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• We study the 2D Boussinesq equations without buoyancy diffusion.
• We establish the global-in-time existence and uniqueness of classical solutions.
• We study linear stability and instability of some stratified hydrostatic equilibria.
• Direct numerical simulations corroborate analytical results.
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a b s t r a c t

We study the global well-posedness and stability/instability of perturbations near a special type of
hydrostatic equilibrium associated with the 2D Boussinesq equations without buoyancy (a.k.a. thermal)
diffusion on a bounded domain subject to stress-free boundary conditions. The boundary of the domain
is not necessarily smooth and may have corners such as in the case of rectangles. We achieve three goals.
First, we establish the global-in-time existence and uniqueness of large-amplitude classical solutions.
Efforts are made to reduce the regularity assumptions on the initial data. Second, we obtain the large-
time asymptotics of the full nonlinear perturbation. In particular, we show that the kinetic energy and
the first order derivatives of the velocity field converge to zero as time goes to infinity, regardless of the
magnitude of the initial data, and the flow stratifies in the vertical direction in a weak topology. Third,
we prove the linear stability of the hydrostatic equilibrium T (y) satisfying T ′(y) = α > 0, and the linear
instability of periodic perturbations when T ′(y) = α < 0. Numerical simulations are supplemented to
corroborate the analytical results and predict some phenomena that are not proved.
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1. Introduction

1.1. Background

The two-dimensional (2D) incompressible Boussinesq equa-
tions describing the motion of buoyancy driven fluid flows are⎧⎨⎩
∂tu+ u · ∇u+∇P = νx∂xxu+ νy∂yyu+ θe2,
∂tθ + u · ∇θ = κx∂xxθ + κy∂yyθ,
∇ · u = 0,

(1.1)
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where x = (x, y) ∈ R2, t > 0 and u = (u, v)T, P, θ
denote, respectively, the velocity, pressure and buoyancy fields.
The vertical unit vector is e2 = (0, 1)T and νx, νy, κx, κy are the
(real non-negative) viscosity and buoyancy diffusion coefficients.
The acceleration term θe2 in the momentum equation, the first
equation in (1.1), models the buoyancy due to density variations
in presence of gravity. Such density variations are often due to
thermal expansion so we will interchangeably refer to θ as a
temperature field and its evolution, the second equation in (1.1)
as the temperature equation.

This system is routinely used to model flows across a tremen-
dous range of length and time scales from microfluidics and bio-
physics to geodynamics and astrophysics. It plays an important
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role in the study of turbulence and, suitably modified, in atmo-
spheric and oceanographic situations where rotation and strati-
fication play a dominant role [1–3]. It is also known for its close
connection with fundamental models in mathematical fluid me-
chanics:

• Analogy to 3D Euler Equations. One important feature of the
non-dissipative (νx = νy = κx = κy = 0) 2D Boussinesq system
is its analogy to the 3D incompressible Euler equations. Indeed,
the vorticity formulation of the 3D incompressible Euler equations
for axisymmetric swirling flow in cylindrical coordinates, (r, φ, x3),
reads⎧⎨⎩ ∂t

(
ωφ

r

)
+ vr∂r

(
ωφ

r

)
+ v3∂x3

(
ωφ

r

)
= −

1
r4
∂x3

[
(rvφ)2

]
,

∂t
[
(rvφ)2

]
+ vr∂r

[
(rvφ)2

]
+ v3∂x3

[
(rvφ)2

]
= 0,

where ωφ denotes the angular vorticity in cylindrical coordinates.
On the other hand, the vorticity formulation of the 2D non-
dissipative Boussinesq system in Cartesian coordinates takes the
form{
∂tω + v∂yω + u∂xω = ∂xθ,
∂tθ + v∂yθ + u∂xθ = 0,

where ω = ∂xv− ∂yu denotes the 2D vorticity in Cartesian coordi-
nates. In view of the two systems we see the correspondence:

ωφ

r
←→ ω, vr ←→ v, v3 ←→ u, r ←→ y,

x3 ←→ x, (rvφ)2 ←→−θ.

Therefore, away from the line of singularity (r = 0), one should
expect that the qualitative behavior of the 3D incompressible Euler
equations for axisymmetric swirling flow is identical to that of the
2D non-dissipative Boussinesq equations.

• Vortex Stretching Effect . A second important feature of the 2D
Boussinesq system is that it shares a similar vortex stretching effect
as that in 3D flows. As a matter of fact, by letting W = ∇θ =
(∂xθ, ∂yθ )T, one can show that for classical solutions, (1.1) with
νx = νy = κx = κy = 0 is equivalent to⎧⎪⎨⎪⎩
∂tω + u · ∇ω = ∂xθ,
∇ · u = 0,

∂tW+ u · ∇W = −(∇uT)W,

where (∇uT) = (∇u ∇v) is a 2 × 2 matrix. The first equation
indicates that qualitatively the growth of the vorticity depends on
the temporal accumulation of ∂xθ which is the first component of
W. From the third equation we see that W has the same degree of
regularity as ∇u. Therefore, qualitatively the growth of the vortic-
ity depends on the temporal accumulation of∇u— a scenario that
is similar to the vortex stretching effect in the 3D incompressible
Euler equations. In fact, in view of the vorticity equation of the 3D
incompressible Euler equations:

∂tΣ + U · ∇Σ = Σ · ∇U,

where U is the 3D velocity and Σ = ∇ × U, we see that the
growth of the vorticity depends on the temporal accumulation of
the gradient of the velocity field, as well.

1.2. Literature review

Due to its physical background and mathematical features,
the 2D Boussinesq system has attracted considerable attention
from the community of mathematical fluid mechanics in recent
years. The following results concerning the qualitative behavior
(global/local well-posedness, blowup criteria, regularity, explicit
solutions, finite-time singularities, etc.) of (1.1) have been well
documented in the literature:

• global well-posedness, blowup criteria and regularity when
νx, νy, κx, κy are not all zeros [4–26],
• local well-posedness, blowup criteria, explicit solutions and

finite-time singularities when all four parameters are ze-
ros [27–36],
• well-posedness and regularitywith critical and supercritical

dissipation [37–43].

Comparing with the magnitude of research conducted on the
well-posedness of the model, the long-time asymptotic behavior
of (1.1) has been investigated relatively little. To the authors’
knowledge, the following results have been achieved so far:

• exponential decay of θ to constant states and uniform-in-
time boundedness of kinetic energy for initial–boundary
value problems on 2D bounded smooth domains for large
data when νx = νy = 0, κx = κy = κ > 0 [26],
• uniform-in-time boundedness of kinetic energy for initial–

boundary value problems on 2D bounded smooth domains
for large data when νx = νy = ν > 0, κx = κy = 0 [22],
• algebraic decay of (u, θ ) to constant ground states for the

Cauchy problem on R3 for small data when νx = νy = ν >
0, κx = κy = κ > 0 [44].
• long time averaged heat transport sustained by thermal

boundary conditions, i.e., bounds for Rayleigh–Bénard con-
vection [45].
• existence of a global attractor containing infinitely many

invariant manifolds on 2D periodic domains when νx =
νy = ν > 0, κx = κy = 0 [46].

1.3. Motivation and goal

The 2D Boussinesq system describes the motion of buoyancy
driven flows. The hydrostatic equilibria associated with buoyancy
driven flows take the form [0, Phe(y), θhe(y)] where the vertically
stratified pressure and temperature satisfy ∂yPhe(y) = θhe(y)
obtained from the first equation of (1.1) by setting u = 0.
Moreover, when the thermal diffusion coefficients κx, κy > 0, by
formally substituting the ansatz into the second equation of (1.1),
we see that ∂yyθhe(y) = 0 which suggests that the equilibrium
temperature is an affine function of the depth. Mathematically, it
is then natural to ask whether such kind of ansatz is stable under
appropriate initial and boundary conditions.

When the dissipation parameters satisfy νx = νy = ν > 0 and
κx = κy = κ > 0, it is not difficult to check that when (1.1) is
set on a bounded domain with sufficiently smooth boundary and
subject to the boundary conditions: θ |∂Ω = αy + θ̄ & u|∂Ω = 0
(no-flow), or θ |∂Ω = αy + θ̄ & u · n|∂Ω = 0, ω|∂Ω = 0 (stress-
free), where ω = ∂xv − ∂yu denotes the 2D vorticity, the ansatz
(u∞, θ∞) = (0, αy+ θ̄ ) is globally asymptotically stable, provided
α > 0. Indeed, the global asymptotic stability follows from the
energy conservation law:

d
dt

(
α∥u∥2L2 + ∥θ − αy− θ̄∥

2
L2

)
+ αν∥ω∥2L2

+ κ∥∇(θ − αy− θ̄ )∥2L2 = 0, (1.2)

and the Poincaré inequality.
On the other hand, in certain circumstances when the thermal

diffusion is insignificant, (1.1) becomes⎧⎨⎩
∂tu+ u · ∇u+∇P = νx∂xxu+ νy∂yyu+ θe2,
∂tθ + u · ∇θ = 0,
∇ · u = 0,

(1.3)

which arises naturally as a relevant system in geophysics [47–49].
Comparing with (1.1), the system (1.3) is only partially dissipative
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with missing dissipation in the second major function of interest.
Such a degeneracy, together with the nonlinear coupling through
advection and gravity, makes the mathematical analysis of (1.3)
considerably more challenging than that for (1.1). Although the
global well-posedness of (1.3) has been proved under various
initial and/or boundary conditions, the long-time behavior is still
elusive. So far the only such results can be found in [22,46], in
which it was shown that the kinetic energy associated with (1.3)
on bounded domains is uniformly bounded with respect to time,
which indicates that the flow is trapped inside of a finite ball in
the energy space. Moreover, it was shown that (1.3) has a so-called
weak sigma-attractor which contains infinitely many invariant
manifolds in which several universal properties of the Batche-
lor, Kraichnan, Leith theory of turbulence are potentially present.
However, we note that the results in [22,46] do not imply the
unconditional ‘‘slowing down’’ of the flow, and therefore provide
no information about the global stability of hydrostatic equilibria
associated with (1.3).

The objective of this paper is to study the global well-posedness
of (1.3) on 2D bounded domains with non-smooth boundaries for
large data, and investigate the stability/instability of hydrostatic
equilibria associated with the partially-dissipative system. The
spatial domain Ω ⊂ R2 under consideration is either a rectangle
or more generally a connected bounded domain with Lipschitz
boundary satisfying someminor constraints that we are specifying
now. Since ∂Ω concerned here is not smooth andmay have corners
such as in the case of rectangles, we impose additional conditions
on Ω (in addition to ∂Ω being Lipschitz) so that some of the
classical analysis tools such as the Calderón–Zygmund inequality
are still valid for such domains. Jerison and Kenig in [50] give a
striking example in which the domain Ω has C1 boundary and
the Calderón–Zygmund inequality fails. We focus on bounded and
simply connected planar domains with ∂Ω belonging to C2,γ (γ ∈
(0, 1)) except at a finite number of points, where ∂Ω is a corner
of angle in (0, π2 ]. Planar polygonal domains such as rectangles in
R2 are special examples of such domains. As shown in [51–53], the
Calderón–Zygmund inequality and some other tools still hold for
such domains.

This paper attempts to achieve three main goals. The first is to
establish the global-in-time existence and uniqueness of classical
solutions to the following initial–boundary value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u+∇P = ν∆u+ θe2,
∂tθ + u · ∇θ = 0,
∇ · u = 0,
(u, θ )(x, 0) = (u0, θ0)(x),
u · n|∂Ω = 0, ω|∂Ω = 0,

(1.4)

where Ω ⊂ R2 is as specified in the previous paragraph, n is
the unit outward normal to ∂Ω , and ω = ∂xv − ∂yu is the 2D
vorticity. A particular type of such domains are the rectangles.
(1.4) in the whole space R2 or in a smooth bounded domain with
the Dirichlet boundary condition has been studied previously and
important results on the well-posedness have been obtained (see,
e.g., [10,19,46,21,22,23]). In our study presented in this paper, we
attempt to make weak regularity assumptions on the initial data.
In addition, the boundary of the domain here is not smooth.

Motivated by the reasoning for the fully dissipative system (see
(1.2) and the paragraph therein), the second goal is to understand
the large time behavior and the global stability of the perturbation
near the hydrostatic equilibrium [uhe, Phe(y), θhe(y)] given by

uhe = 0, θhe(y) = T (y) ≡ αy+ θ̄ , Phe =
∫ y

0
T (z) dz.

The perturbation

ũ = u− uhe, P̃ = P − Phe(y), θ̃ = θ − θhe(y) (1.5)

satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂t ũ+ ũ · ∇ũ+∇P̃ = ν∆ũ+ θ̃e2,
∂t θ̃ + ũ · ∇ θ̃ + ṽ T ′(y) = 0,
∇ · ũ = 0;
(̃u, θ̃ )(x, 0) = (̃u0, θ̃0)(x),
ũ · n|∂Ω = 0, ω̃|∂Ω = 0,

(1.6)

where ω̃ = ∇ × ũ denotes the corresponding vorticity.
The third goal is to prove the linear stability of the hydrostatic

equilibrium when the vertically stratified temperature T (y) satis-
fies T ′(y) = α > 0 and the linear instability when T ′(y) = α < 0.
In order to achieve this goal, we first derive an equivalent system
of equations for the perturbation near the hydrostatic equilibrium
(see (4.7) below) and the corresponding linearized system (4.8).

1.4. Results

We now state our main results. Before doing so, we introduce
some notations for convenience.

Notation 1.1. Throughout this paper, ∥·∥Lp , ∥·∥L∞ and ∥·∥W s,p denote
the norms of the usual Lebesguemeasurable spaces Lp(Ω), L∞(Ω) and
the usual Sobolev space W s,p(Ω), respectively. For p = 2, we denote
the norms ∥ · ∥L2 and ∥ · ∥W s,2 by ∥ · ∥ and ∥ · ∥Hs , respectively.
Unless specified, ci denote generic constants which are independent
of the unknown functions and t, but may depend on ν,Ω and initial
data. The values of the constants may vary line by line according to
the context.

We present three main results. The first one assesses the
global-in-time existence and uniqueness of solutions to the initial–
boundary value problem (1.4). The second one describes the large
time behavior of the nonlinear perturbation while the third estab-
lishes the linear stabilitywhen the vertically stratified temperature
T (y) satisfies T ′(y) = α > 0 and the linear instability for periodic
perturbations when T ′(y) = α < 0.

Theorem 1.1. Let Ω ⊂ R2 be a rectangle or a more general bounded
and simply connected planar domain with ∂Ω belonging to C2,γ (γ ∈
(0, 1)) except at a finite number of points, where ∂Ω is a corner of
angle in (0, π2 ]. Consider the initial–boundary value problem (1.4).
Suppose that the initial data u0 ∈ H2(Ω) and θ0 ∈ H1(Ω),∇ ·u0 = 0
and are compatible with the boundary conditions. Then (1.4) has a
unique global-in-time solution (u, θ ) satisfying

u ∈ L∞((0, t);H2(Ω)) ∩ L2((0, t);H3(Ω)) and
θ ∈ L∞((0, t);H1(Ω))

(1.7)

for any t > 0. In addition, if (u0, θ0) ∈ H3(Ω), then u ∈
L∞((0, t);H3(Ω))∩ L2((0, t);H4(Ω)) and θ ∈ L∞((0, t);H3(Ω)) for
any t > 0.

Our second main result focuses on the large time behavior of
solutions to (1.6), the full nonlinear equations for the perturbation
[̃u, P̃, θ̃ ].

Theorem 1.2. Assume Ω ⊂ R2 is either a rectangle or a more
general Lipschitz domain as specified previously. Consider the initial–
boundary value problem (1.6) for the perturbation [̃u, P̃, θ̃ ]. Assume
the initial perturbations ũ0 ∈ H2(Ω), θ̃0 ∈ H1(Ω) ∩ L∞(Ω),
∇ · ũ0 = 0, and are compatible with the boundary conditions. Then
(1.6) possesses a unique and global-in-time solution (̃u, θ̃ ) satisfying

ũ ∈ L∞((0, t);H2(Ω)) ∩ L2((0, t);H3(Ω)),
θ̃ ∈ L∞((0, t);H1(Ω) ∩ L∞(Ω)).
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Furthermore, if T ′(y) = α > 0, the solution (̃u, θ̃ ) obeys the following
large-time behavior, as t →∞,

• ∥̃u(t)∥L2 → 0, ∥∇ũ(t)∥L2 → 0, ∥∂t ũ(t)∥ → 0,

• ∥̃θ (t)∥ → c0, 0 < c0 <
√
α∥̃u0∥

2 + ∥̃θ0∥
2
,

• ∥∇P̃ − θ̃e2∥H−1 → 0,

(1.8)

and there exists a positive constant C, which is independent of t > 0,
such that

∥̃u(t)∥H2 ≤ C, ∀ t > 0. (1.9)

Remark 1.1. We remark that by combining the uniform estimate
(1.9) with the arguments in [46], one can establish the existence of
global attractors in stronger topological spaces, as was pointed out
in [46].

The third main result assesses the linear stability when the
vertically stratified temperature T (y) satisfies T ′(y) = α > 0
and the linear instability for periodic perturbations when T ′(y) =
α < 0. As a preparation, we derive an equivalent system of
equations for the perturbation near the hydrostatic equilibrium
and the corresponding linearized system. In contrast to the peri-
odic case or the whole space case, this process is more involved
due to the nonsmoothness of the domain. We invoke a result
asserting the existence andboundedness of the operator projecting
onto divergence-free vector fields for bounded convex domains
(see [51,54]).

Denote by D(Ω) the space of smooth vector fields compactly
supported onΩ . Let

V = {u ∈ D(Ω) : ∇ · u = 0} .

Let Lp(Ω) with 1 < p < ∞ denote the standard Lebesgue space
and set

Lpσ (Ω) =
{
u ∈ Lp(Ω),∇ · u = 0 in Ω, u · n = 0 on ∂Ω

}
.

Alternatively, Lpσ (Ω) is the closure of V in Lp(Ω). Let PΩ : L2(Ω)→
L2τ (Ω) be the orthogonal projector. According to Theorem I.1.4
of [55], for any Lipschitz domainΩ , PΩ is well defined. The follow-
ing lemma [54] states that PΩ can be extended to general Lp(Ω).

Lemma 1.3. Let Ω ⊂ R2 be a bounded convex domain. Let 1 < p <
∞. Then

(1) PΩ can be extended to a bounded linear operator from Lp(Ω) to
Lpσ (Ω) and

∥PΩu∥Lp ≤ C(Ω, p) ∥u∥Lp .

In addition,

PΩu = u for any u ∈ Lpσ (Ω). (1.10)

(2) For any u ∈ Lp(Ω), there exists a unique π ∈ W 1,p(Ω) (up to
an additive constant) such that

u = PΩu+∇π.

Additionally, in the weak sense, ∆π = ∇ · u, which allows us
to write

π = ∆−1∇ · u, (1.11)

where π ’s different by an additive constant are regarded the
same. In addition,

∥∇π∥Lp ≤ C(Ω, p) ∥u∥Lp .

With this lemma at our disposal, we can now state the linear
stability and instability results.

Theorem 1.4. Assume the spatial domain Ω ⊂ R2 is as specified
in Theorem 1.2. Let (̃u, P̃, θ̃ ) denote the perturbation as stated in
Theorem 1.2 with the initial perturbation (̃u0, θ̃0) satisfying ũ0 ∈

H2(Ω), θ̃0 ∈ H1(Ω), ∇ · ũ0 = 0 and the compatibility conditions.
Let

PΩ : L2(Ω)→ L2σ (Ω)

denote the projection operator as in Lemma 1.3.

(1) (1.6) is equivalent to the following system without the pressure
term,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂t ũ+ PΩ (̃u · ∇ũ) = ν∆ũ+ θ̃e2 −∇∆−1∇ · (̃θe2),
∂t θ̃ + ũ · ∇ θ̃ + ṽ T ′(y) = 0,
∇ · ũ = 0,
(̃u, θ̃ )(x, 0) = (̃u0, θ̃0)(x),
ũ · n|∂Ω = 0, ω̃|∂Ω = 0,

(1.12)

with the corresponding linearized system of equations given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tU = ν∆U+Θ e2 −∇∆−1∇ · (Θ e2),
∂tΘ + V T ′(y) = 0,
∇ · U = 0,
(U,Θ)(x, 0) = (U0(x),Θ0(x)),
U · n|∂Ω = 0, ω|∂Ω = 0,

(1.13)

where we have used capital letters to distinguish the solutions
of the linearized system from those of the full system, and U =
(U, V ) with V being the vertical component and ω = ∇ × U.

(2) Let T ′(y) = α > 0. Assume the initial data (U0,Θ0) satisfying
U0 ∈ H2, ∇ · U0 = 0 and Θ0 ∈ H1. When Ω is a rectangle,
we also make the natural assumption that Θ0 is zero on the top
and the bottom. When Ω is a general domain, we impose that
Θ is zero on the boundary ∂Ω . Then (1.13) has a unique global
solution (U,Θ) that is also stable in the sense, as t →∞,

• ∥U(t)∥, ∥∇U(t)∥, ∥∆U(t)∥ → 0,

• ∥Θ(t)∥ → C0, 0 < C0 <

√
α∥U0∥

2 + ∥Θ0∥
2,

• ∥∇Θ(t)∥ → C1, 0 < C1 <

√
α∥∇U0∥

2 + ∥∇Θ0∥
2.

(1.14)

(3) If T ′(y) = α < 0, then any spatially periodic solution (U,Θ) is
unstable.

1.5. Idea of proof

The core of the proof of Theorem 1.1 is the global-in-time a
priori bound for (u, θ ) in (1.7). We use L2-based energy method.
The main difficulties are due to the lack of dissipation in the
temperature equation and the weak regularity setup. We begin
with the Lyapunov functional (free energy formulation) associated
with (1.4):
d
dt

(
α∥u∥2 + ∥θ − (αy+ θ̄ )∥2

)
+ 2αν∥ω∥2 = 0, (1.15)

where α > 0 and θ̄ are arbitrary constants. It follows from
(1.15) that the kinetic energy is uniformly boundedwith respect to
time, and ∥ω∥2 is uniformly integrable with respect to time. Since
the spatial domain is bounded, the uniform integrability of ∥ω∥2,
together with the Poincaré inequality, implies that the kinetic
energy is also uniformly integrablewith respect to time. The global
bound for ∥∇u∥ and the time integrability of ∥u∥H2 are obtained
via the vorticity equation. To further the estimates, we seek the
global bounds for ∥∇ω∥ and ∥∇θ∥ simultaneously. Due to the lack
of dissipation in the temperature equation, we need to control
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∥∇u∥L∞ . This is achieved via a logarithmic Sobolev inequality for
domains that may not necessarily have smooth boundaries (see
Lemma 2.2). In addition, due to the regularity limitation, we also
invoke an improved Gronwall inequality (see Lemma 2.3). We
make no effort in this proof to optimize the bounds in terms of
time.

To prove the large-time asymptotics for the perturbation (̃u, θ̃ )
in Theorem 1.2, we start with a lemma stating that any nonneg-
ative, integrable and uniformly continuous function f = f (t) on
(0,∞) must decay to zero as t → ∞ (see Lemma 3.1). When the
vertically stratified temperature T (y) satisfies T ′(y) = α > 0, we
first show α∥̃u(t)∥2 + ∥̃θ (t)∥2 decreases in time t , and ∥∇ũ(t)∥2
is integrable on (0,∞) and ∥̃u(t)∥2 is uniformly continuous in
t ∈ [0,∞). Poincaré’s inequality implies that ∥̃u(t)∥2 ∈ L1(0,∞).
Lemma 3.1 then leads to ∥̃u(t)∥2 → 0 as t → ∞. To show
∥∇ũ(t)∥ → 0, we resort to the vorticityω and show ∥ω(t)∥2 is uni-
formly continuous in t ∈ (0,∞). An application of Lemma 3.1 then
yields the desired property for ∥∇ũ(t)∥. The proof of ∥∂t ũ(t)∥ → 0
as t → ∞ is obtained by applying Lemma 3.1 to the quantity
A(t) ≡ e−

∫ t
0 ∥ω(τ )∥

2 dτ
∥∂t ũ(t)∥2. The large-time behavior ∥∇P̃ −

θ̃e2∥H−1 → 0 and the uniform boundedness of ∥̃u(t)∥H2 are
consequences of the decay properties of the velocity ũ.

The proof of Theorem 1.4 starts with a derivation of an equiva-
lent system of equations for the perturbation near the hydrostatic
equilibriumand the corresponding linearized system. To derive the
equivalent systems, we need to eliminate the pressure term. Since
the domain Ω may not be smooth, we make use of a recent work
on the existence of the projection operator PΩ (see [54]) and show
that, for the stress-free boundary conditions, PΩ∆ = ∆, where
∆ denotes the Laplacian operator. With the suitable form of the
linearized system at our disposal, the linear stability when T ′(y) =
α > 0 is obtained by careful energy estimates and the application
of Lemma 3.1. The linear instability of periodic perturbationswhen
T ′(y) = α < 0 follows from the fact that one of the eigenvalues of
the matrix (in Fourier space) associated with the linear system is
always positive.

The rest of the paper is organized as follows. Section 2 contains
the proof of Theorem 1.1. Section 3 proves Theorem 1.2 while
Section 4 proves Theorem1.4. Section 5 is devoted to the numerical
studies of (1.4), in which we try to understand some of the unre-
solved issues concerning the long-time behavior of the problem.
The paper ends with concluding remarks.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We first
state the Calderón–Zygmund inequality which is frequently used
in the subsequent sections. As aforementioned, we assume that
Ω is a bounded and simply connected planar domains with ∂Ω
belonging to C2,γ (γ ∈ (0, 1)) except at a finite number of points,
where ∂Ω is a corner of angle in (0, π2 ]. Planar polygonal domains
such as rectangles in R2 are special examples of such domains.
As shown in [51–53], the Calderón–Zygmund inequality holds for
such domains.

Lemma 2.1. Assume that Ω is a bounded and simply connected
planar domains with ∂Ω belonging to C2,γ (γ ∈ (0, 1)) except at a
finite number of points, where ∂Ω is a corner of angle in (0, π2 ]. Let
v ∈ W s,p(Ω) be a vector-valued function satisfying ∇ · v = 0 and
v · n|∂Ω = 0 where n is the unit outward normal to ∂Ω . Then there
exists a constant c = c(s, p,Ω), such that

∥v∥W s,p ≤ c∥∇ × v∥W s−1,p

for any s ≥ 1 and p ∈ (1,∞).

The proof of Theorem 1.1 also involves a logarithmic Sobolev
inequality for domains that may not necessarily have smooth
boundaries. The following lemma provides a logarithmic Sobolev
interpolation inequality for a bounded convex domainwith a finite
number of corners. Planar polygonal domains such as rectangles in
R2 are special examples of such domains.

Lemma 2.2. Let Ω ⊂ R2 be a Lipschitz domain verifying that there
exist constants A > 1, δ0 ∈ (0, diam(Ω)) such that for any r ∈ (0, δ0)
and x ∈ Ω ,

A|Ω(x, r)| ≥ |B(x, r)| ≥ |Ω(x, r)|,

where Ω(x, r) = Ω ∩ B(x, r) with B(x, r) being the ball with center
x and radius r. Then there exists a constant C depending on δ0 such
that, for any smooth function f and 0 < α, β ≤ 1,

∥f ∥L∞(Ω) ≤ C β−α
(
sup
p≥2

∥f ∥Lp(Ω)

pα
+ 1

)
logα(e+ ∥f ∥C0,β (Ω)).

A special consequence is the following logarithmic Sobolev interpola-
tion inequality. AssumeΩ is a bounded and simply connected domain
of R2, with ∂Ω belonging to C2,γ (γ ∈ (0, 1)) except at a finite
number of points, where ∂Ω is a corner of angle between 0 and π

2 .
Assume u is smooth vector. Then, for some constant C,

∥∇u∥L∞(Ω) ≤ C (1+ ∥∇u∥H1(Ω)) log(1+ ∥∆∇u∥L2(Ω)).

The first part of Lemma 2.2 can be found in [56]. The second part
is a special consequence of the first part. In fact, if we take α = 1
and any β < 1, we obtain the second part by recalling the Sobolev
inequalities,

∥f ∥Lp(Ω) ≤ C p ∥∇f ∥L2(Ω), ∥f ∥C0,β (Ω) ≤ C ∥f ∥H2(Ω),

which hold for Lipschitz domains.
We also need an improved Gronwall type inequality (see,

e.g., [57]).

Lemma 2.3. Assume that Y , Z, A and B are non-negative functions
satisfying
d
dt

Y (t)+ Z(t) ≤ A(t) Y (t)+ B(t) Y (t) ln(1+ Z(t)). (2.1)

Let T > 0. Assume A ∈ L1(0, T ) and B ∈ L2(0, T ). Then, for any
t ∈ [0, T ],

Y (t) ≤ (1+ Y (0))e
∫ t
0 B(τ ) dτ

e
∫ t
0 e

∫ t
s B(τ ) dτ (A(s)+B2(s)) ds (2.2)

and∫ t

0
Z(τ ) dτ ≤ Y (t)

∫ t

0
A(τ ) dτ + Y 2(t)

∫ t

0
B2(τ ) dτ <∞. (2.3)

For the convenience of the readers, we provide a proof of this
lemma.

Proof of Lemma 2.3. Setting

Y1(t) = ln(1+ Y (t)), Z1(t) = Z(t)/(1+ Y (t)),

we have
d
dt

Y1(t)+ Z1(t) ≤ A(t)+ B(t) ln(1+ Z(t))

≤ A(t)+ B(t) ln(1+ (1+ Y (t)) Z1(t))
≤ A(t)+ B(t) ln(1+ Y (t))(1+ Z1(t))
≤ A(t)+ B(t) Y1(t)+ B(t) ln(1+ Z1(t)).

Using the simple fact that, for f ≥ 0,

ln(1+ f (t)) ≤ f
1
2 (t), (2.4)
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we obtain
d
dt

Y1(t)+ Z1(t) ≤ A(t)+ B(t) Y1(t)+ B2(t)+
1
4
Z1(t).

Gronwall’s inequality then implies

Y1(t) ≤ Y1(0) e
∫ t
0 B(τ ) dτ

+

∫ t

0
e
∫ t
s B(τ ) dτ (A(s)+ B2(s)) ds,

which yields (2.2). In addition, (2.2) allows us to obtain (2.3) by
using the inequality (2.4) in (2.1) and integrating in time. This
completes the proof of Lemma 2.3. □

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. The key component of the proof is the
global-in-time a priori bound for (u, θ ) in the Sobolev space

u ∈ L∞((0, t);H2(Ω)) ∩ L2((0, t);H3(Ω)), θ ∈ L∞((0, t);H1(Ω))

for any t > 0. Once the global bound is established, the existence of
solutions then follows from some of the standard procedures such
as various approximation schemes. The uniqueness of the solutions
is a simple consequence of the fact∫ t

0
∥∇u(·, τ )∥L∞(Ω) dτ <∞

due to u ∈ L2((0, t);H3(Ω)). This remark explains why it suffices
to prove the global a priori bounds. In general the bounds depend
on the time t and we shall not make efforts to obtain the optimal
bounds.

First of all, since θ is purely transported by a divergence-free
vector field, it holds that

∥θ (t)∥Lp = ∥θ0∥Lp , ∀ t > 0, ∀ p ∈ [2,∞]. (2.5)

For any fixed constants a > 0 and b, c ∈ R, wewrite θ̃ = θ−ay−b
and P̃ = P − a

2y
2
− by− c to convert (1.4) to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u+∇P̃ = ν∆u+ θ̃e2,
∂t θ̃ + u · ∇ θ̃ = −au · e2,
∇ · u = 0;

(u, θ̃ )(x, 0) = (u0, θ0 − ay− b)(x),
u · n|∂Ω = 0, ω|∂Ω = 0.

(2.6)

Taking the L2-inner products of the first equation of (2.6) with au
and the second equation with θ̃ , and using the boundary condi-
tions, we have
1
2

d
dt

(
a∥u∥2 + ∥θ̃∥2

)
+ aν∥ω∥2 = 0, (2.7)

which implies, in terms of the original functions, that

1
2

d
dt

(
a∥u∥2 + ∥θ − ay− b∥2

)
+ aν∥ω∥2 = 0. (2.8)

This provides a Lyapunov functional associated with (1.4). More-
over, since
d
dt
∥θ∥2 = 0 and

d
dt

∫
Ω

θ dx = 0,

the Lyapunov functional is equivalent to

d
dt

(
1
2
∥u∥2 −

∫
Ω

yθ dx
)
+ ν∥ω∥2 = 0,

where the quantity inside the parenthesis is the total mechanical
energy associated with (1.4). Our numerical simulations, see Sec-
tion 5, illustrate that the total mechanical energy decreases as time
evolves.

Upon integrating (2.8) with respect to time, we obtain

a∥u(t)∥2 + ∥θ (t)− ay− b∥2 + 2aν
∫ t

0
∥ω(τ )∥2 dτ

= a∥u0∥
2
+ ∥θ0 − ay− b∥2, ∀ t ≥ 0, (2.9)

which implies

∥u(t)∥2 + ν
∫ t

0
∥ω(τ )∥2dτ + ν

∫ t

0
∥∇u(τ )∥2dτ

≤ c1, ∀ t ≥ 0. (2.10)

To prove the global H1-bound, we resort to the vorticity equa-
tion

∂tω + u · ∇ω = ν∆ω + ∂xθ. (2.11)

Multiplying (2.11) by ω, integrating over Ω and applying the
boundary conditions u · n|∂Ω = 0 and ω|∂Ω = 0, we have

1
2

d
dt
∥ω∥2 + ν∥∇ω∥2 = −

∫
Ω

θ ∂xω dx. (2.12)

Inserting the inequality⏐⏐⏐⏐∫
Ω

θ ∂xω dx
⏐⏐⏐⏐ ≤ ν

2
∥∇ω∥2 + c2 ∥θ∥2

in (2.12) and integrating in time yields

∥ω(t)∥2 + ν
∫ t

0
∥∇ω(τ )∥2 dτ ≤ 2c2 ∥θ0∥2t. (2.13)

According to Lemma 2.1, (2.10) and (2.13) especially imply∫ t

0
∥u(τ )∥H2 dτ ≤ c3 t. (2.14)

Next we prove a global bound for ∥u∥H2 and ∥∇θ∥. This is
achieved by combining the energy inequalities for ∥∇ω∥ and ∥∇θ∥
and invoking Lemmas 2.2 and 2.3. Multiplying the vorticity equa-
tion (2.11) by ∆ω, integrating over Ω and applying the boundary
conditions u · n|∂Ω = 0 and ω|∂Ω = 0, we have

1
2

d
dt
∥∇ω∥2 + ν∥∆ω∥2 = −

∫
Ω

∂xθ ∆ω dx−
∫
Ω

(∇ω)T ∇u∇ω dx.

By the Ladyzhenskaya inequality,⏐⏐⏐⏐∫
Ω

(∇ω)T ∇u∇ω dx
⏐⏐⏐⏐ ≤ ∥∇u∥ ∥∇ω∥2L4
≤ c4 ∥∇u∥ ∥∇ω∥ ∥∆ω∥

≤
ν

4
∥∆ω∥2 + c5 ∥∇u∥2 ∥∇ω∥2.

Therefore,
d
dt
∥∇ω∥2 + ν∥∆ω∥2 ≤ c6 ∥∇θ∥2 + c7 ∥∇u∥2 ∥∇ω∥2. (2.15)

It follows from the temperature equation that

d
dt
∥∇θ∥2 ≤ 2∥∇u∥L∞ ∥∇θ∥2.

Invoking the logarithmic Sobolev inequality in Lemma2.2,we have

d
dt
∥∇θ∥2 ≤ c8

(
1+ ∥ω∥H1 log(1+ ∥∆ω∥)

)
∥∇θ∥2. (2.16)

Combining (2.15) and (2.16) and setting Y (t) = ∥∇ω∥2 + ∥∇θ∥2
and Z(t) = ∥∆ω∥2, we obtain

d
dt

Y (t)+ ν Z(t) ≤ c9 (1+ ∥∇u∥2) Y (t)

+ c10 ∥u∥H2 Y (t) log(1+ Z(t)). (2.17)
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Applying Lemma 2.3 to (2.17) and recalling the bound for ∥u∥H2 in
(2.14), we obtain the desired global bound for ∥∇ω∥ and ∥∇θ∥,

∥∇ω(t)∥, ∥∇θ (t)∥,
∫ t

0
∥∆ω(t)∥2 dτ ≤ c11 ec12e

c13t
.

By Lemma 2.1 and the Sobolev embedding, we have, for 2 < p <
∞,∫ t

0
∥u(τ )∥2W2,p dτ ≤ c14 ec12e

c13t
. (2.18)

We have made no effort here to optimize the time growth rate.
We derive further energy estimates for the solution when

(u0, θ0) ∈ H3, and complete the proof of Theorem 1.1. We start
with the Lp-estimate of∇θ . By taking the gradient∇ of the temper-
ature equation, then testing the result with p|∇θ |p−2∇θ , we have

d
dt
∥∇θ∥

p
Lp ≤ p∥∇u∥L∞∥∇θ∥

p
Lp , 2 < p <∞,

which, together with the Sobolev embedding, L∞ ↪→ W 1,p (2 <
p <∞), implies
d
dt
∥∇θ∥Lp ≤ c15∥u∥W2,p∥∇θ∥Lp , 2 < p <∞. (2.19)

We remark that no boundary condition for θ is necessary in the
derivation of (2.19). In a similar fashion, we can show that

d
dt
∥D2θ∥Lp ≤ c16∥∇θ∥W1,p∥u∥W2,p + c17∥u∥W2,p∥D2θ∥Lp ,

2 < p <∞. (2.20)

Combining (2.19) and (2.20), we obtain
d
dt
∥∇θ∥W1,p ≤ c18∥u∥W2,p∥∇θ∥W1,p , 2 < p <∞.

Gronwall’s inequality and (2.18) then imply

∥∇θ∥W1,p ≤ ec19e
c12e

c13t

∥∇θ0∥W1,p , 2 < p <∞. (2.21)

Moreover, direct calculations show that

∥θt∥Lp ≤ ∥u∥L∞∥∇θ∥Lp
≤ c20∥u∥H2∥∇θ∥Lp

≤ c21ec12e
c13t
∥∇θ∥Lp ,

∥∇θt∥Lp ≤ c22∥∇u∥H1∥∇θ∥L2p + c23∥u∥H2∥D2θ∥Lp

≤ c24ec12e
c13t (
∥∇θ∥L2p + ∥D

2θ∥Lp
)
, 2 < p <∞,

which, together with (2.21), shows that

∥θt∥W1,p ≤ c25ec19e
c12e

c13t

, 2 < p <∞. (2.22)

In addition, by taking the temporal derivative to the equation of
vorticity, then calculating the L2 inner product of the resulting
equation with ∂tω, we deduce
1
2

d
dt
∥∂tω∥

2
+ ν∥∇∂tω∥

2

= −

∫
Ω

(∂tu · ∇ω)∂tω dx+
∫
Ω

(∂t∂xθ )∂tω dx

≤ ∥∂tu∥L4∥∇ω∥L4∥∂tω∥ +
1
2
∥∂tω∥

2
+

1
2
∥∂t∂xθ∥

2

≤ c26∥u∥W2,4∥∂tω∥
2
+

1
2
∥∂tω∥

2
+

1
2
∥∂t∂xθ∥

2,

(2.23)

where we have applied Gagliardo–Nirenberg interpolation in-
equality and Lemma2.1. Applying theGronwall inequality to (2.23)
and using (2.18) and (2.22), we find

∂tω ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;H1(Ω)), ∀ 0 < T <∞. (2.24)

Applying the classic elliptic regularity theory to the equation of
vorticity and using (2.21) and (2.24), we can easily show that

ω ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), ∀ 0 < T <∞,

which, together with Lemma 2.1, implies

u ∈ L∞(0, T ;H3(Ω)) ∩ L2(0, T ;H4(Ω)), ∀ 0 < T <∞. (2.25)

Finally, applying (2.25) to the equation of temperature, we can
show that

θ ∈ L∞(0, T ;H3(Ω)), ∀ 0 < T <∞.

This completes the proof of Theorem 1.1. □

3. Proof of Theorem 1.2

This section proves Theorem 1.2. The following decay lemma
will be used several times.

Lemma 3.1. Assume f ∈ L1(0,∞) is a nonnegative and uniformly
continuous function. Then,

f (t)→ 0 as t →∞.

In particular, if f ∈ L1(0,∞) is nonnegative and satisfies, for a
constant C and any 0 ≤ s < t <∞,

|f (t)− f (s)| ≤ C |t − s|,

then f (t)→ 0 as t →∞.

The proof of this lemma is not difficult.

Proof. We prove by the definition of limit. For any ϵ > 0, the
uniform continuity of f implies that there exists δ > 0 such that,
for any 0 ≤ s < t <∞,

|f (t)− f (s)| <
ϵ

2
whenever |t − s| < δ.

Since f ∈ L1(0,∞), there exists T > 0 such that∫
∞

T
f (t)dt <

ϵδ

2
.

Especially, for any k = 0, 1, 2, . . .,∫ T+(k+1)δ

T+kδ
f (t)dt <

ϵδ

2
,

which implies that there exists tk ∈ (T +kδ, T + (k+1)δ) such that

f (tk) <
ϵ

2
.

Then, for any t > T , there exists k0 satisfying t ∈ (T + k0δ, T +
(k0 + 1)δ] and thus

f (t) ≤ f (tk0 )+ |f (t)− f (tk0 )| ≤
ϵ

2
+
ϵ

2
= ϵ.

This concludes the proof of Lemma 3.1. □

Although primarily we focus on the case whenΩ is a rectangle,
our results hold for more general domains as specified in Theo-
rem 1.1. When Ω is a rectangle, the curvature of the boundary κ
is zero and no boundary term gets into play. For a more general
domain, a boundary term related to κ plays a role. Wewill use n to
denote the unit outward normal vector to ∂Ω . If s is arc length and
we parameterize the curve by arc length, then dn

ds · n = 0; i.e., dn
ds

is perpendicular to n. The magnitude of dn
ds is called the curvature

of the curve and is denoted by κ . That is to say, κ = | dnds |. The unit
vector in the direction of dn

ds is defined as the unit tangent vector to
the curve and is denoted as τ . The following lemma facilitates the
process of energy estimates in the proof of Theorem 1.2.
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Lemma 3.2. Let Ω be a rectangle or a more general domain as spec-
ified in Theorem 1.1. Assume the vector field u and its corresponding
ω = ∇ × u satisfy the boundary conditions

u · n|∂Ω = 0, ω|∂Ω = 0.

Then the following identity holds

(n · ∇u) · τ + κ u · τ = 0 on ∂Ω,

where n and τ denote the unit outward normal and tangent vector to
∂Ω , respectively.

We provide a proof of Lemma 3.2.

Proof. Since u · n = 0 on ∂Ω , the directional derivative of u · n
along ∂Ω should also be zero, namely

d
dτ
(u · n) = 0 on ∂Ω.

The product rule then yields(
d
dτ

u
)
· n+ u ·

(
d
dτ

n
)
= 0 or

τ · ∇u · n+ u · (τ · ∇n) = 0 on ∂Ω.

Due to u · n = 0 on ∂Ω ,

u = (u · n)n+ (u · τ )τ = (u · τ )τ on ∂Ω.

Therefore, due to κ = dn
ds · τ =

(
∂n
∂x1

dx1
ds +

∂n
∂x2

dx2
ds

)
· τ =(

∂n
∂x1
τ1 +

∂n
∂x2
τ2

)
· τ = τ · ∇n · τ ,

τ · ∇u · n+ (τ · ∇n · τ) (u · τ ) = 0 or
τ · ∇u · n+ κ u · τ = 0 on ∂Ω.

Since ω = 0 on ∂Ω ,

∇u− (∇u)T =
(
0 −ω
ω 0

)
= 0 on ∂Ω.

That is, ∇u = (∇u)T . Therefore,

(n · ∇u) · τ = τ · (∇u)T · n = τ · ∇u · n = − κ u · τ ,

which is the desired equality. □

We now prove Theorem 1.2.

Proof of Theorem 1.2. Since the global-in-time existence and
uniqueness can be similarly obtained as in the proof of Theo-
rem1.1,we focus on the asymptotic behavior. Assume T ′(y) = α >
0. Taking the inner product of the first two equations in (1.6) with
(̃u, θ̃ ), we have

1
2

d
dt

(
α∥̃u∥2 + ∥̃θ∥2

)
= ν α

∫
Ω

∆ũ · ũ dx− α
∫
Ω

(̃u · ∇ũ) · ũ dx

−α

∫
Ω

∇P̃ · ũ dx−
∫
Ω

(̃u · ∇ θ̃ ) · ũ dx. (3.1)

The boundary conditions allow us to eliminate the last three
terms,∫

Ω

(̃u · ∇ũ) · ũ dx =
1
2

∫
∂Ω

n · ũ|̃u|2 dS(x) = 0, (3.2)∫
Ω

∇P̃ · ũ dx =
∫
∂Ω

n · ũ P̃ dS(x) = 0, (3.3)∫
Ω

(̃u · ∇ θ̃ ) · ũ dx =
1
2

∫
∂Ω

n · ũ θ̃2 dS(x) = 0. (3.4)

For the dissipative term, we first apply the divergence theorem to
obtain∫
Ω

∆ũ · ũ dx =
∫
∂Ω

(n · ∇ )̃u · ũ dS(x)−
∫
Ω

|∇ũ|2 dx.

Since ũ · n = 0 on ∂Ω , we can write

ũ = (̃u · n)n+ (̃u · τ )τ = (̃u · τ )τ on ∂Ω.

By Lemma 3.2,∫
∂Ω

(n · ∇ )̃u · ũ dS(x) =
∫
∂Ω

(n · ∇ )̃u · τ (̃u · τ ) dS(x)

= −

∫
∂Ω

κ (̃u · τ )2 dS(x).

Therefore,∫
Ω

∆ũ · ũ dx = −
∫
∂Ω

κ (̃u · τ )2 dS(x)−
∫
Ω

|∇ũ|2 dx. (3.5)

In the special case when Ω is a rectangle, the boundary term
vanishes and∫

Ω

∆ũ · ũ dx = −
∫
Ω

|∇ũ|2 dx.

Inserting (3.2), (3.3), (3.4) and (3.5) in (3.1) yields

1
2

d
dt

(
α∥̃u∥2 + ∥̃θ∥2

)
+ ν α

∫
Ω

|∇ũ|2 dx

+ ν α

∫
∂Ω

κ (̃u · τ )2 dS(x) = 0. (3.6)

Integrating in time yields, for any 0 ≤ s < t <∞,

α∥̃u(t)∥2 + ∥̃θ (t)∥2 + ν α
∫ t

s
∥∇ũ(ρ)∥2 dρ

+ ν α

∫ t

s
∥
√
κ (̃u · τ )(ρ)∥2L2(∂Ω) dρ

≤ α∥̃u(s)∥2 + ∥̃θ (s)∥2. (3.7)

Especially, (3.7) implies, Y (t) ≡ α∥̃u(t)∥2+ ∥̃θ (t)∥2 is a decreasing
function of t ∈ [0,∞) and

0 < Y (t) ≤ Y0 ≡ α∥̃u0∥
2
+ ∥̃θ0∥

2.

As a consequence, there exists c0 > 0 such that, as t →∞,

Y (t) ≡ α∥̃u(t)∥2 + ∥̃θ (t)∥2 → c20 < Y 2
0 . (3.8)

Next we show that, as t →∞,

∥̃u(t)∥ → 0 and ∥∇ũ(t)∥ → 0.

We recall the Poincaré inequality, for anyu ∈ H1(Ω) with∇·u = 0
and u · n = 0 on ∂Ω ,

∥u∥L2(Ω) ≤ C(Ω) ∥∇u∥L2(Ω).

Invoking the Poincaré inequality in (3.7) yields, for C > 0,

α∥̃u(t)∥2 + C
∫
∞

0
∥̃u(τ )∥2 dτ ≤ α∥̃u0∥

2
+ ∥̃θ0∥

2,

which in particular implies

∥̃u(t)∥2 ∈ L1(0,∞). (3.9)

We also need another ingredient, the uniform continuity of ∥̃u(t)∥2
as a function of t ∈ [0,∞). Taking the inner product of the equation
of ũ in (1.6) with ũ, we obtain

1
2

d
dt
∥̃u∥2 + ν α ∥∇ũ∥2 ≤

∫
θ̃ ṽ dx ≤ ∥̃u∥ ∥̃θ∥ ≤

Y0

2
√
α
.
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Therefore, for any 0 ≤ s ≤ t <∞ and C = Y0√
α
,⏐⏐∥̃u(t)∥2L2 − ∥̃u(s)∥2L2 ⏐⏐ ≤ C |t − s|. (3.10)

(3.9) and (3.10), togetherwith Lemma3.1, lead to the desired decay

∥̃u(t)∥ → 0 as t →∞. (3.11)

In addition, (3.8) and (3.11) yield

∥̃θ (t)∥ → c0.

We now prove

∥∇ũ(t)∥ → 0 as t →∞. (3.12)

According to (3.7), ∥∇ũ(t)∥2 ∈ L1(0,∞), which, in particular,
implies

∥ω̃(t)∥2 ∈ L1(0,∞). (3.13)

Taking the inner product of the vorticity equation

∂t ω̃ + ũ · ∇ω̃ = ν∆ω̃ + ∂1̃θ.

with ω and invoking the boundary conditions yield
1
2

d
dt
∥ω̃∥2 + ν∥∇ω̃∥2 = −

∫
∂1ω θ̃ dx ≤

ν

2
∥∇ω̃∥2 +

1
2ν
∥̃θ0∥

2

or
d
dt
∥ω̃∥2 + ν∥∇ω̃∥2 ≤

1
ν
∥̃θ0∥

2.

Integrating in time yields, for any 0 ≤ s < t <∞,⏐⏐∥ω̃(t)∥2 − ∥ω̃(s)∥2⏐⏐ ≤ 1
ν
|t − s|∥̃θ0∥2. (3.14)

(3.13) and (3.14), and Lemma 3.1 allow us to conclude that

∥ω̃(t)∥ → 0 as t →∞. (3.15)

By Lemma 2.1, ∥∇ũ(t)∥ ≤ C ∥ω̃(t)∥ and (3.15) implies (3.12). Next
we show that, as t →∞,

∥∂t ũ(t)∥ → 0. (3.16)

Applying ∂t to the equation of ũ in (1.6) yields

∂tt ũ+ ũ · ∇∂t ũ+ ũt · ∇ũ+∇∂t P̃ = ν∆∂t ũ+ ∂t θ̃e2. (3.17)

Taking the L2-inner product of (3.17) with ∂t ũ and invoking the
equation of θ̃ in (1.6), we have
1
2

d
dt
∥∂t ũ(t)∥2 + ν∥∂t ω̃∥2

=

∫
Ω

(∂t θ̃ ) (e2 · ∂t ũ) dx−
∫
Ω

(∂t ũ · ∇ũ) · (∂t ũ) dx

=

∫
Ω

θ̃ ũ · ∇(e2 · ∂t ũ) dx− a
∫
Ω

ṽ(e2 · ∂t ũ) dx

−

∫
Ω

(∂t ũ · ∇ũ) · (∂t ũ) dx.

(3.18)

By the Hölder inequality, Poincaré inequality and Sobolev inequal-
ity,⏐⏐⏐⏐∫

Ω

θ̃ ũ · ∇(e2 · ∂t ũ) dx
⏐⏐⏐⏐ ≤ ∥̃θ∥L∞ ∥̃u∥ ∥∇∂t ũ∥
≤
ν

8
∥∂t ω̃∥

2
+ C ∥̃u∥2,⏐⏐⏐⏐∫

Ω

ṽ(e2 · ∂t ũ) dx
⏐⏐⏐⏐ ≤ ∥̃v∥ ∥∂t ũ∥ ≤ C ∥̃v∥ ∥∇∂t ũ∥

≤
ν

8
∥∂t ω̃∥

2
+ C ∥̃v∥2

and⏐⏐⏐⏐∫
Ω

(∂t ũ · ∇ũ) · (∂t ũ) dx
⏐⏐⏐⏐ ≤ ∥∇ũ∥ ∥∂t ũ∥2L4 ≤ C ∥ω∥ ∥∂t ũ∥∥∇∂t ũ∥

≤
ν

4
∥∂t ω̃∥

2
+ C∥ω∥2 ∥∂t ũ∥2.

Inserting the estimates above in (3.18) yields
d
dt
∥∂t ũ(t)∥2 + ν∥∂t ω̃∥2 ≤ C ∥ω∥2 ∥∂t ũ∥2 + C ∥̃u∥2. (3.19)

Gronwall’s inequality, together with (3.9) and (3.13), implies

∥∂t ũ(t)∥2 + ν
∫ t

0
∥∂τ ω̃(τ )∥2 dτ ≤ C .

Poincaré’s inequality then implies∫
∞

0
∥∂t ũ(t)∥2 dt ≤ C

∫
∞

0
∥∂t ω̃(t)∥2 dt ≤ C . (3.20)

Writing (3.19) as
d
dt

(
e−C

∫ t
0 ∥ω∥

2dτ
∥∂t ũ∥2

)
≤ C e−C

∫ t
0 ∥ω∥

2dτ
∥̃u∥2,

integrating in time and using the fact the right-hand side is
bounded uniformly in time, we obtain

|A(t)− A(s)| ≤ C |t − s|, (3.21)

where A is given by

A(t) = e−C
∫ t
0 ∥ω(τ )∥

2dτ
∥∂t ũ(t)∥2.

In addition, (3.20) implies

A(t) ∈ L1(0,∞).

Lemma 3.1 then asserts A(t)→ 0 as t →∞. Therefore,

∥∂t ũ(t)∥2 = eC
∫ t
0 ∥ω(τ )∥

2dτ A(t) ≤ C A(t)→ 0. (3.22)

It then follows from the equation of ũ in (1.6) that

∥∇P̃ − θ̃e2∥H−1 ≤ ∥∂t ũ∥ + ∥̃u⊗ ũ∥ + ∥∇ũ∥
≤ ∥∂t ũ∥ + C ∥̃u∥ ∥∇ũ∥ + ∥∇ũ∥.

(3.11), (3.12) and (3.22) then lead to

∥∇P̃ − θ̃e2∥H−1 → 0 as t →∞.

Finally we prove (1.9). We note that the equation for ũ in (1.6) can
be written in the component form as

ν∂yω̃ + ∂x̃P = −∂t ũ− ũ · ∇ũ,
−ν∂xω̃ + ∂yP̃ = −∂t ṽ − ũ · ∇ṽ + θ̃ .
Due to the boundary condition ω̃|∂Ω = 0, it holds that

∥ν∂yω̃ + ∂x̃P∥2 + ∥ − ν∂xω̃ + ∂yP̃∥2

= ν2∥∇ω̃∥2 + ∥∇P̃∥2 + 2ν
∫
Ω

(∂yω̃ ∂x̃P − ∂xω̃ ∂yP̃)dx

= ν2∥∇ω̃∥2 + ∥∇P̃∥2 + 2ν
∫
Ω

∇ · (−ω̃ ∂yP̃, ω̃ ∂x̃P)dx

= ν2∥∇ω̃∥2 + ∥∇P̃∥2,

which, together with the preceding equations, implies

∥∇ω̃∥2 ≲ ∥∂t ũ∥2 + ∥̃u · ∇ũ∥2 + ∥̃θ∥2. (3.23)

According to the Ladyzhenskaya inequality, Lemma 2.1 and
Poincaré inequality, we have

∥̃u · ∇ũ∥2 ≲ ∥̃u∥2L4∥∇ũ∥
2
L4

≲ ∥̃u∥∥∇ũ∥2∥∇ω̃∥

≲
1
2
∥∇ω̃∥2 + ∥̃u∥2∥∇ũ∥4,
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which, together with (3.23), implies

∥∇ω̃∥2 ≲ ∥∂t ũ∥2 + ∥̃u∥2∥∇ũ∥4 + ∥̃θ∥2. (3.24)

Since ∥̃θ∥2 ≤ 2(∥θ∥2 + ∥αy + θ̄∥2), the uniform boundedness
of ∥∇ω(t)∥ then follows from (3.24), (3.11), (3.12), (3.22) and
(2.5). As a consequence of Lemma 2.1 and the Poincaré inequality,
we conclude that ∥u(t)∥H2 is uniformly bounded in time. This
completes the proof of Theorem 1.2. □

4. Proof of Theorem 1.4

This section proves Theorem 1.4. For the sake of clarity, it is
divided into three subsections. The first subsection derives the
system of Eqs. (1.13) while the second proves the linear stability
when T ′(y) = α > 0 and the third proves the linear instability of
periodic perturbations when T ′(y) = α < 0.

4.1. Derivation of (1.13)

Although our functional setting is ũ ∈ H2(Ω) and θ̃ ∈ H1(Ω),
we present a derivation that is valid for more general Sobolev
spaces

ũ ∈ W 2,p(Ω), θ̃ ∈ W 1,p(Ω), 1 < p <∞.

Let PΩ denote the projection operator from Lp(Ω) to Lpσ (Ω) with
1 < p < ∞ as stated in Lemma 1.3. Applying PΩ to the velocity
equation in (1.6) yields

∂t ũ+ PΩ (̃u · ∇ũ) = ν PΩ∆ũ+ PΩ (̃θe2). (4.1)

We first show that

PΩ∆ũ = ∆ũ. (4.2)

In general the operators PΩ and∆ do not commutate and (4.2)may
not be true, but the stress-free boundary conditions in (1.6) allow
us to prove (4.2). For ũ ∈ W 2,p(Ω) with ∇ · ũ = 0, we have

∆ũ ∈ Lp(Ω) and ∇ ·∆ũ = 0 in Ω. (4.3)

In addition, we show that

∆ũ · n = 0 on ∂Ω. (4.4)

In fact, ω̃ = 0 on ∂Ω implies the directional derivative of ω̃ along
the tangential direction τ on ∂Ω is zero, namely
dω̃
dτ
= 0 on ∂Ω,

where τ denotes the unit tangent vector to ∂Ω . That is,

τ · ∇ω̃ = 0 or τ1∂1ω̃ + τ2∂2ω̃ = 0 on ∂Ω. (4.5)

Since τ ·n = 0, we have τ = n⊥ or (τ1, τ2) = (−n2, n1). Thus, (4.5)
becomes

− n2∂1ω̃ + n1∂2ω̃ = 0 on ∂Ω.

Invoking ω̃ = ∂1̃v − ∂2̃u yields

−n2∂1(∂1̃v − ∂2̃u)+ n1∂2(∂1̃v − ∂2̃u) = 0 or
−n2∆ṽ − n1∆̃u = 0 on ∂Ω,

which is exactly (4.4). Now (4.3) and (4.4) imply that

∆ũ ∈ Lpσ (Ω).

(1.10) in Lemma 1.3 allows us to conclude (4.2),

PΩ∆ũ = ∆ũ.

Next we derive an explicit formula for PΩ (̃θe2). According to
Lemma 1.3, we can write, for some h ∈ W 1,p,

θ̃e2 = PΩ (̃θe2)+∇h, h = ∆−1∇ · (̃θe2).

where the operator∆−1 is defined in (1.11). Therefore,

PΩ (̃θe2) = θ̃e2 −∇∆−1∇ · (̃θe2). (4.6)

Inserting (4.2) and (4.6) in (4.1) yields

∂t ũ+ PΩ (̃u · ∇ũ) = ν∆ũ+ θ̃e2 −∇∆−1∇ · (̃θe2).

We thus have obtained the following equivalent form of (1.6)⎧⎪⎨⎪⎩
∂t ũ+ PΩ (̃u · ∇ũ) = ν∆ũ+ θ̃e2 −∇∆−1∇ · (̃θe2),
∂t θ̃ + ũ · ∇ θ̃ + ṽ T ′(y) = 0,
∇ · ũ = 0.

(4.7)

Ignoring the nonlinear terms in (4.7), we obtain the associated
linearized system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tU = ν∆U+Θ e2 −∇∆−1∇ · (Θ e2),
∂tΘ + V T ′(y) = 0,
∇ · U = 0,
(U,Θ)(x, 0) = (U0(x),Θ0(x)),
U · n|∂Ω = 0, ω|∂Ω = 0,

(4.8)

where we have used capital letters to distinguish the solutions
of the linearized system from those of the full system (4.7), and
U = (U, V ) with V being the vertical component and ω = ∇ × U.

4.2. Linear stability for T ′(y) = α > 0

This subsection proves the second part of Theorem 1.4. As-
sume T ′(y) = α > 0 and the conditions in the second part of
Theorem 1.4. The existence and uniqueness of the corresponding
solution can be proven similarly as in the proof of Theorem 1.1. It
suffices to prove (1.14). As in the proof of (3.6) in Theorem 1.2, we
have
1
2

d
dt

(
α∥U(t)∥2 + ∥Θ(t)∥2

)
+ να∥∇U(t)∥2 + να∥

√
κ (U · τ )(t)∥2L2(∂Ω) = 0,

where κ denotes the curvature of ∂Ω and κ = 0 in the case of a
rectangular domain, and we have invoked the fact that∫
Ω

U · ∇∆−1∇ · (Θe2) dx =
∫
∂Ω

U · n∆−1∇ · (Θe2) dS(x) = 0.

Integrating in time yields

α∥U(t)∥2 + ∥Θ(t)∥2 + να
∫ t

0
∥∇U(s)∥2 ds

+ να

∫ t

0
∥
√
κ (U · τ )(s)∥2L2(∂Ω) ds

≤ α∥U0∥
2
+ ∥Θ0∥

2, (4.9)

which yields, as in the proof of Theorem 1.2,

∥U(t)∥ → 0, ∥Θ(t)∥ → C0 <

√
α∥U0∥

2 + ∥Θ0∥
2.

In addition, (4.9) also implies

∥∇U(t)∥2 ∈ L1(0,∞) and
∥
√
κ (U · τ )(t)∥2L2(∂Ω) ∈ L1(0,∞).

(4.10)

It remains to prove the limits

∥∇U(t)∥ → 0, ∥∇Θ(t)∥ → C1,

∥∆U(t)∥ → 0 as t →∞.
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Dotting the equation of U in (1.13) with∆U yields∫
Ω

∆U · ∂tU dx = ν ∥∆U∥2 +
∫
Ω

Θ∆V dx

−

∫
Ω

∆U · ∇∆−1∇ · (Θ e2) dx. (4.11)

We integrate by parts in the first term. To be more precise, we
write the term in the formof components and apply the divergence
theorem,∫
Ω

∆U · ∂tU dx =
∫
Ω

∂k∂kU · ∂tU dx

=

∫
Ω

∂k(∂kU · ∂tU)−
∫
Ω

∂kU · ∂t∂kU dx

=

∫
∂Ω

nk∂kU · ∂tU dS(x)−
1
2

d
dt

∫
Ω

|∇U|2 dx,

where n = (n1, n2) denotes the unit outward normal to ∂Ω . To
further simplify it, we write, due to U · n = 0 on ∂Ω ,

U = (U · τ )τ + (U · n)n = (U · τ )τ on ∂Ω

and invoke Lemma 3.2 to obtain∫
Ω

∆U · ∂tU dx

=

∫
∂Ω

(n · ∇)U · τ ∂t (U · τ ) dS(x)−
1
2

d
dt

∫
Ω

|∇U|2 dx

= −

∫
∂Ω

κ(U · τ ) ∂t (U · τ ) dS(x)−
1
2

d
dt

∫
Ω

|∇U|2 dx

= −
1
2

d
dt

(∫
∂Ω

κ (U · τ )2 dS(x)+
∫
Ω

|∇U|2 dx
)
. (4.12)

The last term in (4.11) is actually zero. In fact, by∇ ·U = 0 and the
divergence theorem∫
Ω

∆U · ∇∆−1∇ · (Θ e2) dx =
∫
Ω

∆Uk∂k∆
−1
∇ · (Θ e2) dx

=

∫
Ω

∂k(∆Uk∆
−1
∇ · (Θ e2)) dx

=

∫
∂Ω

∆U · n∆−1∇ · (Θ e2) dx.

Going through a similar process as in the derivation of (4.4), we
have

∆U · n = 0 on ∂Ω

and thus∫
Ω

∆U · ∇∆−1∇ · (Θ e2) dx = 0. (4.13)

By the divergence theorem,∫
Ω

Θ∆V dx =
∫
Ω

∇ · (Θ∇V ) dx−
∫
Ω

∇Θ · ∇V dx

=

∫
∂Ω

Θ n · ∇V dS(x)−
∫
Ω

∇Θ · ∇V dx.

In the case whenΩ is a rectangle, n · ∇V = n1∂1V + n2∂2V = 0 on
the two sides ofΩ , and on the top and the bottom ofΩ ,

Θ(x, t) = Θ0(x)+
∫ t

0
V (x, τ ) dτ = 0

due toV (x, τ ) = 0 andΘ0(x) = 0 on the top and the bottom.When
Ω is a general domain, we need the condition thatΘ(x, t) = 0 for
x ∈ ∂Ω . Therefore,∫
Ω

Θ∆V dx = −
∫
Ω

∇Θ · ∇V dx. (4.14)

Inserting (4.12), (4.13) and (4.14) in (4.11), we obtain

1
2

d
dt

(∫
∂Ω

κ (U · τ )2 dS(x)+
∫
Ω

|∇U|2 dx
)
+ ν∥∆U∥2

=

∫
Ω

∇Θ · ∇V dx. (4.15)

Taking the gradient of the equation ofΘ in (1.13) and then dotting
the resulting equation with ∇Θ , we obtain
1
2

d
dt
∥∇Θ∥2 + α

∫
Ω

∇Θ · ∇V dx = 0. (4.16)

Multiplying (4.15) by α and then adding to (4.16) lead to
1
2

d
dt

(
α∥∇U∥2 + α∥

√
κ (U · τ )∥2L2(∂Ω) + ∥∇Θ∥

2
L2(Ω)

)
+ ν∥∆U∥2 = 0. (4.17)

Integrating in time yields

α∥∇U∥2 + α∥
√
κ (U · τ )∥2L2(∂Ω) + ∥∇Θ∥

2
L2(Ω) + 2ν

∫ t

0
∥∆U∥2 dτ

= α∥∇U0∥
2
+ α∥
√
κ (U0 · τ )∥L2(∂Ω) + ∥∇Θ0∥

2
L2(Ω) ≡ Z2

0 . (4.18)

As a consequence, (4.16) implies
d
dt
∥∇Θ∥2 ≤ α ∥∇Θ∥∥∇U∥ ≤

√
αZ2

0

and thus, for any 0 ≤ s < t <∞,⏐⏐∥∇Θ(t)∥2 − ∥∇Θ(s)∥2
⏐⏐ ≤ √αZ2

0 |t − s|.

In addition, integrating (4.17) in time from s to t yields

α∥∇U(t)∥2 + α∥
√
κ (U · τ )(t)∥2L2(∂Ω) + ∥∇Θ(t)∥2L2(Ω)

≤ α∥∇U(s)∥2 + α∥
√
κ (U · τ )(s)∥2L2(∂Ω) + ∥∇Θ(s)∥2L2(Ω),

which especially implies

α

⏐⏐⏐(∥∇U(t)∥2 + ∥√κ (U · τ )(t)∥2L2(∂Ω)

)
−

(
∥∇U(s)∥2 + ∥

√
κ (U · τ )(s)∥2L2(∂Ω)

)⏐⏐⏐
≤

⏐⏐∥∇Θ(t)∥2 − ∥∇Θ(s)∥2
⏐⏐ ≤ √αZ2

0 |t − s|. (4.19)

(4.10) and (4.19), together with Lemma 3.1, allow us to conclude
that

∥∇U(t)∥ → 0 and ∥
√
κ (U · τ )(t)∥2L2(∂Ω) → 0 as t →∞

and

∥∇Θ(t)∥ → C1 < Z0.

Finally we show

∥∇ω(t)∥ → 0 as t →∞. (4.20)

The vorticity ω = ∇ × U satisfies

∂tω = ν∆ω + ∂1Θ. (4.21)

Taking the inner product of (4.21) with∆ω yields∫
Ω

∆ω ∂tω dx = ν∥∆ω∥2 +
∫
Ω

∂1Θ∆ω dx.

Due to ω = 0 on ∂Ω ,
1
2

d
dt
∥∇ω∥2 + ν∥∆ω∥2 ≤ ∥∇Θ∥∥∆ω∥.

By Young’s inequality,
1
2

d
dt
∥∇ω∥2 + ν∥∆ω∥2 ≤ ∥∇Θ∥∥∆ω∥ ≤

ν

2
∥∆ω∥2 +

1
2ν

Z0.
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Integrating in time yields, for any 0 ≤ s < t <∞,⏐⏐∥∇ω(t)∥2 − ∥∇ω(s)∥2⏐⏐ ≤ 1
ν
|t − s|Z0. (4.22)

Due to the divergence-free condition ∇ · U = 0, ∂1ω = ∆U2 and
∂2ω = −∆U1. Thus, according to (4.18),∫
∞

0
∥∇ω(t)∥2 dt =

∫
∞

0
∥∆U∥2 dt <∞

or

∥∇ω(t)∥2 ∈ L1(0,∞).

Lemma 3.1 then implies (4.20). This completes the proof of linear
stability.

4.3. Linear instability for T ′(y) = α < 0

Finally we assume T ′(y) = α < 0 and prove the instability of
any periodic perturbation. If the perturbation is periodic, namely
(U,Θ) is spatially periodic, then the instability can be easily seen
from the Fourier transform of (1.13). In fact, taking the Fourier
transform of (1.13), we obtain

⎡⎣Û(k, t)
V̂ (k, t)
Θ̂(k, t)

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎣
−ν|k|2 0 −

k1k2
|k|2

0 −ν|k|2
k21
|k|2

0 −α 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎣Û(k, t)
V̂ (k, t)
Θ̂(k, t)

⎤⎦ .
When α < 0, the coefficient matrix has a positive eigenvalue. In
fact, the characteristic polynomial is given by

p(λ) =
(
λ+ ν|k|2

) (
λ2 + ν|k|2λ+ α

k21
|k|2

)
and the eigenvalues of the coefficient matrix

λ1 = −ν|k|2,

λ2 = −
1
2
ν|k|2 −

1
2

√
ν2|k|4 − 4α

k21
|k|2

,

λ3 = −
1
2
ν|k|2 +

1
2

√
ν2|k|4 − 4α

k21
|k|2

.

Clearly, for α < 0, λ1 < 0, λ2 < 0 and λ3 > 0. This implies any
periodic perturbation is linearly unstable. This completes the proof
of Theorem 1.4.

5. Numerical simulations

This section is devoted to the numerical illustration of the
analytical results recorded in Theorems 1.1 through Theorem 1.4,
and further investigation of some unresolved problems associated
with (1.4). For numerical simplicity, we simulate the partially
dissipative system subject to the stress free boundary conditions
on Ω = [−1, 1] × [−1, 1]. The main purpose of this section is
try to understand the explicit decay rate of the velocity field and
long-time dynamics of the temperature function associated with
(1.4).

5.1. Numerical method

We use a projection finite element method for u and P (see [58]
for details). The projection method in the strong form is

Du∗,k+1

∆t
− ν∆u∗,k+1 = −∇PEx,k+1

+ (0, θ )Ex,k+1 − (u · ∇u)Ex,k+1,

u∗,k+1 = uk+1
+∆t∇φ,

Pk+1
= PEx,k+1

+ 1.5φ − ν∇ · u∗,k+1,

where
Du∗,k+1

∆t
=

1.5u∗,k+1 − 2uk
+ 0.5uk−1

∆t
is the BDF2 temporal discretization of ∂u

∂t at time tk+1, and

(u · ∇u)Ex,k+1 = 2(u · ∇u)k − (u · ∇u)k−1

is a second order extrapolation of (u · ∇u) at time tk+1. Similarly,
PEx,k+1

= 2Pk
− Pk−1 and θEx,k+1 = 2θ k − θ k−1.

We use the P2/P1 finite element method to solve for u and P .
The weak form is as follows. At time step tk+1, we seek uk+1

∈

(H1(Ω))2 with uk+1
·n|∂Ω = 0 and Pk+1

∈ L2(Ω), such that for any
v ∈ (H1(Ω))2 with v · n|∂Ω = 0, ψ ∈ H1(Ω) and Q ∈ L2(Ω), it
holds that(

Du∗,k+1

∆t
, v

)
+ ν(∇u∗,k+1,∇v) = (PEx,k+1,∇ · v)

+ ((0, θ )Ex,k+1, v)
− ((u · ∇u)Ex,k+1, v),

(∇φ,∇ψ) = −
(
∇ · u∗,k+1

∆t
, ψ

)
,

(Pk+1,Q ) = (PEx,k+1
+ 1.5φ

− ν∇ · u∗,k+1,Q ),
(uk+1, v) = (u∗,k+1 −∆t∇φ, v).

Finally, the transport equation of θ is solved by a third order
accurate WENO scheme [59,60]. The numerical tests show this
scheme is second order accurate for velocity, pressure, and tem-
perature in L∞ norm (data not shown). For the long-timenumerical
simulation for system (1.4), we have used the resolutions 50× 50,
100 × 100, and 200 × 200. When the time exceeds 100 730, all
these simulations exhibit some instabilitieswhose resultsmight be
not reliable anymore. But before this time,we observe convergence
when the mesh is refined. What we present here are the results
from 200× 200 resolution before time= 100730.

5.2. Decay of velocity field

In this subsection, we numerically illustrate the analytical re-
sults obtained in Theorem 1.2, regarding the decay of the velocity
field associated with (1.4). Numerical results are presented in
Fig. 1.

In the simulation of (1.4), we choose u0(x, y) = sin(2πx) cos
(2πy), v0(x, y) = − cos(2πx) sin(2πy), θ0 = sin(3x) cos(2y)+ (x−
0.5)3 + 1/(y+ 10), and ν = 1. By Theorem 1.2, the kinetic energy
and the first order derivatives of the velocity field converge to zero.
Fig. 1 plots the evolution of various norms of the solution for time
up to t = 100 730, which illustrates that ∥u(t)∥H1 , ∥∂tu(t)∥ and
∥u(t)∥L∞ asymptotically approach zero. More interestingly, from
Fig. 1 we see that although the decay of the velocity field exhibits
a slightly oscillatory fashion, the bulk of the curves presents alge-
braic decay rates by comparing with polynomial functions, which
are slower than exponential decay rates.

5.3. Evolution of pressure and temperature

In this subsection, we numerically illustrate the time evolution
of the pressure and temperature functions. Numerical results are
presented in Figs. 2 and 3.

Figs. 2 and 3 show that the pressure and temperature become
horizontally homogeneous and stratify in the vertical direction as
time evolves — a scenario that is consistent with the analytical
results recorded in Theorem 1.2, especially the third point of (1.8).
The numerical results in Fig. 3 show three stages for the heat to
get to the stratification. The first is the interior bulk convection as
shown from time = 0 to time = 20, where the bulk red region of



Please cite this article in press as: C.R. Doering, et al., Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion, Physica D (2018),
https://doi.org/10.1016/j.physd.2017.12.013.

C.R. Doering et al. / Physica D ( ) – 13

Fig. 1. Decay of velocity field of numerical solution of (1.4) on [−1, 1] × [−1, 1]
with boundary conditions u · n|∂Ω = 0 and ω|∂Ω = 0, initial data u0(x, y) =
sin(2πx) cos(2πy), v0(x, y) = − cos(2πx) sin(2πy), θ0(x, y) = sin(3x) cos(2y) +
(x− 0.5)3 + 1/(y+ 10), and ν = 1. This figure plots the evolution of various norms
of the velocity for time up to t = 100 730. The dashed lines are the least-squares
fittings to the corresponding curves of the same color. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

high temperature and blue region of low temperature are swept to
the upper and lower parts of the domain, respectively. The second
is boundary layer eruption. One relatively low temperature layer
is held on the top wall (Fig. 3, time = 20) and the slip boundary
condition (u · n = 0) is unable to move this layer down to the cor-
responding positions in the desired stratification. However, driven
by gravity, the heat erupts from some separate boundary spots into
the interior domain whose pattern exhibits the Rayleigh–Taylor
instability (Fig. 3, from time= 2230 to 10730). This stage actually
proceeds from time = 1600 to time = 40000 in the numerical
simulation. Finally, after all the eruptions are emitted, the whole
system enters a relaxation stage. On account of the complication
produced by this instability, we remark that the identification of
the exact ansatz of the pressure and temperature functions is still
elusive.

To look into the stratification inmore detail, we define T (y, t) =∫
Ω
θ (x, y, t)dx/2, the average value of temperature at a y-layer.We

plotted the convergence behavior of θ (x, y, t) to T (y, t) in Fig. 4[a,
b, c]. The L2 norm shows almost monotone decreasing but the L∞
norm shows overall very slow decreasing with oscillations. The
profile of T (y, t) showsmonotonic increasing in y-direction at time
= 105 (Fig. 4[b, c]). To study the convergence of the mechanical
energy, we take the field T (y, t) at t = 120 830 as the reference
state. Fig. 4[d] shows the difference of the total mechanical energy
(kinetic + potential) at time ≤ 105 and that of the reference state.
This indicates a power-rule decreasing of the energy.

6. Conclusion and looking ahead

We have studied the global well-posedness and long-time
asymptotic behavior of large-amplitude classical solutions to the
2D Boussinesq equations without thermal diffusion on bounded
domains with non-smooth boundaries and subject to the stress-
free velocity boundary conditions. Utilizing energy methods we
showed that for initial data with low regularity, there exist unique
global-in-time solutions to the initial–boundary value problems
(IBVPs) of the model, and the L2 norms of the velocity field and
its first order spatial and temporal derivatives converge to zero as
t →∞. Consequentlywe found that the pressure and temperature
functions stratify in the vertical direction in a weak topology.
Moreover, we established the linear stability of the hydrostatic
equilibrium T (y) = αy + θ̄ when α > 0, and the instability
of periodic perturbations of the ansatz when α < 0. Our results
indicate how buoyancy plays a dominant role when thermal diffu-
sion is negligible, andpartially demonstrate the effectiveness of the
2D Boussinesq equations for modeling stratification-dominated
situations in the applied sciences. In addition, the analytical ap-
proach developed for proving the long-time behavior results is
of independent interest and may be adopted to study other PDE
systems with similar partially dissipative structures.

Finally wemention that several fundamental questions regard-
ing the long-time behavior of large-amplitude classical solutions
to the partially dissipative system (1.4) remain open. We list three
of them:

• Explicit decay rates.An important piece of information that
is missing from our analytical results is the explicit decay
rate of the velocity field or the total mechanical energy.
This is mainly due to the lack of dissipation in the tem-
perature equation. Unlike the fully dissipative free energy

Fig. 2. Numerical solutions of the pressure function of (1.4) subject to the stress free boundary conditions on [−1, 1] × [−1, 1] at several time steps.
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Fig. 3. Numerical solutions of the temperature function of (1.4) subject to the stress free boundary conditions on [−1, 1]× [−1, 1] at several time steps. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Numerical results. [a] Convergence of θ (x, y, t) to T (y, t) over time. [b, c] Plots of the function T (y, t) from two viewpoints. [d] Difference of total mechanical energy
before time≤ 105 with that at time= 120830.

formulation (1.2) which generates exponential decay of the
perturbation, the Lyapunov functional associated with the
partially dissipative system (1.15) is not capable of bringing
about any explicit decay rate of the perturbation. However,
our numerical simulation indicates that the velocity field
might converge to zero as a power law which provides a

strong hint for a rigorous proof of the phenomenon. We
leave this investigation for the future.
• Thermal structure and stability of the final state. Another

piece of information missing from Theorem 1.2 is a precise
description of the final buoyancy distribution in case of
general initial conditions. In fact the buoyancy field is just
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Fig. 5. [a] Convergence of θ (x, y, t) to S(y). The fitting of L2 error uses a power function of 5.7t−0.5 with least squares method. [b] Comparison between T (y, t) at t = 100 730
and S(y). Here, T (y, t) =

∫
Ω
θ (x, y, t)dx/2 andΩ = [0, 1]2 .

rearranged by the flow so the area of the domain where
θ (x, t) ranges between any two values is conserved. This
suggests that the final state of the relaxation problem stud-
ied here should generically be the unique stably stratified
distribution compatible with all these constraints.
We provide a formula of the stably stratified state θ̂ (y): in
a rectangular domain Ω = [0,W ] × [0,H], for any initial
value θ0(x, y), define a height function of temperature value
a as

h(a) =
1
W

area{(x, y) ∈ Ω : θ0(x, y) ≤ a}. (6.1)

For a general domain Ω whose horizontal width is given
by w(y) at a height y, this formula becomes

∫ h(a)
0 w(y)dy =

area{(x, y) ∈ Ω : θ0(x, y) ≤ a}. The final stably stratified
state stratification function, call it θ̂ (y), is then the inverse
function of h(a):

θ̂ (y) = S(y) ≜ h−1(y).

The reasoning behind these formulas is as follows. First,
because of mass conservation, h(a) must be a constant over
time for any a. Second, we speculate that the ultimate final
temperature profilemust benondecreasing in the final state.
Note the formula (6.1) satisfies this condition. It remains to
be shown that any other stratified states compatible with
the initial data are linearly unstable, which does not rule out
their emergence fromproperly prepared initial data but sug-
gests a unique final state evolving from generic conditions.
For the numerical test presented in the last section, we
computed the final state S(y) numerically and tested the
convergence of θ (x, y, t) to it. The results are shown in Fig. 5.
Note the L2 norm of θ (x, y, t) − S(y) decays as a power
rule again and the mean value T (y, t) agrees well with S(y),
which is a nonlinear function of y, when time is large. This
demonstrates θ̂ (y) = S(y) is indeed the thermal structure of
the final state.
• Infinite Prandtl number convection. The ratio of a fluid’s

kinematic viscosity ν to its thermal diffusion coefficient κ is
the Prandtl number Pr = ν/κ so the κ = 0 model studied
here corresponds to an infinite Prandtl number limit of the
Boussinesq system.
Traditionally (see, e.g., [61]) the time t is rescaled to the
dimensionless variable κt/ℓ2 where ℓ is an appropriate do-
main length scale (e.g., the height of a rectangular domain
or the thickness of a spherical shell) and velocities are mea-
sured in units of κ/ℓ. Then, suitably rescaling buoyancy and
pressure, the formal Pr →∞ limit in a stress-free thermally

insulating container is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇P = ∆u+ θe2,
∂tθ + u · ∇θ = ∆θ,
∇ · u = 0,
θ (x, 0) = θ0(x),
u · n|∂Ω = 0, ω|∂Ω = 0,
n · ∇θ |∂Ω = 0.

This is a very different system than (1.4), ostensibly de-
scribing dynamics on even longerO(ℓ2/κ) times scales than
those captured by the strictly non-diffusivemodel: diffusion
is still effective for the temperature on these time scales
while the flow is totally viscous dominated. Boundary con-
ditions are still required for the temperature field, but no
initial data is required for the velocity field. The dynamics
modeled by the system (1.4) studied in this paper, cor-
responding to measuring time on viscous (O(ℓ2/ν)) time
scales, would be considered an ‘‘initial layer’’ problem for
these infinite Prandtl number equations of motion.
Alternatively we could consider dynamics on an interme-
diate, say O(ℓ2/

√
νκ), time scale in which case the formal

Pr → ∞ limit for appropriately rescaled dependent vari-
ables is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇P = ∆u+ θe2,
∂tθ + u · ∇θ = 0,
∇ · u = 0,
θ (x, 0) = θ0(x),
u · n|∂Ω = 0, ω|∂Ω = 0

requiring neither boundary conditions for the temperature
nor initial data for the flow. It is natural to wonder to what
extent the long time behavior of the relaxation on viscous
time scales might be quantitatively captured by an ‘‘over
damped’’ model like this –which keeps the conserved quan-
tities in play for the temperature – keeping in mind that the
initial data for the temperature immediately above is not
simply proportional to the initial temperature distribution
in (1.4). Rather, θ0(x) for this system would correspond to
the sort of rapidly-rearranged temperature distribution seen
in the simulations (like that seen around time 20 in Fig. 3).
For our purposes the real value of such a reduced model
might be to facilitate accurate estimation of the final state
and observed kinetic and/or total energy relaxation kinetics.
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