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Abstract. Whether or not classical solutions to the surface quasi-geostrophic
(SQG) equation can develop finite time singularities remains an outstanding open
problem. This paper constructs a class of large global-in-time classical solutions
to the SQG equation with supercritical dissipation. The construction process
presented here implies that any solution of the supercritical SQG equation must
be globally regular if its initial data is sufficiently close to a function (measured in
a Sobolev norm) whose Fourier transform is supported in a suitable region away
from the origin.

1. Introduction

The goal of this paper is to construct a class of large solutions to the surface
quasi-geostrophic (SQG) equation with supercritical dissipation. The SQG equation
concerned here is given by{

∂tθ + u · ∇θ + κ(−∆)αθ = 0, x ∈ R2, t > 0,

u = ∇⊥ψ := (−∂x2ψ, ∂x1ψ) , (−∆)
1
2ψ = θ,

(1.1)

where the scalar function θ represents the potential temperature, u the fluid velocity
and κ > 0 and α ≥ 0 are real parameters. Here the nonlocal operator (−∆)α is
determined through the Fourier transform

̂(−∆)αf(ξ) = |ξ|2α f̂(ξ),

where f̂ denotes the Fourier transform of f ,

f̂(ξ) =

∫
R2

e−ix·ξf(x) dx.

The SQG equation has attracted enormous attention recently due to its appli-
cations in modeling geophysical fluids and its significance in the theory of partial
differential equations (see, e.g., [1, 16, 22]). As detailed in the paper of Constantin,
Majda and Tabak [5], the behavior of its strongly nonlinear solutions are strikingly
analogous to that of the potentially singular solutions of the 3D incompressible
Navier-Stokes and Euler equations. The study of this 2D model may shed light on
the mystery surrounding the 3D hydrodynamics equations. Significant progress has
been made on the global well-posedness and related problems on the SQG equation.
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Our attention will be focused on the SQG equation with supercritical dissipation or
damping.

The level of difficulty involved in the global existence and smoothness issue on
the dissipative QG equation is dictated by the parameter α. In the subcritical
case α > 1

2
, the SQG equation has been shown to possess a unique global smooth

solution for every sufficiently smooth initial data (see [7],[23]). Furthermore, smooth
solutions are shown to be real analytic and their wave numbers are known to decay
exponentially [27]. When α ≤ 1

2
, the issue of global existence and smoothness

becomes extremely difficult. The investigation of the critical case α = 1
2

started
with the paper of Constantin, Córdoba and Wu [3], in which they proved the global
existence and uniqueness of classical solutions corresponding to any initial data with
L∞-norm comparable to or less than the diffusion coefficient κ. The critical case
α = 1

2
was successfully solved by Kiselev, Nazarov and Volberg [19] and by Caffarelli

and Vasseur [2]. Important nonlinear inequalities involving the fractional Laplace
operator and several different proofs were also developed ([10, 6, 20]).

The global existence and smoothness issue for the supercritical case α < 1
2

remains
open. The two papers of Constantin and Wu [8, 9] assert that any Leray-Hopf
weak solution of the supercritical SQG equation is actually essentially bounded
and any weak solution in the Hölder class C1−2α is actually a smooth solution of
the SQG equation. Dong and Pavlovic extended the Hölder space C1−2α to more
general Besov setting [15]. Therefore, to completely resolve the global existence and
smoothness issue for the supercritical SQG equation, it remains to show that any
L∞-weak solution of the supercritical SQG equation is actually in the Hölder class
C1−2α. There are substantial more recent developments on the slightly supercritical
SQG equation and the supercritical SQG equation (see, e.g., [11, 12, 13, 24, 25]).

This paper examines the open global regularity problem on the supercritical SQG
equation from a different perspective. Our goal here is to construct a class of large
solutions of (1.1) with α in the supercritical regime 0 ≤ α < 1

2
. The solutions

constructed here belong to the Sobolev space Hs(R2) with s + α > 2, a natural
setup for the SQG equation. The requirement s > 2− α appears to be the minimal
in order to insure the local wellposedness. When α = 0, the term κ(−∆)αθ is
reduced to the damping term κθ. We remark that this process is also valid for the
cases when α ≥ 1

2
, even though our focus is on the case α < 1

2
. As can be seen from

the description below, the process of construction presented here actually states that
any solution of the supercritical SQG equation close to that of the corresponding
fractional heat equation with Fourier transform supported away from the origin must
be globally regular in time. The closeness is measured in the norm of the Sobolev
space Hs(R2) with s+ α > 2.

The large solution of (1.1) we are seeking has the form

θ := Θ + h (1.2)
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with Θ solving the linear part of (1.1), namely{
∂tΘ + κ(−∆)αΘ = 0,

Θ(x, 0) = Θ0(x).
(1.3)

The initial data Θ0 is in the Schwartz class S and has the following properties

Θ̂0(ξ) ∈ C∞0 (R2), supp Θ̂0 ⊂
{
ξ ∈ R2, 1− δ ≤ |ξ| ≤ 1 + δ

}
,

where 0 < δ < 1
2

is a small parameter depending on κ only. More precise information

on δ will be specified later. A particular example of Θ̂0 is given by

Θ̂0(ξ) =
(
δ−

1
2 log δ

)
γ(ξ) (1.4)

with γ ∈ C∞0 (R2) being a smooth cutoff, namely

γ(ξ) =

{
0 if |ξ| ≤ 1− δ or |ξ| ≥ 1 + δ,

1 if 1− 3
2
δ ≤ |ξ| ≤ 1 + 1

2
δ.

The norm ‖Θ0‖Hs is not small. In fact,

‖Θ0‖Hs :=

[∫
R2

(1 + |ξ|2)s|Θ0(ξ)|2 dξ
] 1

2

≥ δ−
1
2 |log δ|

[∫
1− 3

2
δ≤|ξ|≤1+ 1

2
δ

(1 + |ξ|2)s dξ

] 1
2

≥ δ−
1
2 |log δ| [(2πδ(2− δ)]

1
2

≥ C |log δ| ,

which can be really big when δ > 0 is small. The solution Θ of (1.3) is given by

Θ̂(ξ, t) = e−κt|ξ|
2α

Θ̂0(ξ), (1.5)

which, due to the support of Θ̂0, satisfies

|Θ̂(ξ, t)| ≤ e−C0 t|Θ̂0(ξ)|, C0 := κ4−α.

We can easily find the equation of h by substituting (1.2) in (1.1),
∂th+ v · ∇h+ κ(−∆)αh = −U · ∇h− v · ∇Θ− U · ∇Θ,

v = ∇⊥Λ−1h,

h(x, 0) = h0(x),

(1.6)

where Λ =
√
−∆ and U is the corresponding velocity associated with Θ, namely

U = ∇⊥Λ−1Θ. (1.7)

The main effort is devoted to establishing the small data global well-posedness for
(1.6) in the aforementioned functional setting Hs(R2). We are able to prove the
following theorem.
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Theorem 1.1. Assume Θ0, Θ and U are given by (1.4), (1.5) and (1.7), respec-
tively. Let 0 ≤ α < 1

2
. Let s > 2 − α. Assume h0 ∈ Hs(R2). Then there exists a

pure constant C1 depending on α only such that, if

‖h0‖Hs ≤ C1κ,

then (1.6) has a unique global solution h satisfying

h ∈ C([0,∞);Hs(R2)) ∩ L2(0,∞;Hs+α(R2)),

‖h(t)‖Hs ≤ C2κ,

where C2 is a pure constant independent of κ.

We make a remark on the possibility of replacing the functional space Hs with
s > 2 − α in our Theorem 1.1 by the scaling invariant space Ḣ2−2α. The Sobolev
space Hs with s > 2 − α arises naturally from the energy estimates. When we
perform the L2-based energy estimates on Hs-norm of h (as in the proof of Theorem
1.1), the dissipative term becomes ‖Λα+sh‖2L2(R2) and the bound for the nonlinear

term in general contains ‖∇h‖L∞(R2). To bound the nonlinear term suitably by the
dissipative term, we need α + s > 2 or s > 2 − α. This is why we need Hs with
s > 2−α. In order to lower the functional setting to the critical space Ḣ2−2α(R2), we
need to employ some heavy machinery such as the Littlewood-Paley decomposition
and Besov type space techniques (see [14]). We may have difficulty in implementing
this method here due to the presence of three extra terms involving Θ or U , in
addition to the standard nonlinear term v · ∇h. These terms do not share the same
properties as v · ∇h.

Coti Zelati and Vicol in [11] were able to establish the continuity of the solution
map of the supercritical SQG equation (1.1) with respect to α as α→ 1

2
. Their result

involves a scaling invariant quantity and a natural issue is whether or not we could
replace the norm ‖h‖Hs in Theorem 1.1 with the corresponding scaling invariant
quantity ‖h‖aL2 ‖h‖1−aḢ2 ? After reviewing the estimates on the terms in (2.2), we find

that it would be extremely difficult to do so. The reason is that three terms in (2.2)
each contains U or Θ and it appears hard to bound them by the combined quantity
‖h‖aL2 ‖h‖1−aḢ2 .

In the proof of Theorem 1.1, the support of the Fourier transform of Θ is taken
to be near the unit circle. The construction process still works even when the unit
circle is changed to any curve away from the origin. Therefore a slight modification
of the proof presented here allows us to reach the following conclusion.

Corollary 1.2. Let 0 ≤ α < 1
2
. Let Θ denote a solution of the corresponding

fractional heat equation of (1.1), namely ∂tΘ + κ(−∆)αΘ = 0. Assume that the
Fourier transform of Θ is supported in a suitable region away from the origin. Then
any solution of (1.1) with 0 ≤ α < 1

2
that is close to Θ in the space Hs(R2) with

s > 2− α is globally regular in time.
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We remark that Theorem 1.1 and Corollary 1.2 can be extended to the generalized
SQG equation (see, e.g., [4, 21]){

∂tθ + u · ∇θ + κ(−∆)αθ = 0, x ∈ R2, t > 0,

u = (u1, u2) = (−∂x2ψ, ∂x1ψ) , (−∆)βψ = θ,

where α ≥ 0 and β ∈ [1, 2] are real parameters. We omit further details due to the
similarities. The rest of this paper proves Theorem 1.1.

2. Proof of Theorem 1.1

This section proves Theorem 1.1. To prepare for the proof, we state several
bounds for Θ and U .

Lemma 2.1. Assume Θ and U are given by (1.5) and (1.7) with Θ0 defined by
(1.4). Then, for any b > 0 and any 0 < σ < 1

2
,

‖ΛbΘ(t)‖L∞ ≤ C δ
1
2
−σ e−C0t

‖ΛbΘ(t)‖L2 ≤ C δ−σ e−C0t,

‖Λb(U −∇⊥Θ)‖L2 ≤ C δ1−σ e−C0t.

Proof of Lemma 2.1. By (1.4) and (1.5),

‖ΛbΘ‖L∞ ≤
∫
R2

|ξ|b|Θ(ξ)| dξ

≤ δ−
1
2 |log δ| e−C0t

∫
1−δ≤|ξ|≤1+δ

|ξ|bξ

≤ δ−
1
2 |log δ| e−C0t 4πδ(1 + δ)b

≤ C δ
1
2 |log δ| e−C0t

≤ C δ
1
2
−σ e−C0t,

where we have used the fact that δσ| log δ| ≤ C. The proof of the second bound is
similar. In fact, we can show that

‖ΛbΘ‖L2 ≤ C |log δ| e−C0t ≤ C δ−σ e−C0t.

By (1.4), (1.5) and (1.7),

‖Λb(U −∇⊥Θ)‖2L2 = ‖Λb(∇⊥Λ−1Θ−∇⊥Θ)‖2L2

=

∫
R2

|ξ|2b|ξ⊥|ξ|−1Θ̂(ξ)|2(1− |ξ|)2 dξ

≤ (1 + δ)2b δ2 δ−1| log δ|2 e−2C0t 4πδ

= C δ2 | log δ|2 e−2C0t

≤ C δ2−2σ e−2C0t.

This completes the proof of Lemma 2.1. �



6 LIU, PAN AND WU

Lemma 2.2. Assume Θ and U are given by (1.5) and (1.7) with Θ0 defined by
(1.4). Let b ≥ 0. Let 2 ≤ q ≤ ∞. Then, for any 0 < σ < 1

2
,

‖ΛbΘ‖Lq ≤ C δ
1
2
− 1
q
−σ e−C0t, ‖ΛbU‖Lq ≤ C δ

1
2
− 1
q
−σ e−C0t.

The proof of Lemma 2.2 is very similar to that of Lemma 2.1. In addition, the
following commutator and bilinear estimates involving fractional derivatives will be
used (see, e.g., [17, 18]).

Lemma 2.3. Let s > 0. Let p, p1, p3 ∈ (1,∞) and p2, p4 ∈ [1,∞] satisfy

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Then there exist two constants C1 and C2,

‖[Λs, f ]g‖Lp ≤ C1

(
‖Λsf‖Lp1 ‖g‖Lp2 + ‖Λs−1g‖Lp3 ‖∇f‖Lp4

)
,

‖Λs(f g)‖Lp ≤ C2 (‖Λsf‖Lp1 ‖g‖Lp2 + ‖Λsg‖Lp3 ‖f‖Lp4 ) .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The local-in-time well-posedness of (1.6) can be obtained by
following a standard procedure (see, e.g., [28]). This proof focuses on the global
uniform bound via a bootstrap argument.

We estimate the Hs-norm in two steps. The first step estimates the L2-norm
while the second step bounds the homogeneous Ḣs-norm. Taking the inner product
of the first equation in (1.6) with h and integrating by parts, we have

1

2

d

dt
‖h‖2L2 + κ‖Λαh‖2L2 = −

∫
v · ∇Θh dx−

∫
U · ∇Θh dx

:= I1 + I2.

By Hölder’s inequality and Lemma 2.1,

|I1| ≤ ‖∇Θ‖L∞ ‖v‖L2‖h‖L2 ≤ C δ
1
2
−σ e−C0t ‖h‖2L2 ,

where we have used the fact that

‖v‖L2 = ‖∇⊥Λ−1h‖L2 = ‖h‖L2 .

Due to ∇Θ · ∇⊥Θ = 0,

I2 = −
∫

(U −∇⊥Θ) · ∇Θh dx.

By Lemma 2.1,

|I2| ≤ ‖U −∇⊥Θ‖L2 ‖∇Θ‖L∞ ‖h‖L2

≤ C δ
3
2
−2σ e−2C0t ‖h‖L2 .

By taking σ = 1
4
, we find

d

dt
‖h‖2L2 + 2κ‖Λαh‖2L2 ≤ C δ

1
4 e−C0t ‖h‖2L2 + C δ e−2C0t ‖h‖L2 . (2.1)
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We now estimate the homogeneous Ḣs-norm of h. Applying Λs to the equation of
h in (1.6) and then taking the inner product with Λsh, we find

1

2

d

dt
‖Λsh‖2L2 + κ‖Λα+sh‖2L2 = J1 + J2 + J3 + J4, (2.2)

where

J1 = −
∫

ΛshΛs(v · ∇h) dx,

J2 = −
∫

ΛshΛs(v · ∇Θ) dx,

J3 = −
∫

ΛshΛs(U · ∇h) dx,

J4 = −
∫

ΛshΛs(U · ∇Θ) dx.

J1, J2, J3 and J4 can be estimated as follows. Using the fact that ∇ · v = 0, we
rewrite the integral in the form of a commutator,

J1 = −
∫

Λsh [Λs, v · ∇]h dx,

where [Λs, v · ∇]h = Λs(v · ∇h)− v · ∇Λsh. By Lemma 2.3,

|J1| ≤ C ‖Λsh‖L2 (‖Λsv‖L2‖∇h‖L∞ + ‖∇v‖L∞ ‖Λsh‖L2) .

By Gagliardo-Nirenberg’s inequality,

‖∇h‖L∞ ≤ C ‖Λαh‖
α+s−2

s

L2 ‖Λα+sh‖
2−α
s

L2 ,

‖Λsh‖L2 ≤ C ‖Λαh‖
α
s

L2 ‖Λα+sh‖1−
α
s

L2 .

Similar inequalities hold for v. Therefore,

|J1| ≤ C ‖Λsh‖L2 ‖Λαh‖
α+s−2

s
+α
s

L2 ‖Λα+sh‖
2−α
s

+1−α
s

L2

≤ C ‖Λsh‖L2

(
‖Λαh‖2L2 + ‖Λα+sh‖2L2

)
,

where we have used the simple facts that ‖Λαv‖L2 = ‖Λαh‖L2 and ‖Λα+sv‖L2 =
‖Λα+sh‖L2 . By Lemmas 2.1, 2.2 and 2.3, for 1

p
+ 1

q
= 1

2
with p > 2 but close to 2,

|J2| ≤ ‖Λsh‖L2 (‖Λsv‖L2‖∇Θ‖L∞ + ‖v‖Lp ‖Λs∇Θ‖Lq)
≤ C ‖Λsh‖2L2 δ

1
2
−σ e−C0t + C ‖Λsh‖L2 ‖v‖Hs δ

1
2
− 1
q
−σ e−C0t

where we have used the embedding inequality ‖v‖Lp ≤ C ‖v‖Hs . By setting q = 8
and σ = 1

4
, we find

|J2| ≤ C δ
1
8 e−C0t ‖h‖2Hs .

Due to ∇ · U = 0,

J3 = −
∫

Λsh [Λs, U · ∇]h dx.

As in the estimate of J2, by Lemmas 2.1, 2.2 and 2.3,

|J3| ≤ C ‖Λsh‖2L2 ‖∇U‖L∞ + C ‖Λsh‖L2 ‖∇h‖Lp ‖ΛsU‖Lq
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≤ C δ
1
8 e−C0t ‖h‖2Hs .

By Lemma 2.1, 2.2 and 2.3,

|J4| ≤ ‖Λsh‖L2 ‖Λs((U −∇⊥Θ) · ∇Θ)‖L2

≤ C ‖Λsh‖L2 ‖Λs(U −∇⊥Θ)‖L2 ‖∇Θ‖L∞
+C ‖Λsh‖L2 ‖∇(U −∇⊥Θ)‖Lp‖Λs∇Θ‖Lq

≤ C ‖Λsh‖L2 δ
3
2
−2σ e−2C0t + C ‖Λsh‖L2 ‖∇(U −∇⊥Θ)‖Hs δ

1
2
− 1
q
−σ e−C0t

≤ C ‖Λsh‖L2 δ
3
2
−2σ e−2C0t + C ‖Λsh‖L2 δ2−σ−

1
q
− 1

2
−σ e−2C0t

By setting q = 8 and σ = 1
4
, we have

|J4| ≤ C ‖Λsh‖L2 δ
7
8 e−2C0t.

Inserting the bounds for J1 through J4 above in (2.2), we obtain

d

dt
‖Λsh‖2L2 + 2κ‖Λα+sh‖2L2 ≤ C ‖Λsh‖L2

(
‖Λαh‖2L2 + ‖Λα+sh‖2L2

)
+C δ

1
8 e−C0t ‖h‖2Hs + C δ

7
8 e−2C0t‖Λsh‖L2 . (2.3)

Adding (2.1) and (2.3) leads to

d

dt
‖h‖2Hs + (2κ− C3 ‖Λsh‖L2)

(
‖Λαh‖2L2 + ‖Λα+sh‖2L2

)
≤ C4 δ

1
8 e−C0t ‖h‖2Hs + C5 δ

7
8 e−2C0t‖Λsh‖L2 . (2.4)

We apply the bootstrap argument to (2.4) to establish that ‖h(t)‖Hs remains uniform
bounded if ‖h0‖Hs is taken to be sufficiently small. The bootstrap argument starts
with an ansatz that ‖h(t)‖Hs is bounded, say

‖h(t)‖Hs ≤M

and shows that ‖h(t)‖Hs actually admits a smaller bound, say

‖h(t)‖Hs ≤ 1

2
M

when ‖h0‖Hs is sufficiently small. A rigorous statement of the abstract bootstrap
principle can be found in T. Tao’s book (see [26, p.21]). To apply the bootstrap
argument to (2.4), we assume that

‖h(t)‖Hs ≤M :=
2κ

C3

or 2κ− C3 ‖Λsh‖L2 ≥ 0.

It then follows from (2.4) that

d

dt
‖h‖2Hs ≤ C4 δ

1
8 e−C0t ‖h‖2Hs + C5 δ

7
8 e−2C0t‖Λsh‖L2 .

By Gronwall’s inequality,

‖h(t)‖Hs ≤ eC4 δ
1
8

∫ t
0 e
−C0τdτ

(
‖h0‖Hs +

∫ t

0

C5 δ
7
8 e−2C0τ dτ

)
≤ M1 ‖h0‖Hs +M1 δ

7
8 , (2.5)
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where

M1 = max

{
eC4C

−1
0 δ

1
8 ,

1

2
C5C

−1
0 eC4C

−1
0 δ

1
8

}
.

If h0 and δ satisfies

‖h0‖Hs ≤ κ

2M1C3

, δ ≤
(

κ

2M1C3

) 8
7

, (2.6)

then (2.5) implies

‖h(t)‖Hs ≤M1
κ

2M1C3

+M1
κ

2M1C3

=
κ

C3

=
M

2
.

The bootstrap argument then implies that, for all t > 0,

‖h(t)‖Hs ≤ κ

C3

when h0 and δ satisfy (2.6). This completes the proof of Theorem 1.1. �
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