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Abstract

The 2d Boussinesq equations model large scale atmospheric and oceanic flows. Whether its solutions 
develop a singularity in finite-time remains a classical open problem in mathematical fluid dynamics. 
In this work, blowup from smooth nontrivial initial velocities in stagnation-point form solutions of this 
system is established. On an infinite strip � = {(x, y) ∈ [0, 1] × R

+}, we consider velocities of the form 
u = (f (t, x), −yfx(t, x)), with scalar temperature θ = yρ(t, x). Assuming fx(0, x) attains its global max-
imum only at points x∗

i
located on the boundary of [0, 1], general criteria for finite-time blowup of the 

vorticity −yfxx(t, x∗
i
) and the time integral of fx(t, x∗

i
) are presented. Briefly, for blowup to occur it is 

sufficient that ρ(0, x) ≥ 0 and f (t, x∗
i
) = ρ(0, x∗

i
) = 0, while −yfxx(0, x∗

i
) �= 0. To illustrate how vorticity 

may suppress blowup, we also construct a family of global exact solutions. A local-existence result and 
additional regularity criteria in terms of the time integral of ‖fx(t, ·)‖L∞([0,1]) are also provided.
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1. Introduction

In this article we discuss regularity criteria for solutions of the initial value problem⎧⎪⎪⎨⎪⎪⎩
fxt + ffxx − f 2

x + ρ = I (t), x ∈ [0,1], t > 0,

ρt + fρx = ρfx , x ∈ [0,1], t > 0,

I (t) = ∫ 1
0 ρ dx − 2

∫ 1
0 f 2

x dx, t > 0,

f (x,0) = f0(x), ρ(x,0) = ρ0(x), x ∈ [0,1],
(1)

subject to either Dirichlet

f (t,0) = f (t,1) = 0, ρ(t,0) = ρ(t,1) = 0, (2)

or periodic boundary conditions

f (t,0) = f (t,1), fx(t,0) = fx(t,1), ρ(t,0) = ρ(t,1). (3)

System (1)i)–iii) is obtained by imposing on the inviscid two-dimensional Boussinesq equa-
tions {

ut + (u · ∇)u = −∇p + θ e2,

∇ · u = 0,

θt + u · ∇θ = 0
(4)

a stagnation-point similitude velocity field on an infinitely long 2d channel � ≡ {(x, y) ∈
[0, 1] × (0, +∞)}. More particularly, due to incompressibility there exists a scalar stream func-
tion ψ(t, x, y) such that u = ∇⊥ψ = (ψy, −ψx). If we consider only stream functions of the 
form ψ(t, x, y) = yf (t, x), then (1)i)–iii) arises from (4) with

u(t, x, y) = (f (t, x),−yfx(t, x)), θ(t, x, y) = yρ(t, x). (5)

In (4), u denotes the two-dimensional fluid velocity, p the scalar pressure, e2 the standard unit 
vector in the vertical direction, and θ represents either the temperature in the context of thermal 
convection, or the density in the modeling of geophysical fluids.

Note that periodicity (3)i), ii) of f (t, x) results from periodicity (in x) of u(t, x, y), i.e. 
u(t, 1, y) = u(t, 0, y). For reasons that will be evident in Section 2, whenever the periodic bound-
ary condition (3) is under consideration, we will impose on the pressure p(t, x, y) the boundary 
condition

p(t,1, y) = p(t,0, y) (6)

and assume f (0, x) = f0(x) satisfies the mean-zero condition

1∫
f0(x) dx = 0. (7)
0
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The Boussinesq equations model large scale atmospheric and oceanic flows responsible for 
cold fronts and the jet stream (see e.g. [11,17]). In addition, the Boussinesq equations also play 
an important role in the study of Rayleigh–Benard convection (see, e.g. [7,5]). Mathematically, 
the 2D Boussinesq equations serve as a lower-dimensional model of the 3D hydrodynamics 
equations and retain some key features, such as vortex stretching, of the 3D Euler equations. It is 
also well-known that (away from the axis of symmetry) the inviscid 2D Boussinesq equations 
are closely related to the Euler equations for 3D axisymmetric swirling flows [16]. The reader 
may refer to [27,2,29] for local existence results and blowup criteria for (4) and related models.

If θ ≡ 0, (4) reduces to the 2d incompressible Euler equations, while (1)i), ii) simplifies to

fxt + ffxx − f 2
x = −2

1∫
0

f 2
x dx. (8)

Eq. (8) is known as the inviscid Proudman–Johnson equation [20]. In [23], a general solution 
formula for solutions of (8), along with blowup and global-in-time criteria, were established 
(see [3,4,24,19,21] for additional regularity results). Eq. (8) is interesting in its own right from 
a mathematical perspective: it illustrates how the boundary conditions, more particularly peri-
odic or Dirichlet boundary conditions, can either contribute to, or suppress, the formation of 
spontaneous singularities from smooth initial conditions in nonlinear evolution equations [23]. 
Moreover, (8) appears as a reduced 1D model for the 3D inviscid primitive equations of large 
scale oceanic and atmospheric dynamics [1], and is also related to the hydrostatic Euler equa-
tions [28,13].

The term ‘stagnation-point similitude’ arises from the observation that velocity fields of the 
form (5)i) emerge from the modeling of flow near a stagnation point [26,18,10]. The study of 
solutions of the form (5)i) appears to have started with Stuart [25]; he considered solutions of 
the 3d incompressible Euler equations that had linear dependence in two variables x and z, and 
showed that the resulting differential equations in the remaining independent variables y and t
displayed finite time singular behavior. Since then, velocities of stagnation-point type have been 
used in the context of 3d Navier–Stokes and magneto-hydrodynamics equations [25,6,8,9]. Due 
to an infinite geometric structure in the y direction, the velocity field (5) possesses infinite energy 
when considered over the entire spatial domain �; however, we believe that the analysis of re-
duced models such as (1) can provide valuable insights into the global regularity problem for the 
full 2d Boussinesq and the 3d axisymmetric Euler equations. For instance, recent numerical sim-
ulations [15] indicate that solutions of the 3d axisymmetric Euler equations develop a singularity 
in finite time, precisely, at points where the velocity field has a stagnation point.

Below we summarize the main results of this paper.

Theorem 1.1. Consider the IBVP (1)–(2) (or (1) with (3) and (7)). If f0 ∈ H 2([0, 1]), f ′
0 ∈

L∞([0, 1]) and ρ0 ∈ H 1([0, 1]), then there exists T = T (‖f0‖H 2, ‖f ′
0‖L∞, ‖ρ0‖H 1) > 0 such 

that (1) has a unique solution (f, ρ) on [0, T ] satisfying

f ∈ C([0, T ];H 2), fx ∈ C([0, T ];L∞), ρ ∈ C([0, T ];H 1).

Moreover, if
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T ∗∫
0

‖fx(t, ·)‖L∞ dt < +∞,

then the local solution can be extended to [0, T ∗].

Theorem 1.2. Consider the IVP (1) with nontrivial smooth initial data f0(x) and ρ0(x) satisfying 
the Dirichlet boundary condition (2). Suppose ρ0(x) ≥ 0 for all x ∈ [0, 1] and denote by x∗

i , 
0 ≤ i ≤ n, the finite number of points in [0, 1] where f ′

0(x) attains its greatest positive value. 
If the x∗

i are located only at the boundary, and at each x∗
i the initial vorticity satisfies f ′′

0 (x∗
i ) �= 0, 

then there exists a finite t∗ > 0 such that

lim
t↗t∗

t∫
0

fx(s, x
∗
i ) ds = +∞, lim

t↗t∗
|fxx(t, x

∗
i )| = +∞.

In contrast, if x∗
i ∈ [0, 1], then there exist nontrivial f0(x) and ρ0(x) ≥ 0 satisfying Dirichlet 

boundary condition (2), or periodic boundary condition (3) with mean-zero (7), such that if the 
initial vorticity f ′′

0 (x) vanishes at x∗
i for at least one i, then the corresponding solution of (1)

persists for all time.

The outline for the remainder of the paper is as follows. In Section 2, the local well-posedness 
of (1)–(2) (and (1) with (3) and (7)) is established along with a regularity criterion in terms of 
the time integral of ‖fx(t, ·)‖L∞([0,1]). In Section 3, we prove the existence of general, nontrivial 
smooth initial conditions, satisfying Dirichlet boundary conditions (2), for which the time inte-
gral of fx(t, x) blows up in finite time at the boundary. Moreover, we also show that this blowup 
implies either one-sided or two-sided blowup in the vorticity.1 Our blowup criteria is local-in-
space and relies both on initial velocities with a local profile characterized by the non-vanishing 
of f ′′

0 (x) at the boundary and non-negativity of the initial temperature ρ0(x). Due to the local 
nature of the blowup criteria, our results do not rule out the formation of finite-time singularities 
either in the interior of the domain or at the boundary if f0 possesses a different local struc-
ture. Thus, in Section 4 we follow an argument similar to that in [3] to construct a family of 
global solutions of (1) which provides valuable insights on the type of initial conditions needed 
to suppress finite-time blowup. The reader may then refer to Section 5 for concluding remarks.

2. Local well-posedness and regularity criteria

This section presents a regularity criterion which, together with Theorem 3.2 of Section 3, 
states that a finite time singularity of (1)–(2) (or (1) with (3) and (7)) develops if and only if the 
time integral of fx becomes infinity in a finite time. In addition, the local well-posedness of both 
boundary value problems is also presented.

Theorem 2.1. Consider the IVP (1). Assume f0 and ρ0 satisfy either the Dirichlet boundary 
condition (2), or the periodic boundary condition (3) with mean-zero condition (7), and suppose

1 By two-sided blowup we mean simultaneous blowup to both positive and negative infinity.
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f0 ∈ H 2([0,1]), f ′
0 ∈ L∞([0,1]), ρ0 ∈ H 1([0,1]).

Then there exists T = T (‖f0‖H 2, ‖f ′
0‖L∞, ‖ρ0‖H 1) > 0 such that (1) has a unique solution 

(f, ρ) on [0, T ] satisfying f ∈ C([0, T ]; H 2), fx ∈ C([0, T ]; L∞) and ρ ∈ C([0, T ]; H 1). More-
over, if

T ∗∫
0

‖fx(t, ·)‖L∞ dt < +∞, (9)

then the local solution can be extended to [0, T ∗].

Recall that the global regularity problem for the 2d inviscid Boussinesq equations (4) with 
arbitrary ‘smooth enough’ initial data is currently open. Local solutions can be extended into 
global ones if either one of the criteria,

∞∫
0

‖∇u‖∞ dt < +∞ or

∞∫
0

‖∇θ‖∞ dt < +∞

holds. The criterion in Theorem 2.1 reflects the criterion in terms of the velocity field u for the 
2d Boussinesq equations. There is no criterion corresponding to the one on θ for (1)–(2), namely 
no criterion in terms of ρ. The main reason is that (1)–(2) could still blow up in a finite time even 
if ρ ≡ 0.

Before proving Theorem 2.1, note that in the periodic case, the pressure boundary condi-
tion (6) and the mean-zero assumption (7) imply that

1∫
0

f (t, x) dx ≡ 0 (10)

for as long as f is defined. This is a consequence of integrating the horizontal component of (4)i), 
which for solutions of the form (5) reduces to

ft + ffx = −px. (11)

We now state and prove the following elementary lemma.

Lemma 2.2. Assume f satisfies the Dirichlet boundary condition (2), or the periodic boundary 
condition (3) with mean-zero condition (7). Suppose fx ∈ L2([0, 1]). Then, for a constant C,

‖f ‖L∞([0,1]) ≤ C ‖f ′‖L2([0,1]).

In particular, ‖f ‖L2([0,1]) ≤ C ‖f ′‖L2([0,1]).
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Proof of Lemma 2.2. The proof is simple. In the case of the Dirichlet boundary condition,

|f (x)| =
∣∣∣∣∣∣

x∫
0

f ′(y) dy

∣∣∣∣∣∣≤ ‖f ′‖L2([0,1]).

In the case of the periodic boundary condition, we write

f (x) =
∑

k

f̂ (k) eixk, f̂ (k) =
1∫

0

e−ikx f (x) dx.

Thus, using (10), we obtain

‖f ‖L∞ ≤ C

⎡⎣∑
k �=0

|k|2 |f̂ (k)|2
⎤⎦1/2

= C ‖f ′‖L2 .

This proves Lemma 2.2. �
Proof of Theorem 2.1. The local well-posedness can be obtained through an approximation 
procedure (see, e.g., [16]). For the sake of brevity, we shall just provide the key component of 
this procedure, namely the local bound for ‖f ‖H 2 + ‖ρ‖H 1 . In order to establish the desired 
local bound, we consider the norm

Y 2(t) ≡ ‖ρ(t, ·)‖2
H 1 + ‖fx(t, ·)‖2

L2 + ‖fx(t, ·)‖L∞ + ‖fxx(t, ·)‖2
L2 (12)

and show that

Y 2(t) ≤ Y 2(0) + C

t∫
0

(Y 2(τ ) + Y 3(τ ) + Y 4(τ )) dτ. (13)

Gronwall’s inequality then implies that, for some T = T (Y (0)) > 0 and t ∈ [0, T ],

Y(t) < ∞.

This also gives a local bound for ‖f ‖L2 due to Lemma 2.2. We remark that ‖fx(t, ·)‖L∞ is 
included in Y because it appears to be more convenient to obtain a “closed” differential inequality 
by considering this norm simultaneously. We now prove (13) through energy estimates. Taking 
the inner product of (1)ii) with ρ and integrating by parts, we have

d

dt

1∫
0

ρ2 dx = 3

1∫
0

ρ2fx dx ≤ 3‖fx‖L∞

1∫
0

ρ2 dx. (14)

Taking ∂x of (1)ii), dotting with ∂x ρ, integrating by parts and applying Lemma 2.2, we obtain
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d

dt

1∫
0

ρ2
x dx =

1∫
0

fx ρ2
x dx + 2

1∫
0

ρρxfxx dx

≤ ‖fx‖L∞

1∫
0

ρ2
x dx + ‖ρ‖L∞

1∫
0

(ρ2
x + f 2

xx) dx

≤ ‖fx‖L∞ ‖ρx‖2
L2 + C ‖ρx‖L2 (‖ρx‖2

L2 + ‖fxx‖2
L2). (15)

We remark that, in the case of periodic boundary conditions, we use

‖ρ‖L∞ ≤ C(‖ρ‖L2 + ‖ρx‖L2)

instead of Lemma 2.2 to avoid the mean-zero assumption on ρ. This inequality holds without ρ
being mean-zero in the periodic case. Dotting (1)i) with fx and using (2) or (3), we find

d

dt

1∫
0

f 2
x dx = 3

1∫
0

f 3
x dx − 2

1∫
0

ρ fx dx ≤ 3‖fx‖L∞ ‖fx‖2
L2 + ‖ρ‖2

L2 + ‖fx‖2
L2 . (16)

Similarly,

d

dt

1∫
0

f 2
xx dx ≤ (3‖fx‖L∞ + 1)

1∫
0

f 2
xx dx + ‖ρ‖2

L2 . (17)

Now define the Lagrangian path γ (t, x) via the initial value problem

γ̇ (t, x) = f (t, γ (t, x)), γ (0, x) = x, (18)

where · ≡ d
dt

. Invoking (18) in (1)i), taking the L∞-norm and using Lemma 2.2, we have

‖fx(t, ·)‖L∞ ≤ ‖f ′
0‖L∞ +

t∫
0

(‖ρ‖L∞ + ‖fx‖2
L∞ + I (τ )) dτ

≤ ‖f ′
0‖L∞ +

t∫
0

(‖ρx‖2
L2 + ‖fx‖2

L∞ + ‖ρ‖L2 + 2‖fx‖2
L2) dτ. (19)

It is then easy to see that combining (14) through (19) yields the desired inequality in (13). This 
completes the local well-posedness part. To prove the regularity criterion, it suffices to show that 
(9) implies the bound

f ∈ L∞([0, T ∗];H 2), fx ∈ L∞([0, T ∗];L∞) and ρ ∈ L∞([0, T ∗];H 1). (20)

Adding the inequalities in (14) through (17) yields
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d

dt

1∫
0

(ρ2 + ρ2
x + f 2

x + f 2
xx) dx ≤ C (1 + ‖fx‖L∞)

1∫
0

(ρ2 + ρ2
x + f 2

x + f 2
xx) dx

+ ‖ρ‖L∞

1∫
0

(ρ2
x + f 2

xx) dx. (21)

Invoking (18) in (1)ii) and taking the L∞-norm, we have

‖ρ(t, ·)‖L∞ ≤ ‖ρ0‖L∞ e
∫ t

0 ‖fx‖L∞ dτ . (22)

Combining (9), (21) and (22) leads to

fx,fxx ∈ L∞([0, T ∗];L2) and ρ ∈ L∞([0, T ∗];H 1).

Lemma 2.2 also yields f ∈ L∞([0, T ∗]; L2). Furthermore, applying Gronwall’s inequality to 
(19) leads to

fx ∈ L∞([0, T ∗];L∞).

This establishes (20). We have thus completed the proof of Theorem 2.1. �
3. Blowup

In this section we prove the existence of solutions to (1), satisfying Dirichlet boundary con-
ditions (2), which blowup in finite time from nontrivial smooth initial data. Our blowup criteria 
is in terms of an arbitrary nonnegative initial temperature ρ0 and the local profile of a nontrivial 
initial velocity f0 near the boundary. More particularly, note that the vorticity associated to the 
velocity field (5) is given, after a slight abuse of notation, by

∇ × u = −yfxx(t, x), (23)

so that we may refer to f ′′
0 (x) as the initial vorticity. We examine how the global regularity of 

solutions of (1) is affected by both, the corresponding boundary condition and the (non)vanishing 
of the initial vorticity at points where f ′

0(x) attains its maximum. Briefly, using (1)ii) and (18), 
we first write (1)i) as a linear second-order, non-homogeneous ode in terms of γ −1

x . Then, a “con-
servation in mean” condition for γx will allow us to solve this differential equation and obtain 
an implicitly defined representation formula for γx . The blowup is then established by deriving 
lower bounds on γx which depend on the profile of f0 near the boundary. Lastly, using a repre-
sentation formula for fxx(t, γ (t, x)) in terms of γx , we prove blowup of the vorticity (23). We 
begin by establishing some preliminary results.

Note that the classical existence and uniqueness result for odes (as applied to the IVP (18)), 
along with Dirichlet or periodic boundary conditions, implies that

γ (t,0) ≡ 0, γ (t,1) ≡ 1 (24)
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or respectively

γ (t, x + 1) − γ (t, x) ≡ 1, (25)

for as long as a solution exists. In either case, the mean of γx over [0, 1] is preserved in time:

1∫
0

γx dx ≡ 1. (26)

Now, differentiating (18) with respect to x yields

γ̇x = fx(t, γ (t, x)) γx , (27)

which we integrate to obtain

γx(t, x) = exp

⎛⎝ t∫
0

fx(s, γ (s, x)) ds

⎞⎠ . (28)

But using (18)i) and (28) on Eq. (1)ii), we find that

ρ(t, γ (t, x)) = ρ0(x) γx(t, x). (29)

Then differentiating (27) with respect to time and using (1)i) and (29), yields

I (t) − ρ0 γx = −γx

(
γ −1
x

)̈
. (30)

Setting ω = γ −1
x in (30) now gives

ω̈(t, x) + I (t)ω(t, x) = ρ0(x), (31)

a second-order linear, non-homogeneous ode parametrized by x ∈ [0, 1] and complemented by 
the initial values ω(0, x) ≡ 1 and ω̇(0, x) = −f ′

0(x). We use variation of parameters to write 
down the form of its the general solution.

First consider the associated homogeneous equation

ω̈h(t, x) + I (t)ωh(t, x) = 0. (32)

Let φ1(t) and φ2(t) be two linearly independent solutions of (32) satisfying φ1(0) = φ̇2(t) = 1
and φ̇1(0) = φ2(0) = 0. Setting φ2(t) = η(t)φ1(t) we obtain, via reduction of order, the general 
solution of (32) as

ωh(t, x) = c1(x)φ1(t) + c2(x)φ2(t) = φ1(t)(c1(x) + c2(x)η(t)), (33)

where the strictly increasing function η(t) satisfies
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η̇(t) = φ1(t)
−2, η(0) = 0. (34)

Next, following a standard variation of parameters argument, we look for a particular solution to 
(31) of the form

ωp(t, x) = v1(t, x)φ1(t) + v2(t, x)φ2(t), (35)

where v1 and v2 are to be determined. This yields

v1(t, x) = a(x) − ρ0(x)

t∫
0

η(s)φ1(s) ds, v2(t, x) = b(x) + ρ0(x)

t∫
0

φ1(s) ds

for arbitrary functions a(x) and b(x). The general solution of (31)i), ω = ωh +ωp , now becomes

ω(t, x) = φ1(t)

⎡⎣1 − f ′
0(x)η(t) − ρ0(x)

⎛⎝ t∫
0

η(s)φ1(s) ds − η(t)

t∫
0

φ1(s) ds

⎞⎠⎤⎦ , (36)

where we used the initial values for ω, along with η(0) = 0 and η̇(0) = 1, to obtain c1(x) +
a(x) ≡ 1 and c2(x) + b(x) = −f ′

0(x). Lastly, since γx = ω−1, the conservation of mean (26) and 
formula (36) imply that φ1(t) satisfies the relation

φ1(t) =
1∫

0

(
1 − η(t)f ′

0(x) − ρ0(x)g(t)
)−1

dx,

g(t) =
t∫

0

η(s)φ1(s) ds − η(t)

t∫
0

φ1(s) ds, (37)

which yields the implicitly defined representation formula

γx(t, x) = [
φ1(t)

(
1 − η(t)f ′

0(x) − ρ0(x)g(t)
)]−1

. (38)

Before proving Theorem 1.2, we make the following observation.
Define the positive real number η∗ by

η∗ = 1

M0
for M0 ≡ max

x∈[0,1]
f ′

0(x). (39)

Lemma 3.1. If 0 ≤ η < η∗ on � ≡ [0, T ) for some 0 < T ≤ +∞, then φ1(t) > 0 on �. Addi-
tionally, if ρ0(x) ≥ 0 for all x ∈ [0, 1], then 0 < φ1(t) < +∞ for all t ∈ �.

Proof of Lemma 3.1. Let 0 < T ≤ +∞ be such that η, with η(0) = 0 and η̇(0) = 1, satisfies 0 ≤
η < η∗ for all t ∈ � ≡ [0, T ). The first part of the lemma follows directly from the boundedness 
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of η on �, the IVP (34), and φ1(0) = 1. Now, in addition to the above, suppose ρ0(x) ≥ 0 for all 
x ∈ [0, 1], and assume there is t1 ∈ � such that

lim
t↗t1

φ1(t) = +∞. (40)

Since φ1 > 0 on �, then

ġ(t) = −η̇(t)

t∫
0

φ1(s) ds = −φ1(t)
−2

t∫
0

φ1(s) ds < 0

for all t ∈ �. This, along with g(0) = 0 and ρ0(x) ≥ 0, implies that, on �,

1 − η(t)f ′
0(x) − ρ0(x)g(t) ≥ 1 − η(t)f ′

0(x) > 0 (41)

for all x ∈ [0, 1]. Consequently, (37)i) yields

φ1(t)
−1 ≥

⎛⎝ 1∫
0

dx

1 − η(t)f ′
0(x)

⎞⎠−1

> 0, for all t ∈ �. (42)

But using (40) on (42) we obtain

lim
t↗t1

1∫
0

dx

1 − η(t)f ′
0(x)

= +∞, t1 ∈ �,

and so limt↗t1 η(t) = η∗, contradicting our assumption that 0 ≤ η < η∗ for all t ∈ �. �
We now establish the following blowup result.

Theorem 3.2. Consider the IVP (1) for smooth nontrivial initial data f0(x) and ρ0(x) satisfying 
the Dirichlet boundary condition (2). Suppose ρ0(x) ≥ 0 for all x ∈ [0, 1] and assume f ′

0(x)

attains its greatest value M0 > 0 only at boundary point(s) x∗
i ∈ {0, 1}, i = 0, 1. If the initial 

vorticity f ′′
0 (x) is non-zero at each x∗

i , then there exists a finite time t∗ > 0 such that

lim
t↗t∗

t∫
0

fx(s, x
∗
i ) ds = +∞. (43)

Proof of Theorem 3.2. Suppose 0 ≤ η < η∗ = 1/M0 for all t ∈ � = [0, t∗) and some 0 < t∗ ≤
+∞. For simplicity, assume f ′

0(x) attains its largest value M0 only at x∗ = 0 with f ′′
0 (0) �= 0. 

Further, suppose ρ0(x) ≥ 0 for all x ∈ [0, 1]. First we show that γx(t, 0) → +∞ as η ↗ η∗. Then 
we prove that as η approaches η∗, t approaches a finite time t∗ > 0.



3570 A. Sarria, J. Wu / J. Differential Equations 259 (2015) 3559–3576
For all t ∈ � and x ∈ [0, 1], (38), (41) and (42) imply that

γx(t, x) ≥
⎛⎝ 1∫

0

dx

1 − η(t)f ′
0(x)

⎞⎠−1 (
1

1 − η(t)f ′
0(x) − ρ0(x)g(t)

)
> 0, (44)

so that

γx(t,0) ≥
⎛⎝ 1∫

0

dx

1 − η(t)f ′
0(x)

⎞⎠−1 (
1

1 − η(t)M0

)
(45)

for all t ∈ �. We need to estimate the integral term in (45). Smoothness of f0 implies, via a 
Taylor expansion about x = 0, that

ε + M0 − f ′
0(x) ∼ ε + |C1|x (46)

for 0 ≤ x ≤ r ≤ 1, C1 = f ′′
0 (0) < 0 and some ε > 0. In (46) we use the notation

h(x) ∼ L + w(x), (47)

valid for 0 ≤ |x −β| ≤ s, to mean that there exists a function v(x) defined on (β − r, β + r) such 
that

h(x) − L = w(x)(1 + v(x)) where lim
x→β

v(x) = 0. (48)

Using (46) we obtain the estimate

r∫
0

dx

ε + M0 − f ′
0(x)

∼
r∫

0

dx

ε + |C1|x = − 1

|C1| ln ε (49)

for ε > 0 small. If we now set ε = 1
η

− M0 into (49), we see that for η∗ − η > 0 small,

1∫
0

dx

1 − η(t)f ′
0(x)

∼ − M0

|C1| ln(η∗ − η), (50)

which we use on (45) to obtain

γx(t,0) ≥
⎛⎝ 1∫

0

dx

1 − η(t)f ′
0(x)

⎞⎠−1 (
1

1 − η(t)M0

)
∼ − C

(η∗ − η) ln(η∗ − η)
(51)

for C a positive constant. The above implies that
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γx(t,0) → +∞ as η ↗ η∗.

Last we establish the existence of a finite blowup time

t∗ ≡ lim
η↗η∗

t (η) > 0. (52)

For η∗ − η > 0 small, (34), (42) and (50) yield

0 <
dt

dη
≤
⎛⎝ 1∫

0

dx

1 − η(t)f ′
0(x)

⎞⎠2

∼ C ln2(η∗ − η). (53)

Consequently,

0 < t∗ − t ≤ (η∗ − η)
[
1 + (ln(η∗ − η) − 1)2

]
, (54)

the right-hand side of which vanishes as η ↗ η∗. In fact, using (34), (42) and Lemma 3.1, it fol-
lows that

t (η) ≤
η∫

0

⎛⎝ 1∫
0

dx

1 − μf ′
0(x)

⎞⎠2

dμ (55)

for 0 ≤ η < η∗. Inequality (54) then implies that the integral in (55) remains finite as η ↗ η∗ and, 
further, that an upper-bound for the blowup time (52) is

0 < t∗ ≤ lim
η↗η∗

η∫
0

⎛⎝ 1∫
0

dx

1 − μf ′
0(x)

⎞⎠2

dμ. � (56)

Remark 3.3. A simple choice of initial data to which the blowup result in Theorem 3.2 applies is 
f0(x) = x(1 −x) and ρ0(x) = sin2(2πx). In this case (56) yields π2/6 ∼ 1.65 as an upper-bound 
for the blowup time of γx at x∗ = 0. Clearly, this choice of f0(x) does not satisfy the periodic 
boundary conditions (3), but if instead we choose the mean-zero function f0(x) = sin(2πx)

and the same ρ0 as above, then for x∗
i = 0, 1, we have that γx(t, x∗

i ) → +∞ no slower than 
(η∗ − η)−1/2 as η ↗ η∗ = 1/(2π). However, for this choice of f0, (54) now becomes

0 < t∗ − t ≤ − ln(η∗ − μ)
∣∣η∗
η

= +∞. (57)

Thus, for the latter choice of initial data we fail to establish a finite upper-bound for the blowup 
time. As opposed to the case f0(x) = x(1 − x), in which finite-time blowup occurs, we remark 
that (57) is a result of x∗

i = 0, 1 now being inflection points of f0(x) = sin(2πx). A similar result 
follows when at least one of the x∗

i is an inflection point of f0. In Section 4 we elaborate on the 
above and discuss the effects that an initial vorticity which vanishes at the point(s) x∗

i may have 
on the regularity of solutions of (1).
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Remark 3.4. Since f ′′
0 (x∗

i ) �= 0 is required for finite-time blowup, the assumption that f ′
0 attains 

its greatest value M0 only at boundary point(s) x∗
i is needed for f0 to be smooth; otherwise, 

if x∗
i ∈ (0, 1), then f ′′

0 (x∗
i ) �= 0 will imply a jump-discontinuity of finite magnitude in f ′′

0 (x)

through x∗
i . Regularity criteria for non-smooth initial velocities, including piecewise-linear func-

tions and maps with “cusps” and/or “kinks” on their graphs, can be studied via an argument 
similar to that used in the proof of Theorem 3.2 (see, e.g., [23,21]).

Lastly, we establish finite-time blowup of the vorticity (23) under the setting of Theorem 3.2.

Corollary 3.5. Suppose the assumptions in Theorem 3.2 hold. Then there exists a finite time 
t∗ > 0 such that the vorticity (23) blows up as t ↗ t∗. Further, if f ′

0(x) attains its maximum at 
both endpoints, then this blowup is two-sided.

Proof of Corollary 3.5. Differentiating (38) with respect to time and using (27) yields

fx(t, γ (x, t)) = φ1(t)
−2

(
f ′

0(x) − ρ0(x)
∫ t

0 φ1ds

1 − η(t)f ′
0(x) − ρ0(x)g(t)

)
− φ̇1

φ1
. (58)

If we now differentiate the above in space and use (38) we find that

fxx(t, γ (t, x)) = h(t, x) γx (59)

for

h = f ′′
0 − ρ′

0

t∫
0

φ1 ds + (
ρ′

0f
′
0 − ρ0f

′′
0

) t∫
0

ηφ1 ds. (60)

Without loss of generality, assume f ′
0(x) achieves its maximum M0 at both endpoints x∗

0 = 0 and 
x∗

1 = 1. Then setting x = x∗
i , i = 0, 1, in (59)–(60) and using (24), gives

fxx(t, x
∗
i ) = (

f ′′
0 (x∗

i ) + M0 ρ′
0(x

∗
i )g∗(t)

)
γx(t, x

∗
i ) (61)

with

g∗(t) =
t∫

0

η(s)φ1(s) ds − η∗
t∫

0

φ1(s) ds.

Suppose 0 ≤ η < η∗. Then by Lemma 3.1,

g∗(t) ≤ g(t) < 0. (62)

Now, since ρ0(x) �≡ 0 is nonnegative and vanishes at the endpoints, then ρ′
0(0) ≥ 0 and ρ′

0(1) ≤ 0. 
Moreover, since M0 > 0 is the largest value attained by f ′

0(x) and f ′′
0 (x∗

i ) �= 0, then f ′′
0 (0) < 0, 

while f ′′(1) > 0. Consequently, using (62) we set i = 0 and respectively i = 1 in (61) to find
0
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fxx(t,0) ≤ f ′′
0 (0) γx(t,0), fxx(t,1) ≥ f ′′

0 (1) γx(t,1). (63)

By letting t approach the finite time t∗ > 0 established in Theorem 3.2, we conclude that

fxx(t,0) → −∞ and fxx(t,1) → +∞. � (64)

Remark 3.6. The issue of solutions of hydrodynamical-related models diverging at every point 
in their spatial domain and/or in only one direction of infinity has been studied previously (see 
e.g. [12,6,19,22]). In the case where M0 is attained at both boundary points (so that the two-sided 
blowup in (64) takes place), Corollary 3.5 gives conditions on the initial data which imply the 
existence of solutions of (1) whose slopes cannot blowup only towards one direction of infinity 
at every point in their domain.

4. An infinite family of exact global solutions spanning from zero initial velocities

The question of finite-time blowup in (1) from nontrivial initial velocities having a local profile 
different from that described in Theorem 3.2 is still open (see Remark 3.3). To help clarify 
this issue, in this section we use an argument similar to that in [3] to construct a family of 
global solutions to (1). Our findings indicate that an initial nontrivial vorticity which vanishes at, 
at least, one of the x∗

i (the points where f ′
0 attains its maximum) is a necessary condition to arrest 

finite-time blowup. This, in turn, would imply that a boundary-induced singularity, possible only 
under the set-up of Theorem 3.2, is the correct underlying mechanism for solutions of (1) to 
blowup from nontrivial smooth f0.

For a constant N0 ∈ R
+ ∪ {0}, we will consider initial data ρ0(x) = sin2 (2πx) and f ′

0(x) =
−N0 cos(4πx). Note that for N0 > 0, f ′

0 attains its greatest, positive value at points x∗
i located in 

the interior, with all the x∗
i being inflection points of f0. As opposed to the finite-time blowup in 

Theorem 3.2, we will find that solutions corresponding to this choice of initial data persist for all 
time. This leads us to conclude that the vanishing of the initial vorticity f ′′

0 (x) at x∗
i is responsible 

for suppressing the blowup. Briefly, the family of solutions we construct features exponential 
decay of ρ to zero as time goes to infinity, while fx convergences to steady states. The latter 
implies that both the velocity and the vorticity are uniformly bounded in time. Further, γx grows 
exponentially at a finite number of points in [0, 1] but decays, also exponentially, everywhere 
else.2 So even though the solutions we construct persist for all time, the exponential growth of 
γx at a finite number of locations and exponential decay everywhere else could be an indication 
that there are solutions of (1) which blowup everywhere in [0, 1] in both directions of infinity.

Set

ρ0(x) = sin2 (2πx) . (65)

We look for a particular solution of

μ̈(t, x) + I (t)μ(t, x) = ρ0(x) (66)

of the form

2 But the locations where it grows exponentially coincide with the points where ρ0(x) vanishes, which is the reason 
why ρ only decays.
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μ(t, x) = μ1(t) + ρ0(x)μ2(t), (67)

with μ(0, x) ≡ 1 and μ̇(0, x) = −f ′
0(x). In (67), μ1 and μ2 satisfy

μ̈1 + I (t)μ1 = 0, μ̈2 + I (t)μ2 = 1 (68)

with μ1(0) = 1 and μ2(0) = 0, which are required for μ(0, x) ≡ 1 to hold. Now, due to (26),

1 ≡
1∫

0

dx

μ1(t) + ρ0(x)μ2(t)
. (69)

Then (65) yields the relation

μ2 = 1

μ1
− μ1. (70)

Note that differentiating the above, setting t = 0 and using μ1(0) = 1, gives μ̇2(0) = −2μ̇1(0). 
Thus, since

−f ′
0(x) = μ̇(0, x) = μ̇1(0) + ρ0(x)μ̇2(0), (71)

if we choose μ̇1(0) = 0, then f ′
0(x) ≡ 0. So for the time being we simply set

μ̇1(0) = N0 ∈R
+ ∪ {0}. (72)

Next, using (70) to eliminate I (t) in (68), we obtain, after simplification,

(lnμ1)̈ = −1

2
μ1. (73)

Then, dividing both sides of (73) by μ1, differentiating in time, and setting

N(t) = μ̇1

μ1

leads to

2Ṅ = N2 − C0 (74)

for C0 = 1 + N2
0 . Solving (74) yields

μ1(t) = C0

[√
C0 cosh

(√
C0

2
t

)
− N0 sinh

(√
C0

2
t

)]−2

, (75)

from which a solution of (66) can be obtained via (67), (70) and (75). Note that f ′
0(x) =

−N0 cos(4πx). Consequently, if we use Dirichlet boundary conditions, or assume f0(x) to be 
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odd through x = 0, or simply enforce the mean-zero condition (7) for periodic initial data, then 
for the simplest case N0 = 0, we have that f0(x) ≡ 0 and

γx(t, x) =
[

sech2
(

t

2

)
+ 1

2
(3 + cosh t) tanh2

(
t

2

)
ρ0(x)

]−1

. (76)

In this case, the global solution corresponding to f0(x) ≡ 0 and ρ0(x) = sin2(2πx) is obtained 
from (27) and (29) as

fx(t, x) = cos(4πx) tanh

(
t

2

)
, ρ(t, x) = (1 + cosh t)ρ0(x)

2 + (3 + cosh t) sinh2 ( t
2

)
ρ0(x)

. (77)

More generally, for N0 > 0, f ′
0(x) = −N0 cos(4πx) attains its maximum at x1 = 1/4 and x2 =

3/4, with zero initial vorticity at both of these locations. Define � ≡ {0, 1/2, 1}, the zeros of 
ρ0(x) = sin2(2πx). Then as t → +∞, γx(t, x) → +∞ on � but vanishes everywhere else, 
ρ(t, γ (t, x)) vanishes exponentially for all x ∈ [0, 1]\� and is identically zero on �, whereas, 
for x ∈ [0, 1]\� or respectively x ∈ �, fx(t, γ (t, x)) converges to σ(N0) or −σ(N0), where

σ(N0) =
1 + N2

0 − N0

√
1 + N2

0

N0 −
√

1 + N2
0

. (78)

We remark that the behavior described above has been observed in 2d Boussinesq with diffusion 
[14] and stagnation-point form solutions of the incompressible 2d Euler equations [23].

5. Conclusions

We presented a local well-posedness result and a regularity criterion for solutions of (1)–(2), 
as well as (1) with (3) and mean-zero (7). The former can be viewed as an analogue of the well-
known regularity criteria for the inviscid 2d Boussinesq equations in terms of the gradient of 
the velocity field. Using Dirichlet boundary conditions (2), we also established general criteria 
for finite-time blowup (from smooth nontrivial initial data) of the time integral of fx(t, x) at the 
boundary and, as a consequence, proved one or two-sided blowup in the vorticity (23). Assuming 
f ′

0 attains its greatest value M0 > 0 only at the boundary, our blowup criteria makes use of the 
local profile of f0, as characterized by the non-vanishing of the initial vorticity at the boundary, 
and a non-negative initial temperature ρ0. Lastly, we constructed an infinite family of solutions 
to (1) that illustrates how the vanishing of the initial vorticity at, at least, one of the points where 
M0 is attained (be this point located at the boundary or in the interior), may suppress finite-time 
blowup. If we restrict the class of initial data to smooth functions satisfying the Dirichlet bound-
ary condition (2), or periodic boundary condition (3) with mean-zero (7), then our results indicate 
that only (2) may induce finite-time blowup.
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