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a b s t r a c t

There have been substantial recent developments on the stability problem concern-
ing the Oldroyd-B model of the incompressible non-Newtonian fluids, especially
when the system involves only partial dissipation. One particular case is when
there is only velocity dissipation, and no damping or dissipation in the equation
of the non-Newtonian stress tensor τ . Yi Zhu was able to obtain the global stability
for the 3D Oldroyd-B model in the Sobolev setting by employing time-weighted
Sobolev spaces (Zhu, 2018). However, her approach can not be extended to the 2D
whole space case due to the criticality of the time-weight. This paper presents the
global stability and the large-time behavior of solutions to the 2D Oldroyd-B model
with only dissipation in a periodic domain. The proof of this result overcomes the
difficulty due to the lack of dissipation in τ by exploiting the special wave structure
obeyed by the velocity u and P∇ · τ (the projection of the divergence of τ). The
enhanced dissipation in u and P∇ · τ allows us to gain enough regularity and
stabilizing property to control the growth of u and τ . In fact we are also able to
show that the H1-norm of ∇u and P∇ · τ decays exponentially in time.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Due to its physical applications and mathematical significance, the Oldroyd-B model of the incompressible
non-Newtonian fluids has recently attracted considerable interests. The Oldroyd-B model governs the motion
of viscoelastic fluids such as a solvent with particles suspended in it. More details on its derivation and
applications can be found in [1–3]. Mathematically the Oldroyd-B model consists of the equation for the fluid
(usually the Navier–Stokes equation for viscous fluids and the Euler equation for inviscid ones) with a forcing
term and the evolution of the non-Newtonian stress tensor. More precisely, the standard incompressible
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Oldroyd-B equations can be written as⎧⎨⎩ ∂tu + (u · ∇)u − µ∆u − ∇P = ν1∇ · τ,
∂tτ + (u · ∇)τ + ατ − η ∆τ + Q(τ, ∇u) = ν2D(u),
∇ · u = 0,

(1.1)

here u denotes the velocity field of the fluid, P the scalar pressure and τ the non-Newtonian stress tensor,
epresented by a symmetric matrix. The parameters µ, η, α, ν1, ν2 are nonnegative constants and ν1, ν2 are
alled the coupling parameters. The nonlinear term Q(τ, ∇u) is typical in models for viscoelastic models and
s a bilinear form given by

Q = τW (u) − W (u)τ + b(D(u)τ + τD(u)), (1.2)

here b ∈ [−1, 1] is a constant, W (u) = 1
2 (∇u − (∇u)⊤) is the vorticity tensor and D(u) = 1

2 (∇u + (∇u)⊤)
s the deformation tensor. If b = 0, the system is called corotational.

The first mathematical results were published in a series of papers starting by [4] in 1987, dealing with
eneral differential models for viscoelastic fluids, including the Oldroyd-B model. The wellposedness problem
s one of the most fundamental issues on Oldroyd-B model. The special coupling structure between the
elocity u and the symmetric tensor τ in (1.1) makes the Oldroyd-B well-posedness problem significant
nd challenging. The global existence and regularity for the 3D Oldroyd-B with general large initial data
s beyond reach at this moment. The 2D Oldroyd-B with full dissipation has been shown to always possess
lobal classical solutions by Constantin and Kliegl [5]. The global existence of weak solutions is known only
or the corotational Oldroyd-B [6]. Two earlier papers of Guillopé and Saut [7,8] establish the local existence
nd uniqueness of strong solutions to the Oldroyd-B-type fluid in a bounded domain in 2D or 3D, and
he global existence of strong periodic solutions in the case of small coupling parameters and initial data.
he results described in [4,7] have been improved by Molinet and Talhouk [9], where it is shown that the

mallness of the coupling parameters for existence and uniqueness of solutions is not necessary. Moreover,
hese authors show in [10] the existence and uniqueness of solutions to the full physical problem in 2D and
D in the case of a small Weissenberg number (which means α large), on the same time interval of existence
f the solutions to the Navier–Stokes equation.

More recent efforts focus on the Oldroyd-B models with only partial dissipation, and with or without
amping in the equation of τ . Significant progress has been made on the small data global well-posedness,
tability and large-time behavior. One array of results are for the Oldroyd-B model without velocity
issipation, namely (1.1) with µ = 0. The work of Elgindi and Rousset [11] focused on the 2D Oldroyd-B
quations with damping and with stress tensor dissipation. Global solutions in the Sobolev space Hs(R2)
ith s > 2 are obtained for small initial data, and for general data when Q = 0. The 3D Oldroyd-B
quation without velocity dissipation, or (1.1) with µ = 0, α > 0 and η > 0, was shown in [12] to always
ossess small global solutions if they are initially so. We remark that the damping term in the equation of
plays an important role in proving the global results of [11,12]. Constantin, Wu, Zhao and Zhu in a recent
ork [13] considered the general d-dimensional Oldroyd-B model with only stress tensor dissipation (−∆)βτ

nd without damping, namely µ = α = 0. They established the global existence and stability of small
olutions in Sobolev space Hs(Rd) with d ≥ 2 and s > 1 + d

2 if the fractional power β satisfies 1
2 ≤ β ≤ 1.

u and Zhao [14] were able to prove the global existence and stability of the same system as in [13] but in
he hybrid critical Besov spaces. Very recently Wang, Wu, Xu and Zhong [15] investigated the large-time
ehavior of the global solutions of [13] and obtained sharp decay rates.

A list of results have also been obtained for the Oldroyd-B models without the dissipation in the equations
f τ . The work of Chemin and Masmoudi [16] dealt with the Oldroyd-B model (1.1) with µ > 0 and

> 0, and established regularity criteria in the Sobolev setting and the local well-posedness for general
arge solutions and the global well-posedness with small initial data and small ν1 and ν2. Lei, Masmoudi
nd Zhou [17] were able to improve the criteria of [16]. Zi, Fang and Zhang [18] and Wan [19] weakened the
2
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initial assumptions of [16]. Moreover, Fang and Zi [20] established the global well-posedness for a class of
large initial data. We remark that all these results require the presence of the damping term, namely α > 0.

he omission of the damping term poses challenges on the well-posedness problem. Several recent papers
ave succeeded in obtaining the small data global well-posedness or large-time behavior without damping
see, e.g., [21–25]). The work of Zhu [21] is the first one to prove the small data global well-posedness in
he Sobolev setting for the 3D Oldroyd-B system with only standard Laplacian dissipation, namely (1.1)
ith µ > 0, α = η = 0. Suitable time-weighted energy functionals are constructed to overcome the difficulty
aused by the lack of damping and dissipation in the equation of τ . Chen and Hao [22] obtained the small
ata global well-posedness in a critical Besov space. A similar result to that of [22] was also shown by
hai [25]. A recent work of Wu and Zhao [24] was able to establish the small data global well-posedness in
ritical Besov spaces when the standard Laplacian is replaced by more general fractional operator (−∆)βu

ith 1
2 ≤ β ≤ 1. Wan [23] obtained sharp decay rates for the global solutions of Zhu [21]. In addition to the

esults described above, there are many other important work and some of them are listed in the references
see, e.g., [26–37]).

Two problems remain open. One is the small data global well-posedness in the Sobolev setting for the 2D
ldroyd-B model with only velocity dissipation, namely (1.1) with µ > 0 and η = α = 0, although the small
ata global well-posedness problem in the Besov pace setting has been obtained [22,24], as aforementioned.
hu [21] dealt with the 3D Oldroyd-B model by constructing time-weighted energy functionals in Sobolev
paces, but the approach of Zhu cannot be extended to the 2D case due to the criticality of the time weight.
t appears no suitable time-weighted functionals can be constructed to control the nonlinear terms in the
quation of τ . On one hand, it is natural to include the time-weighted norms

sup
0≤s≤t

(1 + s) ∥u(s)∥2
H1(R2) +

∫ t

0
(1 + s) ∥∇u(s)∥2

H1(R2) ds

in the energy functional, but on the other hand the terms associated with the nonlinearity in the equation
of τ cannot be controlled by these time weighted norms due to the unboundedness of the integral∫ ∞

0
(1 + t)−1 dt = ∞.

The time weight 1 + s is chosen according to the decay rate of ∥u(s)∥L2 when the initial data is in the
Sobolev space with negative index of order −1. The second open problem is to establish the small data
global well-posedness in the Sobolev spaces for the 3D Oldroyd-B model with fractional dissipation (−∆)βu

for β < 1. The Besov setting result has been obtained in [24]. However, when the Sobolev spaces are used,
the fractional dissipation is not sufficient to control the nonlinear term Q(τ, ∇u).

This paper focuses on the initial-value problem for the 2D Oldroyd-B model with only velocity dissipation
in a periodic domain Ω = T2,⎧⎪⎪⎨⎪⎪⎩

∂tu + (u · ∇)u − µ∆u − ∇P = ν1∇ · τ, x ∈ Ω , t > 0,
∂tτ + (u · ∇)τ + Q(τ, ∇u) = ν2D(u),
∇ · u = 0,
u(x, 0) = u0, τ(x, 0) = τ0.

(1.3)

he goal here is to establish the small data global well-posedness in the Sobolev space H2(Ω). In addition,
e obtain explicit large-time decay rates for the derivatives of u and for P∇ · τ , where P denotes the
elmholtz-Leray projection onto divergence-free vector fields, namely,

P : L2(Ω) → L2
σ(Ω),

here
L2

σ(Ω) = {v ∈ L2(Ω) | ∇ · v = 0 and v is a periodic function on Ω}.

ore precisely, the following theorem holds.

3
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Theorem 1.1. Consider (1.3) with µ > 0 and ν1 = ν2 > 0. Assume (u0, τ0) ∈ H2(Ω) with ∇ · u0 = 0 and
τ0 being a symmetric matrix. Then there exists a sufficiently small δ > 0 depending on µ, ν1 and ν2 such that
f

∥u0∥H2(Ω) + ∥b0∥H2(Ω) ≤ δ, (1.4)

hen the 2D incompressible Oldroyd-B model (1.3) admits a unique global solution (u, τ) ∈ C
(
[0, ∞); H2(Ω)

)
satisfying, for some uniform constant C0 and for any t > 0,

∥u(t)∥2
H2(Ω) + ∥τ(t)∥2

H2(Ω) + 2µ

∫ t

0
∥∇u(s)∥2

H2(Ω) ds +
∫ t

0
∥P∇ · τ(s)∥H1(Ω)ds ≤ C0δ2. (1.5)

Furthermore, the following decay rate holds,

∥∇u(t)∥H1(Ω) + ∥P∇ · τ(t)∥H1(Ω) ≤ Ce−C1t. (1.6)

or some constants C > 0 and C1 > 0.

Remark 1.1. If we additionally assume u0 has mean zero, i.e.
∫
Ω

u0dx = 0, then, by Poincaré inequality,
we also have the decay estimate on u,

∥u(t)∥L2(Ω) ≤ Ce−C1t.

We now explain the proof of Theorem 1.1. Due to the lack of dissipation or damping in the equation of
τ , direct H2-energy estimates would fail to bound the nonlinear terms in the equation of τ . To overcome
this difficulty, we need to employ time-weighted norms, which would help bound the nonlinear terms. For
example, when we estimate the H2-norm of τ , we need to bound the following integral associated with the
nonlinear term u · ∇τ ,

I2 :=
∫ t

0

∫
Ω

∇2(u(x, s) · ∇τ(x, s)) · ∇2τ(x, s) dx ds

s in the proof of Lemma 3.2, this term can be bounded by

|I2| ≤ C

∫ t

0
∥∇2u(s)∥H1 ∥∇τ(s)∥2

H1ds ≤ sup
0≤s≤t

∥∇τ(s)∥2
H1

∫ t

0
∥∇2u(s)∥H1ds.

owever, the time integral
∫ t

0 ∥∇2u(s)∥H1ds is not known to be bounded. Time-weighted Sobolev norms
ould help. In fact,

|I2| ≤ C sup
0≤s≤t

∥∇τ(s)∥2
H1

∫ t

0
∥∇2u(s)∥H1ds

≤ C sup
0≤s≤t

∥∇τ(s)∥2
H1

(∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds

) 1
2

, (1.7)

hich would be bounded if the time-weighed norm on the right is bounded. The natural issue then is to
ontrol the time-weighted norm in (1.7). By the equation of u in (1.3) or

∂tu + P(u · ∇)u − µ∆u = ν1P∇ · τ, (1.8)

e need to bound the time integral of time-weighted norms of P∇·τ . This does not appear to be possible due
o the lack of dissipation and damping in the equation of τ . In order to overcome this difficulty, we make use

of the special structure for u and P∇ · τ observed by Zhu [21]. By differentiating (1.8) and the equation of τ

in (1.3) in time, and making several substitutions, we find that u and P∇ · τ satisfy the following nonlinear
wave equations {

∂ttu − µ∆∂tu − 1
2 ν1 ν2 ∆u = N1,

1 (1.9)

∂tt(P∇ · τ) − µ∆∂t(P∇ · τ) − 2 ν1 ν2 ∆(P∇ · τ) = N2,

4
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where N1 and N2 represent the nonlinear terms,

N1 = −∂tP(u · ∇u) − ν1P∇ · (u · ∇)τ − ν1P∇ · Q,

N2 = −1
2ν2∆P((u · ∇)u) + (−∂t + µ∆)(P∇ · (u · ∇)τ + P∇ · Q).

lthough the regularity of solutions to (1.9) depends on the initial data, (1.9) contains more regularizing
erms than its original counterparts in (1.3). These extra terms are due to the coupling and interaction in
1.3). In particular, P∇ · τ is indeed dissipative. By constructing energy functionals that suitably pair the
ime-weighted norms of u with those of P∇ · τ , we are able to establish closed inequalities. More precisely,
e introduce the following energy functionals

E1(t) = sup
0≤s≤t

(
∥u(s)∥2

H2 + ∥τ(s)∥2
H2

)
+

∫ t

0

(
∥∇u(s)∥2

H2 + ∥P∇ · τ(s)∥2
H1

)
ds, (1.10)

E2(t) = sup
0≤s≤t

(1 + s)2
(

∥∇u(s)∥2
H1 + 2∥P∇ · τ(s)∥2

H1

)
+

∫ t

0
(1 + s)2

(
∥∇2u(s)∥2

H1 + ∥∇P∇ · τ(s)∥2
L2

)
ds. (1.11)

ur main efforts are devoted to proving that

E(t) := E1(t) + E2(t)

atisfies
E(t) ≤ C E(0) + C E 3

2 (t). (1.12)

bootstrapping argument (see, e.g., [38, p. 21]) applied to (1.12) then implies the desired stability result in
heorem 1.1. The proof of (1.12) is lengthy and accomplished by several lemmas. In particular, the damped
ave structure in (1.9) is exploited to control the time integral terms in (1.10) and (1.11),∫ t

0
∥P∇ · τ(s)∥2

H1 ds,

∫ t

0
(1 + s)2∥∇P∇ · τ(s)∥2

L2 ds.

n addition, Poincaré type inequalities are used repeatedly to facilitate the estimates. To establish the
xponential decay rate in (1.6), we include an inner product term to take advantage of the dissipative effects
n P∇·τ . This process allows us to simultaneously obtain the time integrability of ∥∇2u∥2

L2 and ∥∇P∇·τ∥2
L2

nd thus leads to the desired inequality for exponential decay.
The rest of this paper is organized as follows. Section 2 puts forward several simple facts to be used in

he proof of Theorem 1.1. Section 3 proves the global existence and stability part of Theorem 1.1. The main
fforts are devoted to the proof of (1.12). To make the lengthy proof easy to understand, we divide the proof
nto two main lemmas. Section 4 is devoted to the decay estimate (1.6) in Theorem 1.1. By establishing two
ew estimates and combining with the global existence result part, we obtain the desired exponential time
ecay rate.

. Preliminary

This section presents several simple facts to be used in the proof of Theorem 1.1. First, we recall the
elmholtz-Leray decomposition, for any ∇ · τ ∈ L2(Ω), there exists a unique φ (up to a constant) such that

∇ · τ = P∇ · τ + ∇φ. (2.1)
hen the following two lemmas hold.
5
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Lemma 2.1. For any τ ∈ H2(Ω),

∥∇φ∥H1(Ω) ≤ C∥∇τ∥H1(Ω) (2.2)

or some constant C > 0.

roof. Due to the orthogonality of P∇ · τ with ∇φ,

∥∇φ∥2
L2(Ω) = ∥∇ · τ∥2

L2(Ω) − ∥P∇ · τ∥2
L2(Ω). (2.3)

pplying the operator ∇· to the equality (2.1) and using ∇ · P(∇ · τ) = 0, we have

∇ · (∇ · τ) = ∆φ.

hen it is clear that
∥∆φ∥L2(Ω) ≤ ∥∇2τ∥L2(Ω),

hich, together with (2.3), implies (2.2). □

emma 2.2. For smooth u and τ , the following decomposition holds

P∇ · (u · ∇τ) = P(∇u · ∇τ) + P((u · ∇)P(∇ · τ)) + P(∇u · ∇φ). (2.4)

roof. To prove (2.4), we can write via (2.1)

∇ · (u · ∇τ) = (∇u · ∇)τ + (u · ∇)(∇ · τ)
= (∇u · ∇)τ + (u · ∇)P(∇ · τ) + (u · ∇)∇φ. (2.5)

hen, applying the projection operator P to (2.5) yields

P∇ · (u · ∇τ) = P(∇u · ∇)τ + P(u · ∇)P(∇ · τ) + P(u · ∇)∇φ

= P(∇u · ∇)τ + P(u · ∇)P(∇ · τ) + P(∇u · ∇)φ,

here we have used P∇(u · ∇φ) = 0. This completes the proof of Lemma 2.2. □

Throughout the rest of this paper, we assume µ = ν1 = ν2 = 1, without loss of generality. In addition, we
rite

∫
f(x) dx for the integral over Ω = T2. The norms ∥g∥Lp(Ω) and ∥h∥Hs(Ω) are abbreviated as ∥g∥Lp

nd ∥h∥Hs , respectively. The constants C > 0 in the paper are absolutely constants and may vary from line
o line.

. The global well-posedness

This section proves the well-posedness part in Theorem 1.1. We apply the bootstrapping argument. The
ain effort is devoted to establishing a priori estimate stated in the following proposition.

roposition 3.1. Let (u, τ) be the solution of (1.3) with initial data (u0, τ0) satisfying div u0 = 0 and
τ0)ij = (τ0)ji in Ω . Define E1(t) and E2(t) as in (1.10) and (1.11), respectively. Set

E(t) := E1(t) + E2(t).

hen there exists a constant C2 such that for any t ≥ 0,

E(t) ≤ C
(

E(0) + E 3
2 (t)

)
. (3.1)
2

6
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The global well-posedness part of Theorem 1.1 follows as a consequence of the bootstrapping argument
applied to (3.1) in Proposition 3.1.

Proof of the global well-posedness. We show that, if δ in (1.4) is taken to be sufficiently small, then
the global uniform bound in (1.5) holds for all time. In fact, if δ satisfies

δ2 ≤ 1
48C3

2
,

then (1.5) holds with C0 = 6C2. This is obtained by applying the bootstrapping argument to (3.1). We start
by assuming that

E(t) ≤ M :=
( 1

2C2

)2
.

hen (3.1) implies that
E(t) ≤ C2 E(0) + 1

2E(t)

r
E(t) ≤ 2C2 E(0) ≤ 2C2 · 3

(
∥u0∥2

H2 + ∥τ0∥2
H2

)
≤ 6C2δ2 ≤ 1

8C2
2

= 1
2M.

he bootstrapping argument then concludes that, for all t ≥ 0,

E(t) ≤ 6C2δ2,

hich, in particular, implies (1.5). Combining (1.5) with the standard local well-posedness theory leads to
he desired global well-posedness. □

Now we turn to the proof of Proposition 3.1. The proof consists of two main parts. The first part bounds
1(t) while the second part bounds E2(t). For the sake of clarity, we state each part as a lemma.

emma 3.2. For some constant C3 > 0.

E1(t) ≤ C3E1(0) + C3E
3
2

1 (t) + C3E1(t)E
1
2

2 (t). (3.2)

emma 3.3. For some constant C4 > 0,

E2(t) ≤ C4E1(0) + C4E1(t) + C4E
1
2

1 (t)E2(t). (3.3)

There are two key points for the proof. One is that we will take advantage of the regularizing and
tabilizing properties offered by the wave structure of u and P∇ · τ . The other is that we will apply the
oincaré inequality to ∥∇u∥L2 and ∥P∇ · τ∥L2 based on the fact

∫
Ω

∇u dx = 0 and
∫
Ω
P∇ · τ dx = 0 to

vercome the difficulty of the weak decay of these terms. We now prove the two lemmas.

roof of Lemma 3.2. The proof is divided into two steps.
Step 1. This step estimates the first three terms in E1(t). Applying the operator ∇k for k = 0, 1, 2 to

1.3) and taking the L2 inner product of the resulting equations with (∇ku, ∇kτ), we find

1
2

d

dt

(
∥u(t)∥2

H2 + ∥τ(t)∥2
H2

)
+ ∥∇u(t)∥2

H2 = −
2∑

k=0

∫
∇k(u · ∇u) · ∇kudx

−
2∑

k=0

∫
∇k(u · ∇τ) · ∇kτdx −

2∑
k=0

∫
∇kQ · ∇kτdx := I1 + I2 + I3, (3.4)
7
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W

where we have used∫
∇k(∇P ) · ∇kudx = 0,

∫
∇k(∇ · τ) · ∇kudx +

∫
∇kD(u) · ∇kτdx = 0.

In fact, by integration by parts and the symmetry of τ ,∫
∇k(∇ · τ) · ∇kudx +

∫
∇kD(u) · ∇kτdx

=
∫

∇k∂jτij∇kuidx + 1
2

∫
∇k(∂jui + ∂iuj)∇kτijdx

= −
∫

∇kτij∇k∂juidx + 1
2

∫ (
∇k∂jui∇kτij + ∇k∂iuj∇kτji

)
dx

= −
∫

∇kτij∇k∂juidx +
∫

∇kτij∇k∂juidx = 0.

e bound the terms on the right hand side of (3.4). We rewrite I1 into three terms by integration by parts,
and then use Sobolev imbedding inequalities

∥v∥L4 ≤ C∥v∥H1 , ∥v∥L∞ ≤ C∥v∥H2 (3.5)

to obtain

I1 = −
∫

(∇u · ∇)u · ∇udx −
∫

(∇2u · ∇)u · ∇2udx − 2
∫

(∇u · ∇)∇u · ∇2udx

≤ ∥∇u∥L2∥∇u∥2
L4 + 3∥∇u∥L∞∥∇2u∥2

L2

≤ C∥∇u∥L2∥∇u∥2
H1 + C∥∇u∥H2∥∇2u∥2

L2 ≤ C∥∇u∥H1∥∇u∥2
H2 . (3.6)

Due to
∫

∇udx = 0, the Poincaré inequality

∥∇u∥L2 ≤ C∥∇2u∥L2 (3.7)

holds. By (3.7) and a similar argument as above,

I2 = −
∫

(∇u · ∇)τ · ∇τdx −
∫

(∇2u · ∇)τ · ∇2τdx − 2
∫

(∇u · ∇)∇τ · ∇2τdx

≤ ∥∇u∥L2∥∇τ∥2
L4 + ∥∇2u∥L4∥∇τ∥L4∥∇2τ∥L2 + 2∥∇u∥L∞∥∇2τ∥2

L2

≤ C∥∇2u∥L2∥∇τ∥2
H1 + C∥∇2u∥H1∥∇τ∥H1∥∇2τ∥L2 ≤ C∥∇2u∥H1∥∇τ∥2

H1 . (3.8)

Recalling the definition of Q in (1.2), and invoking (3.5) and (3.7), we find

I3 = −
∫

Q · τdx +
∫

Q · ∆τdx −
∫

∇2Q · ∇2τdx

≤ C

∫
|∇u| |τ |2dx + C

∫
|∇u| |τ ||∆τ |dx

+ C

∫ (
|∇u| |∇2τ | + |∇2u| |∇τ | + |∇3u| |τ |

)
|∇2τ |dx

≤ C∥∇u∥L2∥τ∥2
L4 + C∥∇u∥L2∥τ∥L∞∥∆τ∥L2

+ C
(
∥∇u∥L∞∥∇2τ∥L2 + ∥∇2u∥L4∥∇τ∥L4 + ∥∇3u∥L2∥τ∥L∞

)
∥∇2τ∥L2

≤ C∥∇u∥L2∥τ∥2
H1 + C∥∇u∥L2∥τ∥H2∥∆τ∥L2

+ C
(
∥∇u∥H2∥∇2τ∥L2 + ∥∇2u∥H1∥∇τ∥H1 + ∥∇3u∥L2∥τ∥H2

)
∥∇2τ∥L2

≤ C∥∇2u∥H1∥τ∥2
H2 . (3.9)
8
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A

Inserting (3.6), (3.8) and (3.9) in (3.4), we obtain

1
2

d

dt

(
∥u(t)∥2

H2 + ∥τ(t)∥2
H2

)
+ ∥∇u(t)∥2

H2 ≤ C∥∇u∥H1∥∇u∥2
H2 + C∥∇2u∥H1∥τ∥2

H2 . (3.10)

hen integrating (3.10) over [0, t] yields

(
∥u(t)∥2

H2 + ∥τ(t)∥2
H2

)
+ 2

∫ t

0
∥∇u(s)∥2

H2ds

≤
(
∥u0∥2

H2 + ∥τ0∥2
H2

)
+ C

∫ t

0
∥∇u(s)∥H1∥∇u(s)∥2

H2ds

+ C

∫ t

0
∥∇2u(s)∥H1∥τ(s)∥2

H2ds

≤
(
∥u0∥2

H2 + ∥τ0∥2
H2

)
+ C sup

0≤s≤t
∥∇u(s)∥H1

∫ t

0
∥∇u(s)∥2

H2ds

+ C sup
0≤s≤t

∥τ(s)∥2
H2

∫ t

0
∥∇2u(s)∥H1ds

≤ E1(0) + CE
3
2

1 (t) + CE1(t)E
1
2

2 (t), (3.11)

here we have used the fact
∫ t

0 ∥∇2u(s)∥H1ds ≤ E
1
2

2 (t), which can be deduced by Hölder’s inequality,∫ t

0
∥∇2u(s)∥H1ds ≤

∫ t

0
(1 + s)∥∇2u(s)∥H1(1 + s)−1ds

≤
(∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds
) 1

2
(∫ t

0
(1 + s)−2ds

) 1
2 ≤ E

1
2

2 (t). (3.12)

Step 2. This step estimates
∫ t

0 ∥P∇ · τ(s)∥2
H1ds. Applying the Leray-Helmholtz projection operator P to

he velocity equation and the divergence operator ∇· to the second Eq. (1.3), we have{
∂tu + P(u · ∇)u − ∆u = P∇ · τ,
∇ · ∂tτ + ∇ · (u · ∇)τ + ∇ · Q(τ, ∇u) = 1

2∆u,
(3.13)

here we have used ∇ · D(u) = 1
2∆u. Applying ∇k (k = 0, 1) to (3.13), dotting the resulting equations by

(∇kP∇ · τ, ∇ku) and integrating over Ω yield

∥P∇ · τ∥2
H1

=
1∑

k=0

(∫
∇k∂tu · ∇kP∇ · τdx +

∫
∇kP(u · ∇)u · ∇kP∇ · τdx −

∫
∇k∆u · ∇kP∇ · τdx

)
,

− 1
2∥∇u∥2

H1

=
1∑

k=0

(∫
∇k∇ · ∂tτ · ∇kudx +

∫
∇k∇ · (u · ∇)τ · ∇kudx +

∫
∇k(∇ · Q) · ∇kudx

)
.

dding two equations above leads to

∥P∇ · τ∥2
H1 =

1∑
k=0

d

dt

∫
∇ku · ∇kP∇ · τdx + 1

2∥∇u∥2
H1

+
1∑ ∫

∇kP(u · ∇)u · ∇kP∇ · τdx

k=0

9
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A

I
a

−
1∑

k=0

∫
∇k∆u · ∇kP∇ · τdx +

1∑
k=0

∫
∇k∇ · (u · ∇)τ · ∇kudx

+
1∑

k=0

∫
∇k∇ · Q · ∇kudx

=
1∑

k=0

d

dt

∫
∇ku · ∇kP∇ · τdx + 1

2∥∇u∥2
H1 + I4 + I5 + I6 + I7. (3.14)

Invoking PPv = Pv, Hölder’s inequality and Sobolev’s inequality, we have

I4 =
∫

(u · ∇)u · P∇ · τdx −
∫

∇(u · ∇)u · ∇P∇ · τdx

≤ ∥u∥L∞∥∇u∥L2∥P∇ · τ∥L2 +
(

∥∇u∥2
L4 + ∥u∥L∞∥∇2u∥L2

)
∥∇P∇ · τ∥L2

≤ C∥u∥H2∥∇u∥L2∥P∇ · τ∥L2 + C
(

∥∇u∥2
H1 + ∥u∥H2∥∇2u∥L2

)
∥∇P∇ · τ∥L2

≤ C∥u∥H2∥∇u∥H1∥P∇ · τ∥H1 . (3.15)

Similarly, I6 and I7 can be estimated as

I6 = −
∫

(u · ∇)τ · ∇udx −
∫

∇ · (u · ∇)τ · ∆udx

≤ ∥u∥L∞∥∇τ∥L2∥∇u∥L2 +
(

∥∇u∥L4∥∇τ∥L4 + ∥u∥L∞∥∇2τ∥L2

)
∥∆u∥L2

≤ C
(

∥u∥H2∥∇τ∥L2 + ∥∇u∥H1∥∇τ∥H1 + ∥u∥H2∥∇2τ∥L2

)
∥∇2u∥L2

≤ C∥u∥H2∥∇τ∥H1∥∇2u∥L2 , (3.16)

I7 =
∫

∇ · Q · udx −
∫

∇ · Q · ∆udx

≤ C

∫ (
|∇τ | |∇u| + |τ | |∇2u|

)(
|u| + |∆u|

)
dx

≤ C
(

∥∇τ∥L4∥∇u∥L4 + ∥τ∥L∞∥∇2u∥L2

)
∥u∥H2

≤ C
(

∥∇τ∥H1∥∇u∥H1 + ∥τ∥H2∥∇2u∥L2

)
∥u∥H2

≤ C∥τ∥H2∥u∥H2∥∇2u∥L2 , (3.17)

where we have used the Poincaré inequality (3.7) in (3.17). Clearly, I5 is bounded by

I5 ≤ 1
2∥∆u∥2

H1 + 1
2∥P∇ · τ∥2

H1 . (3.18)

s a consequence of (3.15)–(3.18), we derive

∥P∇ · τ∥2
H1 ≤2

1∑
k=0

d

dt

∫
∇ku · ∇kP∇ · τdx + 2∥∇u∥2

H2

+ C
(

∥∇u∥H1∥P∇ · τ∥H1 + ∥τ∥H2∥∇2u∥L2

)
∥u∥H2 . (3.19)

ntegrating (3.19) over [0, t], combining with Hölder’s inequality, Young’s inequality, ∥P∇ · τ∥L2 ≤ ∥∇ · τ∥L2

nd (3.12), we obtain∫ t

∥ P∇·τ(s) ∥2
H1 ds = 2

∫ t

∥∇u(s)∥2
H2ds
0 0
10
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+ 2
1∑

k=0

(∫
∇ku · ∇kP∇ · τdx −

∫
∇ku0∇kP∇ · τ0dx

)
+ C

∫ t

0

(
∥∇u(s)∥H1∥P∇ · τ(s)∥H1 + ∥τ(s)∥H2∥∇2u(s)∥L2

)
∥u(s)∥H2ds

≤ 2
∫ t

0
∥∇u(s)∥2

H1ds + 2(∥u∥H1∥P∇ · τ∥H1 + ∥u0∥H1∥P∇ · τ0∥H1)

+ C sup
0≤s≤t

∥u(s)∥H2

∫ t

0
∥∇u(s)∥H1∥P∇ · τ(s)∥H1ds

+ C sup
0≤s≤t

∥u(s)∥H2∥τ(s)∥H2

∫ t

0
∥∇2u(s)∥H1ds

≤ 2(∥u∥2
H1 + ∥∇τ∥2

H1) + 2
∫ t

0
∥∇u(s)∥2

H1ds

+ CE
3
2

1 (t) + CE1(t)E
1
2

2 (t) + 2E1(0). (3.20)

herefore, multiplying (3.20) by 1
4 and then adding it to (3.11) yield the desired estimates (3.2). This

ompletes the proof of Lemma 3.2. □

We now turn to the proof of Lemma 3.3.

roof of Lemma 3.3. We divide the proof into two parts: the estimate of the first three terms in E2(t)
nd the estimate on the last term

∫ t

0 (1 + s)2∥∇P∇ · τ(s)∥2
L2ds.

Step 1. First, applying the differential operator ∇k+1 with k = 0, 1 to (1.3)1 and the operator ∇kP∇· with
= 0, 1 to (1.3)2, and then taking the L2 inner product of the resulting equations with (∇k+1u, ∇kP∇ · τ),
e have

1
2

d

dt

(
∥∇u(t)∥2

H1 + 2∥P∇ · τ(t)∥2
H1

)
+ ∥∇2u(t)∥2

L2 = −
1∑

k=0

∫
∇k+1(u · ∇u) · ∇k+1udx,

− 2
1∑

k=0

∫
∇kP∇ · (u · ∇τ) · ∇kP∇ · τdx − 2

1∑
k=0

∫
∇kP∇ · Q · ∇kP∇ · τdx, (3.21)

here we have used
1∑

k=0

∫
∇k+1(∇P ) · ∇k+1udx = 0,

1∑
k=0

∫
∇k+1(∇ · τ) · ∇k+1udx + 2

1∑
k=0

∫
∇kP∇ · D(u) · ∇kP∇ · τdx = 0,

hich can be proved by integration by parts, ∇·D(u) = 1
2∆u and P∆u = ∆u. Therefore, multiplying (3.21)

by time weight (1 + t)2 yields

1
2

d

dt
(1 + t)2(

∥∇u(t)∥2
H1 + 2∥P∇ · τ(t)∥2

H1
)

+ (1 + t)2∥∇2u(t)∥2
H1

= (1 + t)
(
∥∇u(t)∥2

H1 + 2∥P∇ · τ(t)∥2
H1

)
−

1∑
k=0

(1 + t)2
∫

∇k+1(u · ∇u) · ∇k+1udx

− 2
1∑

(1 + t)2
∫

∇kP∇ · (u · ∇τ) · ∇kP∇ · τdx

k=0

11
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− 2
1∑

k=0
(1 + t)2

∫
∇kP(∇ · Q) · ∇kP∇ · τdx

:= J1 + J2 + J3 + J4. (3.22)

or J2, it follows from (3.6) that

J2 = −(1 + t)2
(∫

(∇u · ∇)u · ∇udx +
∫

(∇2u · ∇)u · ∇2udx

+ 2
∫

(∇u · ∇)∇u · ∇2udx
)

≤ C(1 + t)2∥∇u∥H1∥∇2u∥2
H1 . (3.23)

he estimate of J3 is more subtle. By Lemma 2.2, we first decompose J2 into the following three parts

J3 = − 2(1 + t)2
1∑

k=0

(∫
∇kP(∇u · ∇)τ · ∇kP∇ · τdx

−
∫

∇kP(u · ∇P∇ · τ) · ∇kP∇ · τdx +
∫

∇kP(∇u · ∇)φ · ∇kP∇ · τdx
)

:=J31 + J32 + J33.

y PPv = Pv, Hölder’s inequality, Sobolev’s inequality and Poincaré inequality,

J31 = −2(1 + t)2
∫ (

(∇u · ∇)τ · P∇ · τ + ∇(∇u · ∇τ) · ∇P∇ · τ
)

dx

≤ 2(1 + t)2
(

∥∇u∥L4∥∇τ∥L4∥P∇ · τ∥L2 + ∥∇u∥L∞∥∇2τ∥L2∥∇P∇ · τ∥L2

+ ∥∇2u∥L4∥∇τ∥L4∥∇P∇ · τ∥L2

)
≤ C(1 + t)2

(
∥∇u∥H1∥∇τ∥H1∥P∇ · τ∥L2 + ∥∇u∥H2∥∇2τ∥L2∥∇P∇ · τ∥L2

+ ∥∇2u∥H1∥∇τ∥H1∥∇P∇ · τ∥L2

)
≤ C(1 + t)2∥∇τ∥H1∥∇2u∥H1∥∇P∇ · τ∥L2 . (3.24)

ere we have used the Poincaré inequality ∥P∇ · τ∥L2 ≤ C∥∇P∇ · τ∥L2 due to
∫
P∇ · τdx = 0. By the fact

Pv = Pv again together with the integration by parts and ∥Pv∥L2 ≤ ∥v∥L2 ,

J32 = −2(1 + t)2
∫

(∇u · ∇)(P∇ · τ) · ∇P∇ · τdx

≤ 2(1 + t)2∥∇u∥L∞∥∇P∇ · τ∥L2∥∇P∇ · τ∥L2

≤ C(1 + t)2∥∇u∥H2∥∇2τ∥L2∥∇P∇ · τ∥L2

≤ C(1 + t)2∥∇2u∥H1∥∇2τ∥L2∥∇P∇ · τ∥L2 . (3.25)

nvoking the estimate ∥∇φ∥H1(Ω) ≤ C∥∇τ∥H1(Ω) in Lemma 2.1 and following a similar argument as the
ne for J31, we have

J33 = −2(1 + t)2
∫ (

(∇u · ∇)φ · P∇ · τ + ∇(∇u · ∇φ) · ∇P∇ · τ
)

dx

≤ 2(1 + t)2
(

∥∇u∥L4∥∇φ∥L4∥P∇ · τ∥L2 + ∥∇u∥L∞∥∇2φ∥L2∥∇P∇ · τ∥L2

+ ∥∇2u∥L4∥∇φ∥L4∥∇P∇ · τ∥L2

)
≤ C(1 + t)2

(
∥∇u∥ 1∥∇φ∥ 1∥P∇ · τ∥ 2 + ∥∇u∥ 2∥∇2φ∥ 2∥∇P∇ · τ∥ 2
H H L H L L

12
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C

B

S

+ ∥∇2u∥H1∥∇φ∥H1∥∇P∇ · τ∥L2

)
≤ C(1 + t)2∥∇τ∥H1∥∇2u∥H1∥∇P∇ · τ∥L2 . (3.26)

ombining the upper bounds in (3.24), (3.25) and (3.26) leads to

J3 ≤ C(1 + t)2∥∇τ∥H1∥∇2u∥H1∥∇P∇ · τ∥L2 . (3.27)

y PPv = Pv, Hölder’s inequality, Sobolev’s inequality and Poincaré inequality, J4 can be bounded by

J4 = 2(1 + t)2
∫ (

Q · ∇P∇ · τ − ∇(∇ · Q) · ∇P∇ · τ
)

dx

≤ 2(1 + t)2(∥τ∥L∞∥∇u∥L2 + ∥τ∥L∞∥∇3u∥L2 + ∥∇τ∥L4∥∇2u∥L4

+ ∥∇2τ∥L2∥∇u∥L∞)∥∇P∇ · τ∥L2

≤ C(1 + t)2(∥τ∥H2∥∇u∥L2 + ∥τ∥H2∥∇3u∥L2 + ∥∇τ∥H1∥∇2u∥H1

+ ∥∇2τ∥L2∥∇u∥H2)∥∇P∇ · τ∥L2

≤ C(1 + t)2∥τ∥H2∥∇2u∥H1∥∇P∇ · τ∥L2 . (3.28)

Inserting (3.23), (3.27) and (3.28) into (3.22), and integrating over [0, t], we get

(1 + t)2(
∥∇u(t)∥2

H1 + 2∥P∇ · τ(t)∥2
H1

)
+ 2

∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds

≤ ∥∇u0∥2
H1 + 2∥∇τ0∥2

H1 + 2
∫ t

0
(1 + s)

(
∥∇u(s)∥2

H1 + 2∥P∇ · τ(s)∥2
H1

)
ds

+ C

∫ t

0
(1 + s)2∥∇u(s)∥H1∥∇2u(s)∥2

H1ds

+ C

∫ t

0
(1 + s)2∥τ(s)∥H2∥∇2u(s)∥H1∥∇P∇ · τ(s)∥L2ds. (3.29)

The integral terms on the right-hand side can be further bounded. By Poincaré’s inequality and Hölder’s
inequality, ∫ t

0
(1 + s)

(
∥∇u(s)∥2

H1 + 2∥P∇ · τ(s)∥2
H1

)
ds

≤ C

∫ t

0
(1 + s)

(
∥∇u(s)∥H1∥∇2u(s)∥L2 + 2∥P∇ · τ(s)∥H1∥∇P∇ · τ(s)∥L2

)
ds

≤ C
(∫ t

0
∥∇u(s)∥2

H1ds
) 1

2
(∫ t

0
(1 + s)2∥∇2u(s)∥2

L2ds
) 1

2

+ C
(∫ t

0
∥P∇ · τ(s)∥2

H1ds
) 1

2
(∫ t

0
(1 + s)2∥∇P∇ · τ(s)∥2

L2ds
) 1

2

≤ CE
1
2

1 (t)E
1
2

2 (t). (3.30)

imilarly, ∫ t

0
(1 + s)2∥∇u(s)∥H1∥∇2u(s)∥2

H1ds

≤ sup
0≤s≤t

∥∇u(s)∥H1

∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds

≤ E
1
2

1 (t) E2(t), (3.31)
13
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∫ t

0
(1 + s)2∥τ(s)∥H2∥∇2u(s)∥H1∥∇P∇ · τ(s)∥L2ds

≤ sup
0≤s≤t

∥τ(s)∥H2

(∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds
) 1

2
(∫ t

0
(1 + s)2∥∇P∇ · τ(s)∥2

L2ds
) 1

2

≤ E
1
2

1 (t) E2(t), (3.32)

nserting (3.30), (3.31) and (3.32) in (3.29) leads to

(1 + t)2
(

∥∇u(t)∥2
H1 + 2∥P∇ · τ(t)∥2

H1

)
+ 2

∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds

≤ CE
1
2

1 (t)E
1
2

2 (t) + CE
1
2

1 (t)E2(t) + 2E1(0). (3.33)

Step 2. This step establishes a suitable estimate for
∫ t

0 (1 + s)2∥∇P∇ · τ(s)∥2
L2ds. First, by (3.14),

∥∇P∇ · τ∥2
L2 = d

dt

∫
∇u · ∇P∇ · τdx + 1

2∥∆u∥2
L2

+
∫

∇P(u · ∇)u · ∇P∇ · τdx −
∫

∇∆u · ∇P∇ · τdx

+
∫

∇∇ · (u · ∇τ) · ∇udx +
∫

∇∇ · Q · ∇udx.

hen we have

(1 + t)2∥∇P∇ · τ∥2
L2 = d

dt
(1 + t)2

∫
∇u · ∇P∇ · τdx + 1

2(1 + t)2∥∆u∥2
L2

− 2(1 + t)
∫

∇u · ∇P∇ · τdx + (1 + t)2
∫

∇P(u · ∇)u · ∇P∇ · τdx

− (1 + t)2
∫

∇∆u · ∇P∇ · τdx + (1 + t)2
∫

∇∇ · (u · ∇τ) · ∇udx

+ (1 + t)2
∫

∇∇ · Q · ∇udx

= d

dt
(1 + t)2

∫
∇u · ∇P∇ · τdx + 1

2(1 + t)2∥∆u∥2
L2 + J4 + J5 + J6 + J7 + J8.

Next we estimate J4 − J8. First, for the integrals of linear terms J4 and J6, Hölder’s inequality implies

J4 + J6 ≤ 2(1 + t)∥∇u∥L2∥∇P∇ · τ∥L2 + (1 + t)2∥∇∆u∥L2∥∇P∇ · τ∥L2 .

ollowing the estimate (3.15) for I4 and (3.17) for I7, we have

J5 + J8 ≤ C(1 + t)2∥u∥H2∥∇2u∥L2∥∇P∇ · τ∥L2 + (1 + t)2∥τ∥H2∥∇2u∥2
L2 ,

here we have used ∥∇u∥ ≤ C∥∇2u∥. Finally, we deal with J7. The estimate is more elaborate. We first
ivide it into three terms according to Lemma 2.2,

J7 = − (1 + t)2
∫

∇ · (u · ∇)τ · ∆udx = (1 + t)2
∫

P∇ · (u · ∇)τ · ∆udx

=(1 + t)2
(∫

P(∇u · ∇)τ · ∆udx −
∫

P(u · ∇P∇ · τ) · ∆udx

+
∫

P(∇u · ∇)φ · ∆udx
)

=(1 + t)2
(∫

(∇u · ∇)τ · ∆udx −
∫

(u · ∇)P∇ · τ · ∆udx

+
∫

(∇u · ∇)φ · ∆udx
)

.
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By Hölder’s inequality, Sobolev’s inequality and Poincaré’s inequality,

J7 ≤ (1 + t)2
(

∥∇u∥L4∥∇τ∥L4 + ∥u∥L∞∥∇P∇ · τ∥L2 + ∥∇u∥L4∥∇φ∥L4

)
∥∆u∥L2

≤ C(1 + t)2
(

∥∇u∥H1∥∇τ∥H1 + ∥u∥H2∥∇P · ∇τ∥L2 + ∥∇u∥H1∥∇φ∥H1

)
∥∆u∥L2

≤ C(1 + t)2(∥∇τ∥H1 + ∥u∥H2)
(

∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2

)
where we have used ∥∇φ∥H1 ≤ C∥∇τ∥H1 by Lemma 2.1. Collecting all the estimates for J4 − J8 and
integrating the resulted inequality on [0, t], we obtain∫ t

0
(1 + s)2∥∇P∇ · τ(s)∥2

L2ds ≤ 1
2

∫ t

0
(1 + s)2∥∆u(s)∥2

L2ds

+
(

(1 + t)2
∫

∇u · ∇P∇ · τdx −
∫

∇u0 · ∇P∇ · τ0dx
)

+
∫ t

0

(
2(1 + s)∥∇u(s)∥L2 + (1 + s)2∥∇∆u(s)∥L2

)
∥∇P∇ · τ(s)∥L2ds

+ C

∫ t

0
(1 + s)2(∥τ(s)∥H2 + ∥u(s)∥H2)

(
∥∇2u(s)∥2

L2 + ∥∇P∇ · τ(s)∥2
2
)
ds

:= K1 + K2 + K3 + K4.

By Hölder’s inequality, Young’s inequality and ∥Pv∥L2 ≤ ∥v∥L2 ,

K2 ≤ (1 + t)2∥∇u∥L2∥∇P∇ · τ∥L2 + ∥∇u0∥L2∥∇P∇ · τ0∥L2

≤ 1
2(1 + t)2(

∥∇u∥2
L2 + ∥∇P∇ · τ∥2

L2
)

+ ∥∇u0∥L2∥∇2τ0∥L2

≤ 1
2(1 + t)2(

∥∇u∥2
L2 + ∥∇P∇ · τ∥2

L2
)

+ E1(0),

imilarly,

K3 ≤
[
2
(∫ t

0
∥∇u(s)∥2

L2ds
) 1

2 +
(∫ t

0
(1 + s)2∥∇3u(s)∥2

L2ds
) 1

2
](∫ t

0
(1 + s)2∥∇P∇ · τ∥2

L2

) 1
2

≤ 2E
1
2

1 (t)E
1
2

2 (t) + 1
2

(∫ t

0
(1 + s)2∥∇3u(s)∥2

L2ds +
∫ t

0
(1 + s)2∥∇P∇ · τ(s)∥2

L2ds
)

nd

K4 ≤ C sup
0≤s≤t

(∥τ(s)∥H2 + ∥u(s)∥H2)
∫ t

0
(1 + s)2

(
∥∇2u(s)∥2

L2 + ∥∇P∇ · τ(s)∥2
L2

)
ds

≤ CE
1
2

1 (t)E2(t).

herefore, we conclude that∫ t

0
(1 + s)2∥∇P∇ · τ(s)∥2

L2ds ≤ (1 + t)2(
∥∇u∥2

L2 + ∥∇P∇ · τ∥2
L2

)
+

∫ t

0
(1 + s)2∥∇2u(s)∥2

H1ds + 4E
1
2

1 (t)E
1
2

2 (t) + CE
1
2

1 (t)E2(t) + 2E1(0),

hich, together with (3.33), implies

E2(t) ≤ CE
1
2

1 (t)E
1
2

2 (t) + CE
1
2

1 (t)E2(t) + CE1(0).

or some constant C > 0. Consequently, there exists C4 > 0 such that

E2(t) ≤ C4E1(t) + C4E
1
2

1 (t)E2(t) + C4E1(0).

his completes the proof of Lemma 3.3. □
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We combine Lemmas 3.2 and 3.3 to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. The estimates (3.2) and (3.3) together with Young’s inequality give the desired
prior estimate

E(t) ≤ C2E(0) + C2E 3
2 (t).

his completes the proof of Proposition 3.1. □

. The decay estimates

The section is devoted to proving the time decay rate (1.6) in Theorem 1.1. The idea is to obtain a
elf-contained inequality of the form

d

dt
X(t) + C1 X(t) ≤ 0, (4.1)

here
X(t) := ∥∇u∥2

H1 + 2∥P∇ · τ∥2
H1 − (∇u, ∇P∇ · τ).

Here (f, g) denotes the L2-product of f and g. The point of including the inner product term in X is to
extract the dissipation in P∇· τ(t) as revealed by the wave equations in (1.9). To make the proof simple and
easy to understand, we divide the proof of (4.1) into two lemmas.

Lemma 4.1. Let (u, τ) be the solution of (1.3), as obtained by the first part of Theorem 1.1. Then, for some
constant C > 0, we have

d

dt

(
∥∇u(t)∥2

H1 + 2∥P∇ · τ(t)∥2
H1

)
+ 2∥∇2u(t)∥2

H1 ≤ C(∥∇u∥H1 + ∥τ∥H2)
(
∥∇2u∥2

H1 + ∥∇P∇ · τ∥2
L2

)
. (4.2)

roof of Lemma 4.1. It follows from (3.21) that

1
2

d

dt

(
∥∇u∥2

H1 + 2∥P∇ · τ∥2
H1

)
+ ∥∇2u∥2

H1 = −
1∑

k=0

∫
∇k+1(u · ∇u) · ∇k+1u dx,

− 2
1∑

k=0

∫
∇kP∇ · (u · ∇τ) · ∇kP∇ · τ dx − 2

1∑
k=0

∫
∇kP∇ · Q · ∇kP∇ · τ dx

:= K1 + K2 + K3.

nvoking the estimate (3.6) for I1, we have

K1 ≤ C∥∇u∥H1∥∇2u∥2
H1 .

rom (3.27) for J3,
K2 ≤ C∥∇τ∥H1(∥∇2u∥2

H1 + ∥∇P∇ · τ∥2
L2).

lso, by (3.28),
K3 ≤ C∥τ∥H2(∥∇2u∥2

H1 + ∥∇P∇ · τ∥2
L2).

herefore,

1
2

d

dt
(∥∇u∥2

H1 + 2∥P∇ · τ∥2
H1) + ∥∇2u∥2

H1 ≤ C(∥∇u∥H1 + ∥τ∥H2)(∥∇2u∥2
H1 + ∥∇P∇ · τ∥2

L2).

his completes the proof of Lemma 4.1. □
The second lemma bounds the inner product term.
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Lemma 4.2. Let (u, τ) be the solution of (1.3), as obtained by the first part of Theorem 1.1. Then, for some
constant C > 0, we have

− d

dt
(∇u, ∇P∇ · τ) + 1

2∥∇P∇ · τ(t)∥2
L2 − 1

2∥∆u∥2
H1

≤ C(∥u∥H2 + ∥τ∥H2)(∥∇2u(t)∥2
L2 + ∥∇P∇ · τ∥2

L2). (4.3)

roof of Lemma 4.2. Consider the functional (∇u, ∇P∇ · τ). Applying the operator P to (1.3)1 and P∇·
to (1.3)2, respectively, we have{

∂tu + P(u · ∇)u − ∆u = P∇ · τ,
P∇ · ∂tτ + P∇ · (u · ∇)τ + P∇ · Q(τ, ∇u) = 1

2∆u,

hen a direct calculation leads to

− d

dt
(∇u, ∇P∇ · τ) + ∥∇P∇ · τ∥2

L2 − 1
2∥∆u∥2

L2

=
∫

∇P(u · ∇u) · ∇P∇ · τ dx −
∫

∇∆u · ∇P∇ · τ dx

+
∫

∇u · ∇P∇ · (u · ∇τ) dx +
∫

∇u · ∇P∇ · Q dx

:= K4 + K5 + K6 + K7.

nvoking the bounds in (3.15) and (3.17), we have

K4 + K7 ≤ C(∥u∥H2 + ∥τ∥H2)(∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2).

learly,
K5 ≤ 1

2(∥∇∆u(t)∥2
L2 + ∥∇P∇ · τ∥2

L2).

6 can be similarly estimated as J7,

K6 ≤ C(∥u∥H2 + ∥∇τ∥H1)(∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2).

n summary, we obtain

− d

dt
(∇u, ∇P∇ · τ) + 1

2∥∇P∇ · τ∥2
L2 − 1

2∥∆u∥2
H1

≤ C(∥u∥H2 + ∥τ∥H2)(∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2).

his completes the proof of Lemma 4.2. □

With the lemmas at our disposal, we are ready to prove the decay estimate.

roof of the decay rate in Theorem 1.1. Adding (4.2) and (4.3) yields

d

dt

(
∥∇u∥2

H1 + 2∥P∇ · τ∥2
H1 − (∇u, ∇P∇ · τ)

)
+ 1

2
(
∥∇2u∥2

H1 + ∥∇P∇ · τ∥2
L2

)
≤ C(∥u∥H2 + ∥τ∥H2)(∥∇2u∥2

H1 + ∥∇P∇ · τ∥2
L2)

≤ Cδ(∥∇2u∥2
H1 + ∥∇P∇ · τ∥2

L2),

here we have used the global well-posedness result (1.5). If δ is sufficiently small, then for some constant
> 0,

d (
∥∇u∥2

1 + 2∥P∇ · τ∥2
1 − (∇u, ∇P∇ · τ)

)
+ C

(
∥∇2u∥2

1 + ∥P∇ · τ∥2
2
)

≤ 0 (4.4)

dt H H H L
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Due to the Poincaré inequality, we have

∥∇u∥2
H1 + 2∥P∇ · τ∥2

H1 ≤ C(∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2).

n addition, by Hölder’s inequality, Young’s inequality and Poincaré’s inequality,

−(∇u, ∇P∇ · τ) ≤ C(∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2).

herefore, we obtain

∥∇u∥2
H1 + 2∥P∇ · τ∥2

H1 − (∇u, ∇P∇ · τ) ≤ C(∥∇2u∥2
L2 + ∥∇P∇ · τ∥2

L2).

hen by (4.4), there exists a constant C1 > 0 such that

d

dt

(
∥∇u∥2

H1 + 2∥P∇ · τ∥2
H1 − (∇u, ∇P∇ · τ)

)
+ 2C1

(
∥∇u∥2

H1 + 2∥P∇ · τ∥2
H1 − (∇u, ∇P∇ · τ)

)
≤ 0. (4.5)

We notice that

∥∇u∥2
H1 + 2∥P∇ · τ∥2

H1 − (∇u, ∇P∇ · τ)

≥ ∥∇u∥2
H1 + 2∥P∇ · τ∥2

H1 − 1
2(∥∇u∥2

L2 + ∥∇P∇ · τ∥2
L2)

≥ C(∥∇u∥2
H1 + ∥P∇ · τ∥2

H1).

ence, by (4.5),

∥∇u∥2
H1 + 2∥P∇ · τ∥2

H1 − (∇u, ∇P∇ · τ) ≤ Ce−2C1t.

Therefore,

∥∇u∥2
H1 + ∥P∇ · τ∥2

H1 ≤ Ce−2C1t.

his completes the proof of the decay rate in Theorem 1.1. □
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