |v| 2_+2 in either the defocusing case or
the focusing case. K

Proof of Lemma 3.7. The proof is easy. Suppose not. Then

y>(2P)1�(2&;), y>- 2Q.
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But y>(2P)1�(2&;) implies Py ;&2<1�2 and thus

y2�Py;+Q�Py ;&2y2+Q< 1
2 y2+Q

which contradicts y>- 2Q. K

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let u satisfy the CGL equation 1.1 and v satisfy
the NLS equation 1.2. Then the difference w=u&v satisfies

�tw=(a+i&) 2w+a 2v&(b+i+)( f (u)& f (v))&bf (v) (3.7)

where f (u)=|u| 2_ u.
We take a nonnegative, smooth cutoff function ,, identically equal to 1

for |x|�1 and to 0 for |x|�2. We multiply the equation (3.7) by 2w� ,2
R

where ,R(x)=,(x�R) and R>0. Integrating in space we obtain:

�t | ,2
R |w| 2=2Re | ,2

R �t ww�

=2Re((a+i&)(,2
R 2w, w))+2aRe(,2

R 2v, w)

&2Re((b+i+)(,2
R( f (u)& f (v)), w))&2bRe(,2

R f (v), w)

(3.8)

where (F, G)=�Rn FG� , G� is the complex conjugate of G and Re denotes the
real part.

For simplicity of notation, we denote by I, II, III, IV the four terms on
the RHS of (3.8) and now estimate them separately.

I=&4Re((a+i&)(,R {w, w {,R)&2Re((a+i&)(,2
R {w, {w))

and therefore

|I|�a &,R{w&2
L 2+4

a2+&2

a
&w {,R &2

L 2&2a &,R {w&2
L2 .

The second term can be estimated similarly

|II|�(a+=) &,R{v&2
L 2+4a2=&1 &w {,R &2

L 2+a &,R {w&2
L 2

where =>0 is small. Adding the estimates for I and II and using &{,R &L �

�R&1 &{,&L � ,

|I|+|II|�(a+=) &,R {v&2
L 2

+\4
a2+&2

a
+4a2=&1+ R&2 &{,&2

L� &w&2
L 2 . (3.9)
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Under the assumption

}1+i
+
b }�

_+1
_

we can show

III=&2Re((b+i+)(,2
R( f (u)& f (v)), w))�0. (3.10)

In fact, noticing f (u)=|u| 2_u and using

f (u)& f (v)=|
1

0
[(_+1)(u&v) |Z| 2_+_(u� &v� ) Z2 |Z| 2_&2] d*

where Z=*u+(1&*)v, we rewrite III as

III=&2Re \(b+i+) |
1

0
d* | ,2

R [(_+1) |w| 2 |Z| 2_+_w� 2Z2 |Z| 2_&2] dx+
�2_b max {0, } 1+i

+
b }&

_+1
_ = |

1

0
| ,2

R |w| 2 |Z| 2=0.

For the term IV, we use the Young inequality AB�(A\�\)+(B*�*) for
A, B�0 and (1�\)+(1�*)=1 to obtain (noticing that f (v)=|v|2_ v)

|IV|=2b |(,2
R f (v), w)|

�
2_+1
_+1

b(2_+1)�(2_+2) | (,2�(2_+1)
R |v| )2_+2

+
1

_+1
b(2_+1)�(2_+2)+1 | |w| 2_+2. (3.11)

Collecting the above estimates (3.9), (3.10), (3.11) and letting R � �
and = � 0, we obtain

�t | |w| 2�a &{v&2
L 2+

2_+1
_+1

b(2_+1)�(2_+2) | |v| 2_+2

+
1

_+1
b(2_+1)�(2_+2)+1 | |w| 2_+2. (3.12)
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Using the estimates in Proposition 3.6 and integrating in t

&w&2
L 2�&u0&v0&2

L 2+aF(v0) t+C1(_) b(2_+1)�(2_+2)(1+b) G(v0)t

+C2(_) b (2_+1)�(2_+2) \b |
t

0
&u(t$)&2_+2

L 2_+2 dt$+ (3.13)

where C1 , C2 are constants depending on _ only. The expected estimate
(3.2) is obtained after applying (2.2) to the last term of (3.13). This
concludes the proof of Theorem 3.1. K

The inviscid limit results for the Navier�Stokes equations ([2, 5, 7]) and
for the quasi-geostrophic equation [17] suggest that the convergence become
faster if the initial data become smoother. The L2 inviscid limit result of
Theorem 3.1 can indeed be improved to the optimal rate O(a)+O(b) if the
initial data for the NLS equation v0 # H 2(Rn). Here we need to caution the
reader that the ``linear'' appearance of a small parameter in a general non-
linear (even linear) equation does not necessarily imply the difference
between solutions is also ``linear''. This is clear if we notice that the L2

convergence rate of the inviscid limit for the linear heat equation with non-
smooth data can be sublinear [5]. In the following we obtain the optimal
rate by modifying the proof of Theorem 3.1.

If v0 # H 2, then the solution v of the NLS equation with data v0 is in
C([0, T ); H2) and satisfies the estimate (2.6) according to Theorem 2.4.
This fact allows us to estimate II and IV differently.

|II|=2a |Re(,2
R2v, w)|�| ,2

R |w| 2+a2 | ,2
R |2v| 2

(3.14)

|IV|=2b | ,2
R | f (v)| |w|�| ,2

R |w| 2+b2 | |v| 4_+2.

Applying Gagliardo�Nirenberg's inequality to � |v| 4_+2

&v&L 4_+2�C(_) &2v&%
L 2 &v&1&%

L 2

where C(_) is a constant depends on _, 0�% is given by

%=
n
2 \

1
2

&
1

4_+2+
and %�1 if we assume _�2�(n&4). The estimates for I, III remain unchanged.
Collecting the estimates and letting R � �, we obtain

�t | |w| 2�2 | |w| 2+a2 | |2v| 2+b2C(_) &2v&n_
L 2 &v0&4_+2&n_

L 2 . (3.15)
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To bound &2v&L 2 , we use (2.6). For t�T,

&2v(t)&2
L2�K2 &v0&2

H 2#A(v0) (3.16)

where K is a bound in terms of T and F(v0). Letting

D(v0)#C(_) A(v0)n_�2 &v0 &4_+2&n_
L 2 (3.17)

and integrating (3.15) in t, we obtain

Theorem 3.8. Assume _>0, _�2�(n&4) for n�5 if +�0 and _�2�n
if +<0. Assume b, + satisfy the condition (3.1). Let u0 # L2(Rn) and v0 # H2(Rn)
(&v0&L2 should also be small if +<0 and _=2�n). Consider the difference

w(x, t)=u(x, t)&v(x, t)

between a solution u of the CGL equation 1.1 with u(x, 0)=u0(x) and a
solution v of the NLS equation 1.2 with v(x, 0)=v0 . Then w obey the
estimate

&u(t)&v(t)&2
L 2�&u0&v0&2

L2 e2t+ 1
2 a2A(v0)(e2t&1)+ 1

2b2D(v0)(e2t&1)

for t<T with any T<�, where A(v0) is the bound for &v&C([0, T]; H 2) in
terms of the initial data v0 (see (3.16)) and D(v0) is given in (3.17).

In particular, for small a and b and &u0&v0&L 2=O(a)+O(b),

&u&v&L 2=O(a)+O(b).

4. L2_+2 INVISCID LIMIT

As stated in Theorem 2.1 and Theorem 2.3, the solution u of the CGL
equation with u0 # L2(Rn) and v of the NLS equation with v0 # H1(Rn)
are both in L2_+2

loc ([0, �); L2_+2). It seems reasonable to consider the
difference w=u&v in L2_+2(Rn) and we do have the following inviscid
limit result.

Theorem 4.1. Assume that _�2�(n&4) ( for n�5) if +�0 and _�2�n
if +<0, and

(2_+1)(2_+2)�
2n

n&4
, for n�5. (4.1)
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Assume in addition that a, & and b, + satisfy

|1+i&�a|<
_+1&$

_
, |1+i+�b|�

_+1
_

(4.2)

where $ # (0, 1) is an arbitrary parameter. Let u0 # L2(Rn) & L2_+2(Rn) and
v0 # H2(Rn) (&v0 &L 2 is sufficiently small if +<0 and n_=2). Then the
difference

w=u&v

between a solution u to the CGL equation 1.1 with u(0)=u0 and v to the
NLS equation 1.2 with v(0)=v0 obeys the L2_+2 estimate

&w(t)&2_+2
L 2_+2�&u0&v0 &2_+2

L2_+2 ec(_) t+c1 (_) b2_+2H(v0)(ec(_)t&1)

+c2(_)(a$&1)_+1 K(v0)(ec(_) t&1) (4.3)

for any T<� and t�T, where c, c1 , c2 are constants depending only on
_, H and K are bounds in terms of the initial data v0 but independent of a
and b (see (4.10) and (4.11) for their definitions).

In particular, (4.3) indicates that the L2_+2 converge rate is of order
O(- a)+O(b) if $ is near 1.

Remark 4.2. Part of the assumptions imposed on _ is for the global
existence of solutions v to the NLS equation and the control of &{v&L 2 .
The condition (4.1) arises from applying the Gagliardo�Nirenberg inequality
and can be eliminated by more regularity assumption on v0. The assumption
(4.2) is necessary in obtaining a ``closed'' equation for &w&L 2_+2 . Otherwise,
only the ``ladder'' structure can be developed.

Proof of Theorem 4.1. The difference w=u&v satisfies the equation

�tw=(a+i&) 2w+a 2v&(b+i+)( f (u)& f (v))&bf (v)

where f (u)=|u| 2_ u. Let ,R(x) be the cutoff function as before and we find

1
2(_+1)

�t | ,2
R |w| 2_+2=Re(a+i&) | ,2

R |w| 2_ 2ww� +aRe | ,2
R |w| 2_ (2v)w�

&Re(b+i+) | ,2
R |w| 2_ ( f (u)&f (v)) w�

&bRe | ,2
R |w| 2_ f (v)w� .
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For simplicity of notation, the four terms on the RHS are written as I, II,
III and IV. Integrating by parts,

I=&Re(a+i&) | ,2
R [(_+1) |w| 2_ |{w| 2+_ |w| 2_&2 (w� {w)2]

&Re(a+i&) | ,R |w| 2_ w� {w {,R.

Choose =>0 such that

|1+i&�a|�
_+1&=&$

_

and divide I into I1 and I2 with

I1=&Re(a+i&) \| ,2
R[(_+1&=&$) |w| 2_ |{w| 2+_ |w| 2_&2 (w� {w)2]+ .

It is easy to check that

|I1 |�_a max {0, |a+i&|&
_+1&$&=

_ = | ,2
R |w| 2_ |{w| 2=0

I2=&a($+=) | ,2
R |w| 2_ |{w| 2&Re(a+i&) | ,R |w| 2_ w� {w {,R .

Applying Young's inequality to the second term in I2 ,

|I2 |�&a$ | ,2
R |w| 2_ |{w| 2+

|a+i&| 2

4a= | |w| 2_+2 |{,R |2.

Integration by parts in II gives

II=&aRe | ,2
R[(_+1) |w| 2_ {v {w� +_ |w| 2_&2 w� 2 {v {w]

&2aRe | ,R |w| 2_ {,R {vw� .

Applying Young's inequality,

|II|�C1(_) | ,2
R |w|2_+2+C2(_)(a$&1)_+1 | |{v| 2_+2+a$ | ,2

R |w| 2_ |{w| 2

+a | |{,R | |w| 2_+2+a | |{,R | |{v|2_+2.
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Noting &{,R &L��R&1 &{,&L �

|I+II|�C1(_) | ,2
R |w|2_+2+(C2(_)(a$&1)_+1+aR&1 &{,&L �) | |{v|2_+2

+\ |a+i&| 2

4a=
R&2 &{,&2

L�+aR&1 &{,&L�+ | |w| 2_+2. (4.4)

The term III can be dealt with similarly as in the proof of Theorem 3.1
and the conclusion is

III�0, if |1+i+�b|�
_+1

_
(4.5)

Now we turn to term IV.

IV=&bRe \| ,2
R |w| 2_ |v| 2_ vw� +

Using the Young inequality,

|IV|�
2_+1
2_+2 | |w| 2_+2+

1
2_+2

b2_+2 | |v| (2_+1)(2_+2) (4.6)

Applying the Gagliardo�Nirenberg inequality

| |v| (2_+1)(2_+2)�C3(_)(&2v&%
L 2 &v&1&%

L 2 ) (2_+1)(2_+2) (4.7)

| |{v| 2_+2�C4(_)(&2v&%1
L 2 &v&1&%1

L 2 )(2_+2) (4.8)

where C3 , C4 are constants depending only on _ and %, %1�0 are given by

%=
n
2 \

1
2

&
1

(2_+1)(2_+2)+ , %1=
n
2 \

1
2

+
1
n

&
1

2_+2+
By the assumptions on _, %, %1�1. Using (3.16) of Section 3,

| |v| (2_+1)(2_+2)�H(v0), | |{v| 2_+2�K(v0) (4.9)

427COMPLEX GINZBURG�LANDAU EQUATION



File: DISTIL 334716 . By:DS . Date:19:01:98 . Time:07:14 LOP8M. V8.B. Page 01:01
Codes: 2693 Signs: 1422 . Length: 45 pic 0 pts, 190 mm

with H(v0), K(v0) given by

H(v0)#C3(_) A(v0)%(2_+1)(_+1) &v0& (1&%)(2_+1)(2_+2)
L2 (4.10)

K(v0)#C4(_) A(v0)%1 (2_+2) &v0 & (1&%1 )(2_+2)
L2 . (4.11)

Collecting the estimates (4.4)�(4.11), integrating in t, and letting R � �
and then = � 0, we obtain

| |w| 2_+2�eC(_) t | |u0&v0 | 2_+2+C5(_) b2_+2H(v0)(eC(_)t&1)

+C6(_)(a$&1)_+1 K(v0)(eC(_) t&1)

where C, C5 , C6 are constants depending only on _. This concludes the
proof of Theorem 4.1. K

5. H1 INVISCID LIMIT

Motivated by the inviscid limit results concerning the derivatives of
solutions to the Navier�Stokes equations [6], we consider in this section
the H1 inviscid limit of the CGL equation.

We first state the main result.

Theorem 5.1. Let n_�2. Assume u0 # H 1(Rn) (&u0&L 2 is small if n_=2)
and v0 # H2(Rn) (&v0&L2 is small if +<0 and n_=2). Consider the difference

w(x, t)=u(x, t)&v(x, t)

between a solution u of the CGL equation 1.1 with u(0)=u0 and v of the
NLS equation 1.2 with v(0)=v0 . Then w obeys for any T<� and t<T

&{w(t)&2
L2�&{u0&{v0&2

L 2+2aA(v0) t+4a&1(b2++2) D(v0) t

+2a&1(b2++2) L(v0 , a, b, t) (5.1)

where A(v0), D(v0) given previously in (3.16), (3.17) are bounds in terms of
v0 but independent of a, b, and L(v0 , a, b, t) depends on v0 , a, b, t (defined in
(5.10), (5.11) below) and is of order a(&n_)�2 if b2++2 is of order a2 or higher
for small a.

In particular, (5.1) implies that if u0=v0 and b2++2=O(a2) or higher
order, then we have the inviscid limit result

&{(u&v)(t)&2
L 2=O(a)+O((b2++2) a&1&(n_�2)).
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Before we prove the theorem, we obtain an estimate for �t
0 &2u(t$)&2

L 2 dt$,
which will be used in the proof of the theorem. The point here is that the
bound for �t

0 &2u(t$)&2
L 2 dt$ depends explicitly on a and b.

Proposition 5.2. Assume _�2�(n&4) for n�5. Let u be a solution of
the CGL equation with u0 # H1(Rn). Then u obey the estimate

&{u(t)&2
L 2+a |

t

0
&2u(t$)&2

L 2 dt$

&\C(_)
b2++2

a
&u0 &4_+2&n_

L 2 + |
t

0
&2u(t$)&n_

L 2 dt$�&{u0 &2
L 2 (5.2)

where C(_) is a constant. Furthermore, if n_=2 and &u0&L2 is small enough,
say, &u0 &4_+2&n_

L 2 <C &1(_) a2(b2++2)&1 then

|
t

0
&2u(t$)&2

L2 dt$�(a&C(_) a&1(b2++2) &u0&4_+2&n_
L2 )&1 &{u0 &2

L 2 (5.3)

and if n_<2, then

|
t

0
&2u(t$)&2

L 2 dt$

�max[2a&1 &{u0&2
L 2 , [C(_) a&2(b2++2) &u0&2&(n&4)_

L2 ]2�(2&n_) t].

(5.4)

Proof of Proposition 5.1. Let ,2
R(x)(R>0) be the cutoff function as

defined in the proof of Theorem 3.1. It is easy to see that

�t | ,2
R |{u| 2=2Re | ,2

R(�t {u) {u� =I+II

where I and II are given by

I=2Re(a+i&) | ,2
R 2({u) {u�

II=&2Re(b+i+) | ,2
R {( |u| 2_ u) {u� .
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Integrating by parts,

I=&2a | ,2
R |2u| 2&4Re(a+i&) | (,R 2u)({,R {u� )

II=2Re(b+i+) | ,2
R |u|2_ u 2u� +4Re(b+i+) | ,R |u| 2_ u {,R {u� .

Using Young's inequality to split the terms in I and II as in the proof of
Theorem 3.1, adding them and letting R � �,

�t | |{u| 2�&a | |2u| 2+
8(b2++2)

a | |u| 4_+2.

Applying Gagliardo�Nirenberg's inequality to � |u| 4_+2

&u&L 4_+2�C(_) &2u&%
L 2 &u&1&%

L 2

where C(_) is a constant depends on _ and 0�% is given by

%=
n
2 \

1
2

&
1

4_+2+
and %�1 because of the assumption _�2�(n&4). Therefore,

�t | |{u| 2+a &2u&2
L 2&

C(_)(b2++2)
a

&2u&n_
L 2 &u0&4_+2&n_

L 2 �0.

We obtain (5.2) after integrating in t. (5.3) follows easily from (5.2).
(5.4) is obtained from (5.2) and using Lemma 3.7. K

We now prove Theorem 5.

Proof of Theorem 5.1. The difference w=u&v satisfies the equation

�tw=(a+i&) 2w+a 2v&(b+i+)( f (u)& f (v))&bf (v)

where f (u)=|u| 2_ u. Let ,R(x) be the cutoff function as before and we find

�t | ,2
R |{w| 2=2Re(a+i&) | ,2

R2({w) {w� +2aRe | ,2
R2({v) {w�

&2Re(b+i+) | ,2
R {( f (u)& f (v)) {w� &2bRe | ,2

R {f (v) {w� .
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We mark the four terms on the RHS as I, II, III, IV and estimate them
separately.

I=&2a | ,2
R |2w| 2&4Re(a+i&) | ,R 2w({,R {w� )

II=&2aRe | ,2
R 2v 2w� &4aRe | ,R 2v({,R {w� )

Using Young's inequality to split the terms in I and II in the same way as
in the proof of Theorem 3.1, we obtain

|I|+|II|�&a | ,2
R |2w| 2+(2a+=) &,R 2v&2

L 2

+8 \a2+&2

a
+a2=&1+ R&2 &{,&2

L � &{w&2
L 2 (5.5)

where =>0 is small. Integrating by parts,

III=2Re(b+i+) | ,2
R( f (u)& f (v)) 2w�

+4Re(b+i+) | ,R( f (u)& f (v)) {,R {w�

IV=2bRe | ,2
R f (v) 2w� +4bRe | ,R f (v) {,R {w� .

Breaking the terms in III and IV we find that

|III+IV|�a | ,2
R |2w|2+2a&1(b2++2) | ,2

R | f (u)| 2

+2a&1(2b2++2) | ,2
R | f (v)| 2

+8 |b+i+| R&1 &{,&L� \| ( | f (u)| 2+| f (v)| 2)+
1�2

\| |{w| 2+
1�2

.

(5.6)

Collecting the estimates (5.5), (5.6), integrating in t and letting R � �
and = � 0,
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| |{(u(t)&v(t))| 2�| |{(u0&v0)| 2+2a |
t

0
&2v(t$)&2

L 2 dt$

+4a&1(b2++2) |
t

0
&v(t$)&4_+2

L 4_+2 dt$

+2a&1(b2++2) |
t

0
&u(t$)&4_+2

L 4_+2 dt$. (5.7)

As shown in the proof of Theorem 3.8,

&2v&2
L 2�A(v0), &v&4_+2

L 4_+2�D(v0) (5.8)

with A(v0) and D(v0) given in (3.16), (3.17). The estimate for � |u| 4_+2 is
already given in the proof of Proposition 5.2:

| |u| 4_+2�C(_) &2u&n_
L 2 &u&2&(n&4)_

L 2

where C depends on _ only. Therefore,

|
t

0
&u(t$)&4_+2

L 4_+2 dt$�C(_) &u0&2&(n&4)_
L2 \|

t

0
&2u(t$)&2

L 2 dt$+
n_�2

t1&(n_�2).

(5.9)

It then follows from Proposition 5.2 that if n_=2 and &u0&L 2 is small

|
t

0
&u(t$)&4_+2

L 4_+2 dt$

=C(_) &u0&2&(n&4)_
L2 &{u0&2

L2 (a&C(_) a&1(b2++2) &u0&4_+2&n_
L2 )&1

(5.10)

and if n_<2

|
t

0
&u(t$)&4_+2

L 4_+2 dt$�max[C(_) a&(n_)�2 &{u0&n_
L 2 &u0 &2&(n&4)_

L 2 t1&(n_�2),

C(_)(a&2(b2++2))n_�(2&n_) &u0&2+(8_�(2&n_))
L 2 t].

(5.11)

The bounds in (5.10) and (5.11) will be denoted by the notation L(a, b, v0 , t).
Clearly if b2++2=O(a2) for small a, L(a, b, v0 , t) is of order a&n_�2.

The proof of this theorem is completed after inserting (5.8), (5.9) with
(5.10) and (5.11) into (5.7). K
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