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Abstract. This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissi-
pation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations.
These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are glob-
ally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical
circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or
vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global
regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data,
the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We
are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained
for a partially dissipated Boussinesq system.
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1. Introduction

This paper studies the global regularity of several two-dimensional (2D) models with partial dissipation.
The first is the surface quasi-geostrophic (SQG) equation with two different partial dissipation terms,
which can be written as {

∂tθ + u∂xθ + v∂yθ − μ∂xxθ = 0, (x, y) ∈ R
2, t > 0,

θ(x, 0) = θ0(x),
(1.1)

and {
∂tθ + u∂xθ + v∂yθ − μ∂yyθ = 0, (x, y) ∈ R

2, t > 0,

θ(x, 0) = θ0(x),
(1.2)

where θ is a scalar real-valued function, μ > 0 is a constant, and the velocity �u ≡ (u, v) is determined by
θ through a stream function ψ, namely

�u = (u, v) = (−∂yψ, ∂xψ),
√−Δψ = θ.

The above relations can be combined to

�u = (u, v) =
(

− ∂y√−Δ
θ,

∂x√−Δ
θ

)
= (−R2θ, R1θ),

where R1,R2 are the standard 2D Riesz transforms. Clearly, the velocity �u = (u, v) is divergence free,
namely ∂xu + ∂yv = 0. The SQG equation is an important model in geophysical fluid dynamics. In
particular, it is the special case of the general quasi-geostrophic approximations for atmospheric and
oceanic fluid flow with small Rossby and Ekman numbers, see [23,54] and the references cited there.
Mathematically, as pointed out by Constantin, Majda and Tabak [23], the inviscid SQG equation ((1.1)
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with μ = 0) shares many parallel properties with those of the 3D Euler equations such as the vortex-
stretching mechanism and thus serves as a lower-dimensional model of the 3D Euler equations.

The inviscid SQG equation is among the simplest scalar partial differential equations for which the
global well-posedness issue remains open. The global regularity problem on the SQG equation has recently
been studied extensively and important progress has been made. Besides establishing the local well-
posedness and several regularity criteria, Constantin, Majda and Tabak carefully examined the behavior
of several special classes of solutions [23]. The perplexing behavior of solutions to the inviscid SQG
equations was further investigated both theoretically and numerically and these studies have contributed
substantially to our understanding of the global regularity problem (see, e.g., [22,24,29–32,36,52]).

The dissipative SQG equation with fractional Laplacian, namely (1.1) with (−Δ)
α
2 instead of −μ∂xxθ,

has recently attracted enormous attention and significant progress has been made on the global well-
posedness issue. The global regularity problem for the SQG equation with either subcritical (α > 1) or
critical (α = 1) dissipation has been successfully resolved (see, e.g., [7,20,25,26,43,45,56]). Although the
global regularity issue for the supercritical case α < 1 remains outstandingly open, there are important
recent developments (see, e.g., [11–13,15,17,27,28,33,34,37,42,50,51,57,60,63,64]).

We explore how partial dissipation would affect the regularity of solutions to the SQG equation. To
the best of our knowledge, such systems of equations as in (1.1) and (1.2) have never been studied before.
We are able to establosh the global regularity for both equations.

Theorem 1.1. For any θ0 ∈ H2(R2), (1.1) admits a unique global solution θ such that for any given T > 0,

θ ∈ L∞([0, T ];H2(R2)), ∂xθ ∈ L2([0, T ];H2(R2)).

Theorem 1.2. For any θ0 ∈ H2(R2), the system (1.2) admits a unique global solution θ such that for any
given T > 0,

θ ∈ L∞([0, T ];H2(R2)), ∂yθ ∈ L2([0, T ];H2(R2)).

Remark 1.3. The proof of Theorem 1.1 is given in Sect. 2. Since the proof of Theorem 1.2 is largely
parallel to that of Theorem 1.1, we shall omit the details.

We also investigate the global well-posedness issue on the following 2D Euler equations with partial
dissipation. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + u∂xu + v∂yu + ∂xp − ∂xxu = 0,

∂tv + u∂xv + v∂yv + ∂yp = 0,

∂xu + ∂yv = 0,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y),

(1.3)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu + u∂xu + v∂yu + ∂xp = 0,

∂tv + u∂xv + v∂yv + ∂yp − ∂yyv = 0,

∂xu + ∂yv = 0,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y).

(1.4)

The Euler equations model the motion of ideal incompressible fluids and the global well-posedness
problem on the 3D Euler equations is one of the most challenging problems in mathematical fluid dynamics
(see [5,18,19,49] and references therein for a review of the subject). The 2D Euler equation has been
extensively studied and the global regularity is known since the work of Wolibner [61] and Hölder [39]
(see also [4,16,44,49]). The key observation is that the corresponding vorticity is simply transported by
the velocity field due to the absence of the vortex stretching term in the 2D case. Consequently one easily
obtains the boundedness of the vorticity if it is initially so. This is the key component in the proof of the
global well-posedness for the 2D Euler equation. It appears that an alternative proof without resorting
to the boundedness of the vorticity is currently lacking.

On the first look, it seems that we should be able to obtain the global regularity of (1.3) or (1.4)
easily. However, when partial dissipation is added to the 2D Euler equation, the vorticity equation is
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more complex and it is then not easy to deduce the boundness of the vorticity. Then one has to rely on
energy estimates to establish global bounds in consecutively more and more regular functional settings.
We are able to prove the global regularity for (1.3) and (1.4).

Theorem 1.4. For any (u0, v0) ∈ H2(R2) × H2(R2), (1.3) admits a unique global solution (u, v) such
that for any given T > 0

(u, v) ∈ L∞([0, T ];H2(R2)) × L∞([0, T ];H2(R2)),
∂xu ∈ L2([0, T ];H2(R2)).

Theorem 1.5. For (u0, v0) ∈ H2(R2)×H2(R2), (1.4) admits a unique global solution (u, v) such that for
any given T > 0

(u, v) ∈ L∞([0, T ];H2(R2)) × L∞([0, T ];H2(R2)),
∂yv ∈ L2([0, T ];H2(R2)).

The proof of Theorem 1.4 is given in Sect. 3. We now explain that (1.4) can be converted into (1.3)
and thus the proof of Theorem 1.5 follows. If we set{

x̃ = y, ỹ = x,

ũ(x̃, ỹ, t) = v(x, y, t), ṽ(x̃, ỹ, t) = u(x, y, t), P̃ (x̃, ỹ, t) = P (x, y, t),

then we can check that

u∂xu + v∂yu = ṽ∂ỹ ṽ + ũ∂x̃ũ, u∂xv + v∂yv = ṽ∂ỹũ + ũ∂x̃ũ.

Therefore, (1.4) is equivalent to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tṽ + ũ∂x̃ṽ + ṽ∂ỹ ṽ + ∂ỹP̃ = 0,

∂tũ + ũ∂x̃ũ + ṽ∂ỹũ + ∂x̃P̃ − ∂x̃x̃ũ = 0,

∂x̃ũ + ∂ỹ ṽ = 0,

ũ(x̃, ỹ, 0) = v0(x, y), ṽ(x̃, ỹ, 0) = u0(x, y).

(1.5)

It appears difficult to establish the global regularity of two other systems of the 2D Euler equations
with partial dissipation, ⎧⎪⎨

⎪⎩
∂tu + u∂xu + v∂yu + ∂xp − ∂yyu = 0,

∂tv + u∂xv + v∂yv + ∂yp = 0,

∂xu + ∂yv = 0,

(1.6)

and ⎧⎪⎨
⎪⎩

∂tu + u∂xu + v∂yu + ∂xp = 0,

∂tv + u∂xv + v∂yv + ∂yp − ∂xxv = 0,

∂xu + ∂yv = 0.

(1.7)

It is easy to establish global bound for the vorticity ω in L2, but our attempts for any global bound
for ω in Lq with q > 2 have failed. Of course, if one is willing to add more partial dissipation, then the
global regularity can be obtained. For example, the system⎧⎪⎨

⎪⎩
∂tu + u∂xu + v∂yu + ∂xp − ∂yyu = 0,

∂tv + u∂xv + v∂yv + ∂yp − ∂xxv = 0,

∂xu + ∂yv = 0.

(1.8)

does have a global classical solution.
Our last result of this paper concerns the global regularity for a 2D Boussinesq system of equations

with partial dissipation. The Boussinesq equations model many geophysical flows such as atmospheric
fronts and ocean circulations (see, e.g., [48,54]). In addition, they are at the center of turbulence theories
concerning turbulent thermal convection (see, e.g., [21,38]). Mathematically the 2D Boussinesq equations
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serve as a lower-dimensional model of the 3D hydrodynamics equations. In fact, the 2D Boussinesq
equations retain some key features of the 3D Euler and Navier-Stokes equations such as the vortex
stretching mechanism and the inviscid 2D Boussinesq equations can be identified as the Euler equations
for the 3D axisymmetric swirling flows [49]. Extensive recent efforts have been devoted to obtain the
global regularity for various partial dissipation cases involving the 2D Boussinesq equations (see, e.g.,
([1–3,10,35,46]).

Our attention here focuses on the following 2D Boussinesq equations with horizontal dissipation in
the vertical velocity equation and vertical dissipation in the temperature equation⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu + u∂xu + v∂yu + ∂xp = 0,

∂tv + u∂xv + v∂yv + ∂yp − ∂xxv = θ,

∂tθ + u∂xθ + v∂yθ − ∂yyθ = 0,

∂xu + ∂yv = 0,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), θ(x, y, 0) = θ0(x, y),

(1.9)

we establish several global bounds, which may be useful in the eventual resolution of whether or not (1.9)
is globally well-posed.

Theorem 1.6. Assume that (�u0, θ0) ∈ Hσ(R2) with σ > 2 and ∇ · �u0 = 0. Let (�u, θ) be the corresponding
solution of (1.9). Then, (�u, θ) admits the following global bounds, for any T > 0 and t ≤ T ,

‖�u(t)‖2H1 +
∫ t

0

‖∂x∇v(τ)‖2L2 dτ ≤ C, (1.10)

where C = C(T, �u0, θ0);

‖θ(t)‖2H1 +
∫ t

0

‖∂y∇θ(τ)‖2L2 dτ ≤ C, (1.11)

where C = C(T, �u0, θ0);∥∥|∂y|1+sθ(t)
∥∥2

L2 +
∫ t

0

∥∥|∂y|2+sθ(τ)
∥∥2

L2 dτ ≤ C,

∫ t

0

‖∂yθ(τ)‖2L∞ dτ ≤ C, (1.12)

where 0 < s < 1
2 and C = C(T, �u0, θ0);

‖∂xθ(t)‖Lq ≤ C, 2 ≤ q < ∞ (1.13)

where C = C(T, q, �u0, θ0).

The rest of this paper is organized as follows. Section 2 proves Theorem 1.1 while Sects. 3 and 4
present the proof of Theorems 1.4 and 1.6, respectively. Throughout the rest of the paper, C denotes
various positive and finite constants whose exact values are unimportant and may vary from line to line.

2. The Proof of Theorem 1.1

The existence and uniqueness of local smooth solutions can be established without difficulty. Thus, in
order to complete the proof of Theorem 1.1, it is sufficient to establish a priori estimates that hold for
any fixed T > 0.

We first recall the following logarithmic Sobolev inequality which will play an important role in the
proof of Theorem 1.1.

Lemma 2.1. The following logarithmic Sobolev embedding inequality holds for all vector fields f with
f ∈ Hs(R2) and s > 1

‖f‖L∞(R2) ≤ C
(
1 + ‖f‖L2(R2) + ‖f‖BMO(R2)

√
log(e + ‖f‖Ḣs(R2))

)
, (2.1)
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where BMO denotes the homogenous space of bounded mean oscillations associated with the norm (see
[59] for more details)

‖f‖BMO � sup
x∈R2, r>0

1
|Br(x)|

∫
Br(x)

∣∣∣∣∣f(y) − 1
|Br(y)|

∫
Br(y)

f(z) dz

∣∣∣∣∣ dy.

Here Br(x) denotes the disk of radius r and center x in R
2.

Remark 2.2. It is worthy to emphasize that the power 1
2 of log(e+ ‖f‖Ḣs(R2)) plays a key role in proving

our theorem.

Proof of Lemma 2.1. Although the approach in part available in the literature (see, e.g. [53, Corollary
2.4]), yet for the convenience of the reader, we give detailed proof via the Littlewood-Paley decomposition.
By the Littlewood-Paley decomposition, we can rewrite

f =
∞∑

j=−∞
Δ̇jf,

where Δ̇j denotes the homogeneous Fourier localization operator. By Bernstein inequality (see, e.g. [4,16]),

‖f‖L∞ ≤
−1∑

j=−∞
‖Δ̇jf‖L∞ +

∥∥∥∥∥∥
N−1∑
j=0

Δ̇jf

∥∥∥∥∥∥
L∞

+
∞∑

j=N

‖Δ̇jf‖L∞

≤ C

⎛
⎝ −1∑

j=−∞
2j‖f‖L2 + N

1
2

∥∥∥∥∥∥
{ N−1∑

j=0

(Δ̇jf)2
} 1

2

∥∥∥∥∥∥
L∞

+
∞∑

j=N

2j(1−s)2js‖Δ̇jf‖L2

⎞
⎠

≤ C(‖f‖L2 + N
1
2 ‖f‖BMO + 2N(1−s)‖f‖Ḣs), (2.2)

where we have used the following estimate from Lemma 3.2 of [40]

∥∥∥{ N−1∑
j=0

(Δ̇jf)2
} 1

2
∥∥∥

L∞
≤ C‖f‖BMO.

Now taking an integer N such that 2N(1−s)‖f‖Ḣs ≈ 1, we thus get

N =
[ 1
s − 1

log(e + ‖f‖Ḣs)
]

+ 1.

Substituting this fixed N into (2.2), we obtain the desired inequality (2.1). Therefore, we complete the
proof of Lemma 2.1. �

The following anisotropic Sobolev inequalities (see [9] and [8]) will be frequently used later

Lemma 2.3. The following anisotropic Sobolev inequalities hold,∫
R2

|fgh| dxdy ≤ C‖f‖L2‖g‖ 1
2
L2‖∂xg‖ 1

2
L2‖h‖ 1

2
L2‖∂yh‖ 1

2
L2 , (2.3)∫

R2
|fgh| dxdy ≤ C‖f‖L2‖g‖ 1

2
L2‖∂xg‖ 1

2
L2‖h‖

2γ−1
2γ

L2

∥∥|∂y|γh
∥∥ 1

2γ

L2 ,
1
2

< γ ≤ 1. (2.4)

Now let us proceed to prove Theorem 1.1.

Proof of Theorem 1.1. Multiplying (1.1) by θ, using the divergence-free condition and integrating with
respect to the space variable, we have

1
2

d

dt
‖θ(t)‖2L2 + ‖∂xθ‖2L2 = 0.
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Integrating with respect to time yields

‖θ(t)‖2L2 +
∫ T

0

‖∂xθ(τ)‖2L2 dτ ≤ ‖θ0‖2L2 < ∞. (2.5)

Multiplying (1.1) by |θ|p−2θ and using the divergence-free condition, we have

‖θ(t)‖p
Lp + p(p − 1)

∫ t

0

‖∂xθ|θ| p−2
2 (τ)‖2L2 dτ = ‖θ0‖p

Lp .

As a consequence, we obtain that, for any t ≥ 0,

‖θ(t)‖Lp ≤ ‖θ0‖Lp , ∀ p ∈ [2,∞]. (2.6)

Taking the inner product of (1.1) with Δθ, we derive

1
2

d

dt
‖∇θ(t)‖2L2 + ‖∂x∇θ‖2L2 = −

∫
R2

∇(u∂xθ + v∂yθ) · ∇θ dxdy. (2.7)

By the divergence-free condition ∂xu + ∂yv = 0, we rewrite the righthand side of (2.7) as

−
∫
R2

∂xu∂xθ∂xθ dxdy −
∫
R2

∂xv∂yθ∂xθ dxdy −
∫
R2

∂yu∂xθ∂yθ dxdy −
∫
R2

∂yv∂yθ∂yθ dxdy. (2.8)

Now we start to estimate each term of (2.8). To estimate the first term, we integrate by parts and use
Young inequality to obtain∫

R2
∂xu∂xθ∂xθ dxdy = −

∫
R2

θ(∂xxu∂xθ + ∂xu∂xxθ) dxdy

≤ C‖θ‖L∞(‖∂xxu‖L2‖∂xθ‖L2 + ‖∂xu‖L2‖∂xxθ‖L2)
≤ C‖θ‖L∞(‖∂xxR2θ‖L2‖∂xθ‖L2 + ‖∂xR2θ‖L2‖∂xxθ‖L2)
≤ C‖θ‖L∞(‖∂xxθ‖L2‖∂xθ‖L2 + ‖∂xθ‖L2‖∂xxθ‖L2)
≤ ε‖∂x∇θ‖2L2 + Cε‖θ‖2L∞‖∇θ‖2L2 , (2.9)

where we have used the Boundedness of Riesz transform on Lq (1 < q < ∞) spaces.
Applying similar arguments as above, we obtain the following bounds∫

R2
∂xv∂yθ∂xθ dxdy = −

∫
R2

θ(∂xxv∂yθ + ∂xv∂xyθ) dxdy

≤ C‖θ‖L∞(‖∂xxv‖L2‖∂yθ‖L2 + ‖∂xv‖L2‖∂xyθ‖L2)
≤ C‖θ‖L∞(‖∂xxR1θ‖L2‖∂yθ‖L2 + ‖∂xR1θ‖L2‖∂xyθ‖L2)
≤ C‖θ‖L∞(‖∂xxθ‖L2‖∂yθ‖L2 + ‖∂xθ‖L2‖∂xyθ‖L2)

≤ ε‖∂x∇θ‖2L2 + Cε‖θ‖2L∞‖∇θ‖2L2 , (2.10)∫
R2

∂yu∂xθ∂yθ dxdy = −
∫
R2

θ(∂xyu∂yθ + ∂yu∂xyθ) dxdy

≤ C‖θ‖L∞(‖∂xyu‖L2‖∂yθ‖L2 + ‖∂yu‖L2‖∂xyθ‖L2)
≤ C‖θ‖L∞(‖∂xyR2θ‖L2‖∂yθ‖L2 + ‖∂yR2θ‖L2‖∂xyθ‖L2)
≤ C‖θ‖L∞(‖∂xyθ‖L2‖∂yθ‖L2 + ‖∂yθ‖L2‖∂xyθ‖L2)

≤ ε‖∂x∇θ‖2L2 + Cε‖θ‖2L∞‖∇θ‖2L2 . (2.11)
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Unfortunately, it seems difficult to estimate the last term
∫
R2 ∂yv∂yθ∂yθ dxdy. To handle this term,

we first obtain

−
∫
R2

∂yv∂yθ∂yθ dxdy =
∫
R2

∂xu∂yθ∂yθ dxdy

= −2
∫
R2

u∂yθ∂xyθ dxdy

≤ C‖u‖L∞‖∂yθ‖L2‖∂xyθ‖L2

≤ ε‖∂x∇θ‖2L2 + Cε‖u‖2L∞‖∇θ‖2L2 . (2.12)

In order to close the estimates, we need∫ T

0

‖u(t)‖2L∞ dt ≤ C < ∞.

Due to the unboundedness of the Riesz transforms on L∞, it is not clear if ‖u‖L∞ is finite, even
though ‖θ‖L∞ is bounded. To circumvent this difficulty, we adapt the “weakly nonlinear” energy estimate
approach introduced by Lei and Zhou [47], which enables us to get “almost a priori” bounds for L2 norms
of ∇θ (see (2.15) below).

For any T > 0, we assume the solution is regular for t < T and show that it remains regular at t = T .
For any t ∈ (T0, T ) (here T0 ∈ (0, T ) to be specified later), we denote

M(t) � max
τ∈[T0, t]

‖Δθ(τ)‖2L2 .

Plugging the estimates (2.9)–(2.12) into (2.7), and choosing sufficiently small ε, we conclude that
d

dt
‖∇θ(t)‖2L2 + ‖∂x∇θ‖2L2 ≤ Cε‖θ‖2L∞‖∇θ‖2L2 + Cε‖u‖2L∞‖∇θ‖2L2 . (2.13)

Gronwall inequality tells us that for any 0 ≤ s ≤ t

‖∇θ(t)‖2L2 +
∫ t

s

‖∂x∇θ(τ)‖2L2 dτ ≤ ‖∇θ(s)‖2L2exp
[
C

∫ t

s

(‖θ‖2L∞ + ‖u‖2L∞)(τ) dτ
]
.

Applying the logarithmic Sobolev inequality (2.1), we have, for any T0 ≤ t < T ,

‖∇θ(t)‖2L2 +
∫ t

T0

‖∂x∇θ(τ)‖2L2 dτ

≤ ‖∇θ(T0)‖2L2exp
[
C

∫ t

T0

(
1 + ‖θ‖L∞ + ‖u‖L2 + ‖u‖BMO

√
log(1 + ‖Δu‖L2)

)2

dτ
]

≤ ‖∇θ(T0)‖2L2exp
[
C

∫ t

T0

(
1 + ‖θ‖2L∞ + ‖u‖2L2 + ‖u‖2BMO log(1 + ‖Δu‖L2)

)
dτ

]

≤ ‖∇θ(T0)‖2L2exp
[
C

∫ t

T0

(
1 + ‖θ‖2L∞ + ‖θ‖2L2 + ‖θ‖2L∞ log(1 + ‖Δθ‖L2)

)
dτ

]

≤ ‖∇θ(T0)‖2L2exp
[
C

∫ t

T0

(
‖θ(τ)‖2L∞ log(1 + M(t))

)
dτ

]

≤ ‖∇θ(T0)‖2L2exp
[
C

∫ t

T0

‖θ(τ)‖2L∞ dτ log(1 + M(t))
]
, (2.14)

where we have used the boundedness of Riesz transforms from L∞ to BMO spaces (see, e.g., [58]),
namely

‖Rf‖BMO ≤ C‖f‖L∞ ,

and the simple fact

‖Rf‖L2 ≤ C‖f‖L2 .
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Note the following bound

‖θ(t)‖L∞ ≤ C < ∞, for any t ≥ 0.

Thus we can choose T0 close enough to T such that

C

∫ t

T0

‖θ(τ)‖2L∞ dτ ≤ κ

for sufficiently small κ > 0 to be specified later. Therefore,

‖∇θ(t)‖2L2 +
∫ t

T0

‖∂x∇θ(τ)‖2L2 dτ ≤ C(1 + M(t))κ, for any T0 ≤ t < T. (2.15)

Taking Δ to the first equation of (1.1) and testing by Δθ, we see that
1
2

d

dt
‖Δθ(t)‖2L2 + ‖∂xΔθ‖2L2 = −

∫
R2

Δ{(u∂xθ + v∂yθ)}Δθ dxdy. (2.16)

Taking the divergence free condition into account, we have∫
R2

Δ{(u∂xθ + v∂yθ)}Δθ dxdy =

∫
R2

(Δu∂xθ + Δv∂yθ + 2∂xu∂xxθ + 2∂yu∂xyθ + 2∂xv∂xyθ + 2∂yv∂yyθ)Δθ dxdy

� K1 + K2 + · · · + K6. (2.17)

Similar to the estimate (2.9), we can bound K1 as

K1 =
∫
R2

Δu∂xθΔθ dxdy

= −
∫
R2

θ(∂xΔuΔθ + Δu∂xΔθ) dxdy

≤ C‖θ‖L∞(‖∂xΔR2θ‖L2‖Δθ‖L2 + ‖ΔR2θ‖L2‖∂xΔθ‖L2)
≤ C‖θ‖L∞(‖∂xΔθ‖L2‖Δθ‖L2 + ‖Δθ‖L2‖∂xΔθ‖L2)
≤ ε‖∂xΔθ‖2L2 + Cε‖θ‖2L∞‖Δθ‖2L2 . (2.18)

Note the following fact

‖Λf‖2L2 = ‖Λ̂f(ξ)‖2L2 =
∫
R2

|ξ|2|f̂ |2(ξ) dξ =
∫
R2

|ξ1|2|f̂ |2(ξ) dξ +
∫
R2

|ξ2|2|f̂ |2(ξ) dξ

= ‖∂̂xf(ξ)‖2L2 + ‖∂̂yf(ξ)‖2L2

= ‖∂xf‖2L2 + ‖∂yf‖2L2

= ‖∇f‖2L2 .

The relation between (u, v) and θ allows us to show

‖Δv‖L2 = ‖Δ
∂x

(−Δ)
1
2
θ‖L2 = ‖∂xΛθ‖L2 = ‖∂x∇θ‖L2

and

‖∂yΔv‖L2 = ‖∂xΔu‖L2 ≤ C‖∂xΔθ‖L2 .

The combination of the above facts with the anisotropic Sobolev inequality (2.3) thus leads to

K2 =
∫
R2

Δv∂yθΔθ dxdy

≤ C‖Δθ‖L2‖∂yθ‖ 1
2
L2‖∂xyθ‖ 1

2
L2‖Δv‖ 1

2
L2‖∂yΔv‖ 1

2
L2

≤ C‖Δθ‖L2‖∇θ‖ 1
2
L2‖∂x∇θ‖L2‖∂xΔθ‖ 1

2
L2

≤ ε‖∂xΔθ‖2L2 + Cε‖∇θ‖ 2
3
L2‖∂x∇θ‖ 4

3
L2‖Δθ‖ 4

3
L2 . (2.19)
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We get by integrating by parts and applying the Young inequality

K3 = 2
∫
R2

∂xu∂xxθΔθ dxdy

= −2
∫
R2

u(∂x∂xxθΔθ + ∂xxθ∂xΔθ) dxdy

≤ C‖u‖L∞‖Δθ‖L2‖∂xΔθ‖L2

≤ ε‖∂xΔθ‖2L2 + Cε‖u‖2L∞‖Δθ‖2L2 . (2.20)

We again resort to the anisotropic Sobolev inequality (2.3) to obtain

K4 = 2
∫
R2

∂yu∂xyθΔθ dxdy

≤ C‖Δθ‖L2‖∂yu‖ 1
2
L2‖∂xyu‖ 1

2
L2‖∂xyθ‖ 1

2
L2‖∂xyyθ‖ 1

2
L2

≤ C‖Δθ‖L2‖∇θ‖ 1
2
L2‖∂x∇θ‖L2‖∂xΔθ‖ 1

2
L2

≤ ε‖∂xΔθ‖2L2 + Cε‖∇θ‖ 2
3
L2‖∂x∇θ‖ 4

3
L2‖Δθ‖ 4

3
L2 . (2.21)

Similar to the bound (2.20),

K5 = 2
∫
R2

∂xv∂xyθΔθ dxdy

= −2
∫
R2

v(∂xxyθΔθ + ∂xyθ∂xΔθ) dxdy

≤ C‖v‖L∞‖Δθ‖L2‖∂xΔθ‖L2

≤ ε‖∂xΔθ‖2L2 + Cε‖v‖2L∞‖Δθ‖2L2 . (2.22)

Utilizing the divergence free condition and the Young inequality, the last term can be estimated as

K6 = 2
∫
R2

∂yv∂yyθΔθ dxdy

= −2
∫
R2

∂xu∂yyθΔθ dxdy

= 2
∫
R2

u(∂xyyθΔθ + ∂yyθ∂xΔθ) dxdy

≤ C‖u‖L∞‖∂xΔθ‖L2‖Δθ‖L2

≤ ε‖∂xΔθ‖2L2 + Cε‖u‖2L∞‖Δθ‖2L2 . (2.23)

Inserting the estimates for K1 to K6 in (2.16) and taking ε small enough, we obtain

d

dt
‖Δθ(t)‖2L2 + ‖∂xΔθ‖2L2 ≤ C‖θ‖2L∞‖Δθ‖2L2 + +C‖∇θ‖ 2

3
L2‖∂x∇θ‖ 4

3
L2‖Δθ‖ 4

3
L2

+C‖u‖2L∞‖Δθ‖2L2 + C‖v‖2L∞‖Δθ‖2L2 . (2.24)
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Applying the logarithmic Sobolev inequality (2.1), we have
d

dt
‖Δθ(t)‖2L2 + ‖∂xΔθ‖2L2 ≤ C‖θ‖2L∞‖Δθ‖2L2 + C‖∇θ‖ 2

3
L2‖∂x∇θ‖ 4

3
L2‖Δθ‖ 4

3
L2

+C
(
1 + ‖u‖L2 + ‖u‖BMO

√
log(1 + ‖Δu‖L2)

)2

‖Δθ‖2L2

+C
(
1 + ‖v‖L2 + ‖v‖BMO

√
log(1 + ‖Δv‖L2)

)2

‖Δθ‖2L2

≤ C‖θ‖2L∞‖Δθ‖2L2 + C‖∇θ‖ 2
3
L2‖∂x∇θ‖ 4

3
L2‖Δθ‖ 4

3
L2

+C
(
1 + ‖u‖2L2 + ‖u‖2BMO log(1 + ‖Δu‖L2)

)
‖Δθ‖2L2

+C
(
1 + ‖v‖2L2 + ‖v‖2BMO log(1 + ‖Δv‖L2)

)
‖Δθ‖2L2

≤ C‖θ‖2L∞M(t) + C‖∂x∇θ‖ 4
3
L2(1 + M(t))

2
3+

κ
3

+C
(
1 + ‖θ‖2L2 + ‖θ‖2L∞ log

(
1 + M(t)

))
M(t)

≤ C‖∂x∇θ‖ 4
3
L2(1 + M(t))

2
3+

κ
3 + C

(
1 + ‖θ‖2L2 + C‖θ‖2L∞ log

(
1 + M(t)

))
M(t),

where we also have used

‖Rf‖BMO ≤ C‖f‖L∞ and ‖Rf‖L2 = ‖f‖L2 .

Integrating above inequality over interval (T0, t) and observing that M(t) is a monotonically increasing
function, we thus obtain

M(t) − M(T0) ≤ C

∫ t

T0

(
1 + ‖θ‖2L∞ log(1 + M(s))

)(
1 + M(s)

)
ds

+C

∫ t

T0

(
1 + M(s)

) 2+κ
3 ‖∂x∇θ(s)‖ 4

3
L2 ds

≤ C

∫ t

T0

(
1 + ‖θ‖2L∞ log(1 + M(s))

)(
1 + M(s)

)
ds

+C
(
1 + M(t)

) 2+κ
3

∫ t

T0

‖∂x∇θ(s)‖ 4
3
L2 ds

≤ C

∫ t

T0

(
1 + ‖θ‖2L∞ log(1 + M(s))

)(
1 + M(s)

)
ds

+C(T − T0)
1
3

(
1 + M(t)

) 2+3κ
3

. (2.25)

Now we take 0 < κ < 1
3 and then apply Young’s inequality to obtain

C(T − T0)
1
3

(
1 + M(t)

) 2+3κ
3 ≤ C +

1
2
(
1 + M(t)

)
.

As a consequence, the following inequality holds

1 + M(t) ≤ C + C

∫ t

T0

(
1 + ‖θ‖2L∞ log(1 + M(s)

)(
1 + M(s)

)
ds.

Letting

H(t) � C + C

∫ t

T0

(
1 + ‖θ‖2L∞ log(1 + M(s)

)(
1 + M(s)

)
ds

and noting that

1 + M(t) ≤ H(t),
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we have
d

dt
H(t) = C

(
1 + ‖θ‖2L∞ log(1 + M(t)

)(
1 + M(t)

)
≤ C(1 + ‖θ‖2L∞) log

(
1 + M(t)

)(
1 + M(t)

)
≤ C(1 + ‖θ‖2L∞)H(t) log H(t).

Therefore, for all t ∈ [T0, T )

H(t) ≤ H(T0) exp exp
(
C

∫ t

T0

(
1 + ‖θ(τ)‖2L∞

)
dτ

)
≤ H(T0) exp exp(CT + κ),

or

M(T ) ≤ (
1 + M(T0)

)
exp exp(CT + κ) − 1 < ∞,

which gives rise to

max
0≤t≤T

‖Δθ(t)‖2L2 ≤ C < ∞.

Recalling the inequality (2.24), we can deduce from above bound that

‖Δθ(t)‖2L2 +
∫ T

0

‖∂xΔθ(τ)‖2L2 dτ ≤ C(T, T0, θ(T0), θ0) < ∞. (2.26)

It follows from the above bound (2.26) and the following inequality (see [35])

‖h‖L∞ ≤ C(‖h‖L2 + ‖∂yh‖L2 + ‖∂xxh‖L2)

that ∫ T

0

‖∇θ(t)‖L∞ dt ≤ C

∫ T

0

(‖∇θ(t)‖L2 + ‖∂y∇θ(t)‖L2 + ‖∂xx∇θ(t)‖L2

)
dt

≤ C

∫ T

0

(‖∇θ(t)‖L2 + ‖∇2θ(t)‖L2 + ‖∂xΔθ(t)‖L2

)
dt

≤ C(T, θ0) < ∞,

which is enough for high regularity as shown in [23,62]. This fact implies that the solution is regular at
t = T . Moreover, the uniqueness is clear. Thus, we have completed the proof of Theorem 1.1. �

We end up this section with the following remark.

Remark 2.4. The method adopted in proving Theorem 1.1 may also be adapted with almost no change
to the study of the following 2D incompressible porous medium equation with partial dissipation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tθ + (�u · ∇)θ − ∂xxθ = 0, (x, y) ∈ R
2, t > 0,

�u = −∇p − θe2,

∇ · �u = 0,

θ(x, 0) = θ0(x).

(2.27)

Actually, combining the equation �u = −∇p − θe2 and the incompressible condition ∇ · �u = 0, one can
easily deduce

�u = (−R1R2θ, R1R1θ).

Consequently, by the method adopted in proving Theorem 1.1, we can show that the system (2.27)
admits a unique global smooth solution.
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3. The Proof of Theorem 1.4

This section proves Theorem 1.4. The focus is on how to obtain the global a priori bounds for the solution
on any time interval [0, T ].

Proof of Theorem 1.4. The basic energy estimate entails that

1
2

d

dt
‖�u(t)‖2L2 + ‖∂xu‖2L2 ≤ 0.

Integrating in time yields

‖�u(t)‖2L2 +
∫ T

0

‖∂xu(τ)‖2L2 dτ ≤ C(u0, v0) < ∞. (3.1)

Taking the inner product of the first equation in (1.3) with Δu and the second equation in (1.3) with
Δv, integrating over R

2 in variable x and then adding them up, we deduce

1
2

d

dt
‖∇�u(t)‖2L2 + ‖∂x∇u‖2L2 = 0, (3.2)

where we have used the identity ∫
R2

(�u · ∇�u) · Δ�u dxdy = 0.

The above identity can be proved as follows. In the case dimension is two, we have

Δ�u = ∇⊥ω, ∇⊥ = (−∂y, ∂x)

and

∇⊥ · (�u · ∇�u) = �u · ∇ω,

which leads to ∫
R2

(�u · ∇�u) · Δ�u dxdy =
∫
R2

(�u · ∇�u) · ∇⊥ω dxdy

= −
∫
R2

∇⊥ · (�u · ∇�u)ω dxdy

= −
∫
R2

(�u · ∇ω)ω dxdy

= 0. (3.3)

Integrating over (0, t) with respect to the time variable leads to

‖∇�u(t)‖2L2 +
∫ T

0

‖∂x∇u(τ)‖2L2 dτ ≤ C(u0, v0) < ∞. (3.4)

In order to obtain the a priori global H2 bound, we will apply Δ to the Eqs. (1.3)1 and (1.3)2, respectively,
then we get {

∂tΔu + Δ∂xp − Δ∂xxu = −Δ{(�u · ∇)u},

∂tΔv + Δ∂yp = −Δ{(�u · ∇)v}.
(3.5)

Taking the inner products of (3.5)1 with Δu and (3.5)2 with Δv, adding the results and integrating by
parts, it is easy to show

1
2

d

dt
‖Δ�u(t)‖2L2 + ‖∂xΔu‖2L2 = −

∫
R2

Δ{(�u · ∇)u}Δu dxdy −
∫
R2

Δ{(�u · ∇)v}Δv dxdy. (3.6)

In what follows, we will deal with each term on the right-hand side of (3.6) separately.
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Thanks to the divergence-free condition, the first term can be rewritten as follows∫
R2

Δ{(�u · ∇)u}Δu dxdy =

∫
R2

(Δu∂xu + Δv∂yu + 2∂xu∂xxu + 2∂yu∂xyu + 2∂xv∂xyu + 2∂yv∂yyu)Δu dxdy

� N1 + N2 + · · · + N6. (3.7)

With the aid of the inequality (2.3), the above six terms can be estimated as follows.

N1 =
∫
R2

Δu∂xuΔu dxdy

≤ C‖Δu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xu‖ 1

2
L2‖∂y∂xu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂xu‖ 2
3
L2‖∂xyu‖ 2

3
L2‖Δu‖2L2 , (3.8)

N2 =
∫
R2

Δv∂yuΔu dxdy

≤ C‖∂yu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖Δv‖ 1

2
L2‖∂yΔv‖ 1

2
L2

= C‖∂yu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖L2‖Δv‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yu‖2L2(‖Δu‖2L2 + ‖Δv‖2L2), (3.9)

N3 = 2
∫
R2

∂xu∂xxuΔu dxdy

≤ C‖∂xu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xxu‖ 1

2
L2‖∂yxxu‖ 1

2
L2

≤ C‖∂xu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xxu‖ 1

2
L2‖∂xΔu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂xu‖2L2‖∂xxu‖L2‖Δu‖L2 , (3.10)

N4 = 2
∫
R2

∂yu∂xyuΔu dxdy

≤ C‖∂yu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xyu‖ 1

2
L2‖∂xyyu‖ 1

2
L2

≤ C‖∂yu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xyu‖ 1

2
L2‖∂xΔu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yu‖2L2‖∂xyu‖L2‖Δu‖L2 , (3.11)

N5 = 2
∫
R2

∂xv∂xyuΔu dxdy

≤ C‖∂xv‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xyu‖ 1

2
L2‖∂xyyu‖ 1

2
L2

≤ C‖∂yv‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂xyu‖ 1

2
L2‖∂xΔu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yv‖2L2‖∂xyu‖L2‖Δu‖L2 , (3.12)

N6 = 2
∫
R2

∂yv∂yyuΔu dxdy

≤ C‖∂yyu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂yv‖ 1

2
L2‖∂yyv‖ 1

2
L2

≤ C‖Δu‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖∂yv‖ 1

2
L2‖∂xyu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yv‖ 2
3
L2‖∂xyu‖ 2

3
L2‖Δu‖2L2 . (3.13)

Similarly, the second term can be rewritten as∫
R2

Δ{(�u · ∇)v}Δv dxdy =

∫
R2

(Δu∂xv + Δv∂yv + 2∂xu∂xxv + 2∂yu∂xyv + 2∂xv∂xyv + 2∂yv∂yyv)Δv dxdy

� L1 + L2 + · · · + L6. (3.14)
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We again resort to (2.3) to obtain

L1 =
∫
R2

Δu∂xvΔv dxdy

≤ C‖∂xv‖L2‖Δu‖ 1
2
L2‖∂xΔu‖ 1

2
L2‖Δv‖ 1

2
L2‖∂yΔv‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂xv‖2L2(‖Δu‖2L2 + ‖Δv‖2L2), (3.15)

L2 =
∫
R2

Δv∂yvΔv dxdy

≤ C‖Δv‖L2‖Δv‖ 1
2
L2‖∂yΔv‖ 1

2
L2‖∂yv‖ 1

2
L2‖∂xyv‖ 1

2
L2

= C‖Δv‖ 3
2
L2‖∂xΔu‖ 1

2
L2‖∂yv‖ 1

2
L2‖∂xxu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yv‖ 2
3
L2‖∂xxu‖ 2

3
L2‖Δv‖2L2 , (3.16)

L3 = 2
∫
R2

∂xu∂xxvΔv dxdy

≤ C‖Δv‖L2‖∂xxv‖ 1
2
L2‖∂xxyv‖ 1

2
L2‖∂xu‖ 1

2
L2‖∂xxu‖ 1

2
L2

≤ C‖Δv‖ 3
2
L2‖∂xΔu‖ 1

2
L2‖∂xu‖ 1

2
L2‖∂xxu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂xu‖ 2
3
L2‖∂xxu‖ 2

3
L2‖Δv‖2L2 , (3.17)

L4 = 2
∫
R2

∂yu∂xyvΔv dxdy

≤ C‖Δv‖L2‖∂xyv‖ 1
2
L2‖∂xyyv‖ 1

2
L2‖∂yu‖ 1

2
L2‖∂xyu‖ 1

2
L2

≤ C‖Δv‖ 3
2
L2‖∂xΔu‖ 1

2
L2‖∂yu‖ 1

2
L2‖∂xyu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yu‖ 2
3
L2‖∂xyu‖ 2

3
L2‖Δv‖2L2 , (3.18)

L5 = 2
∫
R2

∂xv∂xyvΔv dxdy

≤ C‖Δv‖L2‖∂xyv‖ 1
2
L2‖∂xxyv‖ 1

2
L2‖∂xv‖ 1

2
L2‖∂xyv‖ 1

2
L2

≤ C‖Δv‖L2‖∂xΔu‖ 1
2
L2‖∂xv‖ 1

2
L2‖∂xxu‖L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂xv‖ 2
3
L2‖∂xxu‖ 4

3
L2‖Δv‖ 4

3
L2 , (3.19)

L6 = 2
∫
R2

∂yv∂yyvΔv dxdy

≤ C‖Δv‖L2‖∂yyv‖ 1
2
L2‖∂xyyv‖ 1

2
L2‖∂yv‖ 1

2
L2‖∂yyv‖ 1

2
L2

≤ C‖Δv‖ 3
2
L2‖∂xΔu‖ 1

2
L2‖∂yv‖ 1

2
L2‖∂xyu‖ 1

2
L2

≤ ε‖∂xΔu‖2L2 + Cε‖∂yv‖ 2
3
L2‖∂xyu‖ 2

3
L2‖Δv‖2L2 . (3.20)

Putting all the above estimates into (3.6) and taking ε small enough yields

d

dt
‖Δ�u(t)‖2L2 + ‖∂xΔu‖2L2 ≤ CH(t)‖Δ�u‖2L2 ,

where

H(t) = C(‖∂xu‖2L2 + ‖∂yu‖2L2 + ‖∂xv‖2L2 + ‖∂yv‖ 2
3
L2‖∂xxu‖ 2

3
L2 + ‖∂yu‖ 2

3
L2‖∂xyu‖ 2

3
L2

+ ‖∂xv‖ 2
3
L2‖∂xxu‖ 4

3
L2 + ‖∂xu‖ 2

3
L2‖∂xyu‖ 2

3
L2)
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is an integrable function, namely ∫ T

0

H(t) dt ≤ C(T, u0, v0) < ∞.

Gronwall’s inequality gives, for any 0 ≤ t ≤ T ,

‖Δ�u(t)‖2L2 +
∫ t

0

‖∂xΔu(τ)‖2L2 dτ ≤ C(T, u0, v0) < ∞.

Thus, we obtain the desired bound of Theorem 1.4. Invoking the following inequalities (see [35])

‖h‖L∞ ≤ C(‖h‖L2 + ‖∂xh‖L2 + ‖∂yyh‖L2),
‖h‖L∞ ≤ C(‖h‖L2 + ‖∂yh‖L2 + ‖∂xxh‖L2),

we have ∫ T

0

‖∂yv(t)‖L∞ dt =
∫ T

0

‖∂xu(t)‖L∞ dt

≤ C

∫ T

0

(‖∂xu(t)‖L2 + ‖∂y∂xu(t)‖L2 + ‖∂xx∂xu(t)‖L2

)
dt

≤ C

∫ T

0

(‖∇u(t)‖L2 + ‖Δu(t)‖L2 + ‖∂xΔu(t)‖L2

)
dt

≤ C(T, u0, v0) < ∞,∫ T

0

‖∂yu(t)‖L∞ dt ≤ C

∫ T

0

(‖∂yu(t)‖L2 + ‖∂x∂yu(t)‖L2 + ‖∂xx∂yu(t)‖L2

)
dt

≤ C

∫ T

0

(‖∇u(t)‖L2 + ‖Δu(t)‖L2 + ‖∂xΔu(t)‖L2

)
dt

≤ C(T, u0, v0) < ∞,∫ T

0

‖∂xv(t)‖L∞ dt ≤ C

∫ T

0

(‖∂xv(t)‖L2 + ‖∂x∂xv(t)‖L2 + ‖∂yy∂xv(t)‖L2

)
dt

≤ C

∫ T

0

(‖∂xv(t)‖L2 + ‖∂x∂xv(t)‖L2 + ‖∂xy∂xu(t)‖L2

)
dt

≤ C

∫ T

0

(‖∇u(t)‖L2 + ‖Δu(t)‖L2 + ‖∂xΔu(t)‖L2

)
dt

≤ C(T, u0, v0) < ∞.

Therefore, it is easily obtained that∫ T

0

‖∇�u(t)‖L∞ dt ≤ C(T, u0, v0) < ∞,

which implies the uniqueness of the solutions. This completes the proof of Theorem 1.4. �

4. The Proof of Theorem 1.6

This section proves Theorem 1.6. Again our focus is on how to obtain the global a priori bounds for the
solution on any time interval [0, T ].
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Proof of Theorem 1.6. Our approach in this section is partially inspired by [35]. To start with, let us
apply the basic energy estimate to the system (1.9) to obtain

‖θ(t)‖2L2 +
∫ t

0

‖∂yθ‖2L2 dτ ≤ ‖θ0‖2L2 ,

‖θ(t)‖Lq ≤ ‖θ0‖Lq , q ∈ [2,∞],

and

‖�u(t)‖L2 +
∫ t

0

‖∂xv‖2L2 dτ ≤ C(t, �u0, θ0).

Taking the inner product of the first two equations in (1.9) with Δ�u yields

1
2

d

dt
‖∇�u‖2L2 + ‖∂x∇v‖2L2 =

∫
R2

θΔv dxdy

=
∫
R2

θ∂xxv dxdy +
∫
R2

θ∂yyv dxdy

≤ ‖θ‖L2‖∂x∇v‖L2 + ‖∂yθ‖L2‖∇v‖L2

≤ 1
2
‖∂x∇v‖2L2 + C‖θ‖2L2 + ‖∂yθ‖L2‖∇�u‖L2 .

Applying the Gronwall inequality yields

‖∇�u(t)‖2L2 +
∫ t

0

‖∂x∇v‖2L2 dτ ≤ C < ∞. (4.1)

Taking the inner product of the third equation in (1.9) with Δθ leads to

1
2

d

dt
‖∇θ(t)‖2L2 + ‖∂y∇θ‖2L2 = −

∫
R2

∇(u∂xθ + v∂yθ) · ∇θ dxdy

= −
∫
R2

∂xu∂xθ∂xθ dxdy −
∫
R2

∂xv∂yθ∂xθ dxdy

−
∫
R2

∂yu∂xθ∂yθ dxdy −
∫
R2

∂yv∂yθ∂yθ dxdy. (4.2)

By (2.3) and ∂xu + ∂yv = 0,∫
R2

∂xu∂xθ∂xθ dxdy = −
∫
R2

∂yv∂xθ∂xθ dxdy = 2
∫
R2

v∂xθ∂xyθ dxdy

≤ C‖∂xyθ‖L2‖∂xθ‖ 1
2
L2‖∂xyθ‖ 1

2
L2‖v‖ 1

2
L2‖∂xv‖ 1

2
L2

≤ 1
8
‖∂y∇θ‖2L2 + C‖v‖2L2‖∇�u‖2L2‖∇θ‖2L2 . (4.3)

The other three terms can be bounded as follows,∫
R2

∂xv∂yθ∂xθ dxdy = −
∫
R2

θ(∂xyv∂xθ + ∂xv∂xyθ) dxdy

≤ C‖θ‖L∞(‖∂xyv‖L2‖∂xθ‖L2 + ‖∂xv‖L2‖∂xyθ‖L2)
≤ C‖θ‖L∞‖∂y∇θ‖L2‖∇θ‖L2

≤ 1
8
‖∂y∇θ‖2L2 + C‖θ‖2L∞‖∇θ‖2L2 , (4.4)∫

R2
∂yu∂xθ∂yθ dxdy = −

∫
R2

θ(∂xyu∂yθ + ∂yu∂xyθ) dxdy

≤ C‖θ‖L∞(‖∂xyu‖L2‖∂yθ‖L2 + ‖∂yu‖L2‖∂xyθ‖L2)
≤ C‖θ‖L∞‖∂y∇θ‖L2‖∇θ‖L2
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≤ 1
8
‖∂y∇θ‖2L2 + C‖θ‖2L∞‖∇θ‖2L2 , (4.5)

−
∫
R2

∂yv∂yθ∂yθ dxdy =
∫
R2

θ(∂yyv∂yθ + ∂yv∂yyθ) dxdy

≤ C‖θ‖L∞(‖∂yyv‖L2‖∂yθ‖L2 + ‖∂yv‖L2‖∂yyθ‖L2)
≤ C‖θ‖L∞‖∂yθ‖L2‖∂y∇θ‖L2

≤ 1
8
‖∂y∇θ‖2L2 + C‖θ‖2L∞‖∇θ‖2L2 . (4.6)

Plugging above estimates (4.3)–(4.6) into (4.2), we obtain

d

dt
‖∇θ(t)‖2L2 + ‖∂y∇θ‖2L2 ≤ C‖θ‖2L∞‖∇θ‖2L2 + C‖v‖2L2‖∇�u‖2L2‖∇θ‖2L2 .

An easy application of Gronwall’s inequality gives

‖∇θ(t)‖2L2 +
∫ t

0

‖∂y∇θ‖2L2 dτ < ∞. (4.7)

Combining above estimates, one gets

‖�u(t)‖2H1 + ‖θ(t)‖2H1 +
∫ t

0

(‖∂xv‖2H1 + ‖∂yθ‖2H1) dτ ≤ C < ∞. (4.8)

Applying |∂y|1+s (0 < s < 1
2 ) to the temperature equation and multiplying the resulting equation by

|∂y|1+sθ, we get

1
2

d

dt
‖|∂y|1+sθ(t)‖2L2 + ‖|∂y|2+sθ‖2L2 =

∫
R2

|∂y|1+s(�u · ∇θ)|∂y|1+sθ dxdy

=
∫
R2

|∂y|(�u · ∇θ)|∂y|1+2sθ dxdy

=
∫
R2

∂y

|∂y| (∂y�u · ∇θ + �u · ∇∂yθ)|∂y|1+2sθ dxdy

:= I + J. (4.9)

By (2.4), the term J can be bounded as

J =
∫
R2

∂y

|∂y| (�u · ∇∂yθ)|∂y|1+2sθ dxdy

=
∫
R2

(�u · ∇∂yθ)
∂y

|∂y| |∂y|1+2sθ dxdy

≤ C‖∂y∇θ‖L2‖�u‖ 1
2
L2‖∂x�u‖ 1

2
L2

∥∥∥∥ ∂y

|∂y| |∂y|1+2sθ

∥∥∥∥
1−2s
2−2s

L2

∥∥∥∥ ∂y

|∂y| |∂y|1+2s+(1−s)θ

∥∥∥∥
1

2−2s

L2

(
0 < s <

1
2

)

≤ C‖�u‖H1‖∂y∇θ‖
3−4s
2−2s

L2 ‖|∂y|2+sθ‖
1

2−2s

L2

(
0 < s <

1
2

)
≤ 1

8
‖|∂y|2+sθ‖2L2 + C‖�u‖

4−4s
3−4s

H1 ‖∂y∇θ‖2L2 . (4.10)

Now we turn to the term I, which can be written as

I =
∫
R2

∂y

|∂y| (∂yu∂xθ + ∂yv∂yθ)|∂y|1+2sθ dxdy := I1 + I2. (4.11)
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Integrating by parts, we get

I1 =
∫
R2

∂y

|∂y| (∂yu∂xθ)|∂y|1+2sθ dxdy

= −
∫
R2

∂y

|∂y| (u∂y∂xθ)|∂y|1+2sθ dxdy −
∫
R2

∂y

|∂y| (u∂xθ)∂y|∂y|1+2sθ dxdy

= −
∫
R2

(u∂y∂xθ)
∂y

|∂y| |∂y|1+2sθ dxdy −
∫
R2

|∂y|s(u∂xθ)
∂y

|∂y|∂y|∂y|1+sθ dxdy

:= I11 + I12.

Obviously, the term I11 admits the same bound as the term J , that is,

I11 ≤ 1
8
‖|∂y|2+sθ‖2L2 + C‖�u‖

4−4s
3−4s

H1 ‖∂y∇θ‖2L2 .

By virtue of the Sobolev embedding, the term I12 can be estimated as follows

I12 ≤ C‖|∂y|s(u∂xθ)‖L2‖|∂y|2+sθ‖L2

≤ C‖u‖H1(‖∂xθ‖L2 + ‖∂y∇θ‖L2)‖|∂y|2+sθ‖L2

≤ 1
8
‖|∂y|2+sθ‖2L2 + C‖u‖2H1(‖∂xθ‖L2 + ‖∂y∇θ‖L2)2,

where we have applied the following estimate

‖|∂y|s(u∂xθ)‖L2 = ‖(u∂xθ)(x, y)‖L2
xHs

y

≤ C
∥∥∥‖(u∂xθ)(x, y)‖Hs

y

∥∥∥
L2

x

≤ C
∥∥∥‖u(x, y)‖H

s1
y

‖∂xθ(x, y)‖H
s2
y

∥∥∥
L2

x

×
(

s1, s2 <
1
2
, s +

1
2

= s1 + s1 > 0
)

≤ C
∥∥∥‖u(x, y)‖H1

y
‖∂xθ(x, y)‖H1

y

∥∥∥
L2

x

≤ C‖u(x, y)‖L∞
x H1

y

∥∥∥‖∂xθ(x, y)‖L2
y

+ ‖∂y∂xθ(x, y)‖L2
y

∥∥∥
L2

x

≤ C‖u(x, y)‖H1
xH1

y

(∥∥∥‖∂xθ(x, y)‖L2
y

∥∥∥
L2

x

+
∥∥∥‖∂y∂xθ(x, y)‖L2

y

∥∥∥
L2

x

)
= C‖u‖H1(‖∂xθ‖L2 + ‖∂y∂xθ‖L2).

Therefore, it directly yields

I1 ≤ 1
4
‖|∂y|2+sθ‖2L2 + C‖�u‖

4−4s
3−4s

H1 ‖∂y∇θ‖2L2 + C‖u‖2H1(‖∂xθ‖L2 + ‖∂y∇θ‖L2)2.

Finally, by Young inequality, we arrive at

I2 =
∫
R2

∂y

|∂y| (∂yv∂yθ)|∂y|1+2sθ dxdy

=
∫
R2

(∂yv∂yθ)
∂y

|∂y| |∂y|1+2sθ dxdy

≤ C‖∂yv‖L2‖∂yθ‖ 1
2
L2‖∂x∂yθ‖ 1

2
L2

∥∥∥∥ ∂y

|∂y| |∂y|1+2sθ

∥∥∥∥
1−2s
2−2s

L2

∥∥∥∥ ∂y

|∂y| |∂y|2+sθ

∥∥∥∥
1

2−2s

L2

(
0 < s <

1
2

)

≤ C‖�u‖H1‖θ‖ 1
2
H1‖∂y∇θ‖

2−3s
2−2s

L2 ‖|∂y|2+sθ‖
1

2−2s

L2

(
0 < s <

1
2

)
≤ 1

8
‖|∂y|2+sθ‖2L2 + C‖�u‖

4−4s
3−4s

H1 ‖θ‖
2−2s
3−4s

H1 ‖∂y∇θ‖
4−6s
3−4s

L2 .
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Combining the estimates for I and J together, we thus conclude

d

dt
‖|∂y|1+sθ(t)‖2L2 + ‖|∂y|2+sθ‖2L2 ≤ C‖�u‖

4−4s
3−4s

H1 ‖∂y∇θ‖2L2

+C‖u‖2H1(‖∂xθ‖L2 + ‖∂y∇θ‖L2)2 + C‖�u‖
4−4s
3−4s

H1 ‖θ‖
2−2s
3−4s

H1 ‖∂y∇θ‖
4−6s
3−4s

L2 ,

which, along with Gronwall’s inequality, yields

‖|∂y|1+sθ(t)‖2L2 +
∫ t

0

‖|∂y|2+sθ(τ)‖2L2 dτ < ∞, for any 0 < s <
1
2
. (4.12)

The above key bound allows us to show that∫ T

0

‖∂yθ(τ)‖2L∞ dτ < ∞. (4.13)

Indeed, we can deduce that

‖∂yθ‖L∞ ≤ ‖∂̂yθ‖L1

≤
∫
R2

∣∣∣ξy θ̂(ξx, ξy)
∣∣∣ dξxdξy

≤
(∫

R2
(1 + |ξx|2 + |ξy|2+2s)|ξy|2|θ̂(ξx, ξy)|2 dξxdξy

) 1
2

×
(∫

R2
(1 + |ξx|2 + |ξy|2+2s)−1 dξxdξy

) 1
2

(s > 0)

≤ C(‖∂yθ‖L2 + ‖∂y∂xθ‖L2 + ‖|∂y|2+sθ‖L2),

where we have used∫
R2

(1 + |ξx|2 + |ξy|2+2s)−1 dξxdξy =
∫
R2

(1 + |ξx|2)−(1+2s)
2+2s (1 + η2+2s)−1 dξxdη < ∞,

by making the change of variable ξy = (1 + |ξx|2) 1
2+2s η. Thus, we get the desired bound (4.13).

Taking ∂x on the temperature equation and multiplying the resulting equation by |∂xθ|q−2∂xθ, we
have

1

q

d

dt
‖∂xθ‖qLq + (q − 1)

∫
R2

(∂y∂xθ)2|∂xθ|q−2 dxdy =

∫
R2

∂x(u∂xθ + v∂yθ)|∂xθ|q−2∂xθ dxdy

=

∫
R2

∂xu∂xθ|∂xθ|q−2∂xθ dxdy +

∫
R2

∂xv∂yθ|∂xθ|q−2∂xθ dxdy,

(4.14)

where in the last line we have used the following fact due to the incompressibility of �u∫
R2

(u∂x∂xθ + v∂y∂xθ)|∂xθ|q−2∂xθ dxdy = 0.

Integration by parts and Young inequality allow us to show∫
R2

∂xu∂xθ|∂xθ|q−2∂xθ dxdy = −
∫
R2

∂yv∂xθ|∂xθ|q−2∂xθ dxdy

≤ q

∫
R2

|v| |∂xθ|q−1|∂y∂xθ| dxdy

≤ q − 1
2

∫
R2

(∂y∂xθ)2|∂xθ|q−2 dxdy + Cq

∫
R2

|v|2 |∂xθ|q dxdy

≤ q − 1
2

∫
R2

(∂y∂xθ)2|∂xθ|q−2 dxdy + Cq‖v‖2L∞‖∂xθ‖q
Lq . (4.15)
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Invoking Sobolev interpolation and Young inequality, we obtain∫
R2

∂xv∂yθ|∂xθ|q−2∂xθ dxdy ≤ C‖∂yθ‖L∞‖∂xv‖Lq‖∂xθ‖q−1
Lq

≤ C
√

q‖∂yθ‖L∞‖∂xv‖
2
q

L2‖∂x∇v‖
q−2

q

L2 ‖∂xθ‖q−1
Lq , (4.16)

where the following interpolation has been used

‖f‖Lq ≤ C
√

q‖f‖
2
q

L2‖∇f‖
q−2

q

L2 , 2 ≤ q < ∞,

for some absolute constant C independent of q.
Substituting (4.15) and (4.16) into (4.14), we immediately obtain

d

dt
‖∂xθ‖Lq ≤ Cq‖v‖2L∞‖∂xθ‖Lq + C

√
q‖∂yθ‖L∞‖∂xv‖

2
q

L2‖∂x∇v‖
q−2

q

L2 . (4.17)

By (4.8), it follows that ∫ T

0

‖v(τ)‖2L∞ dτ < ∞. (4.18)

Noticing the bounds (4.8), (4.12) and (4.18), then making use of Gronwall inequality, one can deduce
from the inequality (4.17) that

‖∂xθ(t)‖Lq ≤ C(T, q, �u0, θ0) < ∞, 2 ≤ q < ∞.

Therefore, this concludes the proof of Theorem 1.6. �
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