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Abstract. In this paper we study the non-degenerate and partially degen-
erate Boussinesq equations on a closed surface Σ. When Σ has intrinsic cur-
vature of finite Lipschitz norm, we prove the existence of global strong solu-
tions to the Cauchy problem of the Boussinesq equations with full or partial
dissipations. The issues of uniqueness and singular limits (vanishing viscos-
ity/vanishing thermal diffusivity) are also addressed. In addition, we establish
a breakdown criterion for the strong solutions for the case of zero viscosity
and zero thermal diffusivity. These appear to be among the first results for
Boussinesq systems on Riemannian manifolds.

1. Introduction. We consider the Cauchy problem for the Boussinesq equations
on a smooth, closed (i.e., compact and with no boundary) surface Σ:

∂tu+ u · ∇u− ν∆u+∇P = θe in [0, T ]× Σ, (1)
∂tθ + u · ∇θ − κ∆θ = 0 in [0, T ]× Σ, (2)
div u = 0 in [0, T ]× Σ. (3)

The initial condition is given by

(u, θ)|t=0 = (u◦, θ◦) on {0} × Σ. (4)

Throughout this paper, (Σ, g) is a closed surface, i.e., a 2-dimensional compact
differentiable manifold without boundary. g is the Riemannian metric of Σ, i.e.,
a positive definite symmetric 2 × 2 matrix field. At times we shall write 〈·, ·〉
for the inner product given by g; thus the length of a vector field v is given by
|v| :=

√
〈v, v〉. We denote by Γ(TΣ) the space of tangential vector fields on Σ,
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and Γ(T ∗Σ) the space of 1-forms; TΣ and T ∗Σ are the tangent and cotangent
bundles of Σ, respectively. ∇ denotes the gradient operator on Σ; equivalently,
it is the covariant derivative induced by the Levi-Civita connection on Σ. The
divergence operator (div) corresponding to ∇ is obtained by taking the trace of ∇
with respect to g; it can be defined intrinsically on Σ. In addition, e ∈ Γ(TΣ) is
a unit-length, Lipschitz vector field on Σ. For a vector field v ∈ Γ(TΣ) we write
its components in some local coordinates by vi. The 1-form v[ ∈ Γ(T ∗Σ) dual to
vi has components vi := gijv

j . Einstein’s summation convention is adopted unless
otherwise mentioned: the repeated upper and lower indices are summed over.

We denote by Riemi
jkl the components of the Riemann curvature tensor on Σ.

For the 2-dimensional manifold Σ, there is only one intrinsic curvature: Riem
and the Gauss, Ricci, sectional and scalar curvatures are all equivalent. We shall
simply refer to “the curvature of Σ”. For the simplicity of presentation (e.g., to
state the Ricci identity in Lemma 2.1), in this paper we shall use Riem for explicit
computations.

We observe that Eqs. (1)–(3), as equations in TΣ, are formulated intrinsically,
i.e., independent of the choice of coordinates charts. Also, it is not necessary to
assume that the fluid domain Σ is isometrically embedded into R3.

In the paper we impose one mild assumption on the geometry of Σ: the Lipschitz
norm of the intrinsic curvature is bounded. That is,

‖Riem‖W 1,∞(Σ) ≤ R <∞. (5)

On the other hand, notice that Σ has a positive injectivity radius lower bound:

injΣ ≥ ι0 > 0,

and a finite volume:
Vol Σ :=

∫
Σ

1 dx ≤ V <∞,

by the definition of the closed surface. Throughout this paper, a constant c is said
to be “geometric” (or “depends on the geometry of Σ”) if it depends on R, ι0 and V .
The bounds ι0 and V will be needed for the Calderón–Zygmund estimates (Lemma
2.3).

The physical variables in Eqs. (1)–(4) are as follows: u(t, ·) ∈ Γ(TΣ) is the ve-
locity vector field, θ(t, ·) : Σ → R is the temperature function, and P : Σ → R the
pressure of an incompressible fluid; ν ≥ 0 is the viscosity and κ ≥ 0 the thermal
diffusivity of the fluid.

As an example, consider Σ = S2, the unit round sphere, with e equal to the
natural vector field tangential to the geodesics from the north pole to the south
pole (the latitudes). In the spherical coordinates, if

x = x(φ˜, θ˜) =
(

sinφ˜ cos θ˜, sinφ˜ sin θ˜, cosφ˜)>,
for the azimuthal angle φ˜ ∈ [0, π[ and the (x, y)-plane angle θ˜ ∈ [0, 2π[, then

e(x) =
(

cosφ˜ cos θ˜, cosφ˜ sin θ˜, − sinφ˜)>.
Clearly one has 〈e(x), x〉 = 0 and |e(x)| = 1 for each x ∈ Σ. This has been studied
by Saito [50].

To put things into perspective, we briefly survey the literature in connection with
this work. When Σ is an Euclidean domain in R2 and e = e2 = (0, 1)>, the unit
vertical vector, the qualitative behaviours of large-amplitude solutions to the 2D
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Boussinesq equations, such as well-posedness, blowup criteria, regularity, explicit
solutions, finite-time singularities, and long-time behaviour, subject to various ini-
tial and/or boundary conditions have been studied extensively in the literature. We
refer the readers to
• [5, 17, 18, 19, 20, 22, 27, 37, 51, 53] for local well-posedness, blowup criteria,

explicit solutions and finite-time singularities for the degenerate case (i.e.,
ν = κ = 0);

• [1, 2, 3, 4, 14, 15, 16, 21, 23, 24, 25, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48,
49, 62] for global well-posedness and regularity for the non-degenerate and
partially degenerate cases;

• [41, 42, 47, 52, 59, 60, 61] for well-posedness and regularity with critical and
supercritical dissipation; and

• [10, 26, 44, 54, 58, 62] for long-time behaviours.
There are also works dealing with the Boussinesq equations in the three-dimensional
space; see, e.g., [11] for long-time behaviour of small-amplitude solutions for the
non-degenerate case.

On the other hand, comparing with the magnitude of research conducted on the
Boussinesq equations on Euclidean domains, the qualitative behaviour of the model
on Riemannian manifolds has been investigated relatively little. To the authors’
knowledge, only the case of the two-dimensional round sphere has been studied, see
[50], in which the convergence of the average of weak solutions of the 3D equations
to a 2D problem is proved. The case of general Riemannian manifolds is widely
open. This is the fact that primarily motivated the current work. In addition, the
Boussinesq equations on surfaces may be potentially important in the modeling of
geophysical fluids. The Boussinesq equations model buoyancy driven flows, which
tend to become stratified. In fact, Earth’s atmosphere is divided into a series of
layers. The Boussinesq equations on surfaces become relevant for the dynamics of
the layered flows.

In passing, we remark that despite the lack of literature on the analysis of Boussi-
nesq equations on manifolds, various PDEs of hydrodynamic models have neverthe-
less been studied on manifolds, including the Navier–Stokes equations [40], the
rotating Euler equations [55], and the SQG (surface quasi-geostrophic) equations
[6, 7], even for critical cases without the smallness assumption on the initial data.

The goal of this work is to study the local/global well-posedness and blowup
criteria (depending on the specific values of the dissipation parameters) of large-
amplitude classical solutions to the Cauchy problem of the 2D Boussinesq equations
on general closed surfaces, i.e., 2-dimensional manifolds, with intrinsic curvature
bounded in the Lipschitz norm. We reach the goal by combining approaches in
Riemannian geometry and Lp-based energy methods. We remark that although
the commonly utilized techniques, such as the Sobolev embeddings, interpolation
inequalities (Gagliardo–Nirenberg, Ladyzhenskaya, et al), and special estimates
(Brezis–Wainger, Calderón–Zygmund, et al) are still available in the Riemannian
setting, the problem considered herein distinguishes itself from the problems on
Euclidean domains significantly, mainly due to the Ricci identity for commuting
covariant derivatives. In particular, the Ricci identity generates additional lower
order terms when taking the spatial derivatives to the equations, which complicates
the underlying analysis, especially for the global well-posedness of large-amplitude
classical solutions. We overcome the difficulty by applying various interpolation
inequalities and taking advantage of the dissipation mechanisms.
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The rest of the paper is organized as follows. In Section 2, we collect some
preliminary results, such as geometric identities, Sobolev embeddings, interpolation
inequalities and special estimates, which are frequently utilized in the proofs of
the main results. Section 3 contains the global existence of weak solutions to the
non-degenerate system (ν > 0, κ > 0), uniqueness of strong solutions to the non-
degenerate, partially degenerate and degenerate systems, and a Beale–Kato–Majda-
type blowup criterion for all the cases. Sections 4 and 5 respectively deal with the
global well-posedness of the partially degenerate system with either non-degenerate
viscosity (ν > 0 and κ ≥ 0) or non-degenerate thermal diffusivity (ν ≥ 0 and
κ > 0). In Section 6, we study the vanishing viscosity and diffusivity limits of the
global solutions to the non-degenerate system, and establish the consistency between
the non-degenerate and partially degenerate systems. The paper is finished with
concluding remarks in Section 7 and a proof of the Beale–Kato–Majda-type blowup
criterion in the Appendix.

2. Preliminaries. Throughout this paper, the geometric constant R depends only
on ‖Riem‖W 1,∞(Σ) (may change from line to line). The constants Ki = Ki(t)
depend only on the parameters of the fluid, and can be bounded uniformly in time
byKi(t) ≤ Ki(T ) for any t ∈ [0, T ]. We write c for geometric constants associated to
various classical inequalities, e.g., Gagliardo–Nirenberg–Sobolev, Poincaré, Brezis–
Wainger and so on.

For 2× 2 matrices M1,M2, we write |M1| for the Hilbert–Schmidt norm of M1,
andM1 : M2 := tr(M1 ·M2). Given vector fields a = (a1, a2)>, b = (b1, b2)> written
in local coordinates, the tensor product a⊗b denotes the 2×2 matrix with the (i, j)-
entry equal to aibj . Let T1, T2 be two tensor fields on Σ; the schematic notation
T1 ? T2 designates any bilinear combination of components of T1, T2. For a function
f on Σ, ∇∇f denotes the Hessian matrix field {∇i∇jf}1≤i,j≤2. We shall always
use ∆ to denote the Hodge Laplacian

∆ := −dd∗ − d∗d,

where d is the exterior differential and d∗ its L2 formal adjoint. That is, ∆ is the
negative of the Laplace–Beltrami operator on Σ. For Σ = R2 we have the usual
∆ = ∂2/∂(x1)2 + ∂2/∂(x2)2. By elementary geometry, d is interpreted as the curl
or rot and d∗ as the divergence operator (modulo signs or obvious duality). Note
that ∆ maps differential r-forms to r-forms or, equivalently, from r-vector fields to
r-vector fields. The arguments in this paper also apply to the Bochner Laplacian;
see the end of §7 for discussions.

We define J as the space of smooth solenoidal vector fields on Σ:

J :=
{
u ∈ C∞0 (Σ;TΣ) : div u = 0

}
, (6)

and
H := J L

2

, (7)
the completion of J with respect to the L2-topology.

It is well-known that the Sobolev spaces W k,p(Σ) can be defined globally on Σ
via the Levi-Civita connection ∇, the metric g and the differentiable structure of Σ
(see, e.g., [31]). We write W k,p(Σ;TΣ) for the Sobolev space of W k,p-vector fields
on Σ, and similarly W k,p(Σ;T ∗Σ) for the space of W k,p-1-forms on Σ. As usual
Hk := W k,2. We use ‖φ‖Wk,p(Σ) to denote the W k,p-norm of φ, where φ can be a
function, a vector field, a 1-form or a tensor field of any type. Moreover, one denotes
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the homogeneous Sobolev norms by ‖φ‖Ẇk,p(Σ), which consists of the Lp-norms of
the higher-order covariant derivatives of φ. We shall also write

∫
Σ
f(x) dx as the

integration with respect to the volume form on Σ; that is, dx denotes the volume
(area) measure on (Σ, g).

In the sequel, we introduce several geometric identities and inequalities. They
play a crucial role in our estimates.

First, we have the well-known Ricci identity on any Riemannian manifold (see
[43]), which tells us how to commute covariant derivatives:

Lemma 2.1. Let T be a covariant tensor field of rank m. Then

∇k∇lTi1i2...im −∇l∇kTi1i2...im =

m∑
α=1

{
Ti1...iα−1hiα+1...lm Riemh

iαkl

}
.

For instance, for f : Σ→ R and u ∈ Γ(TΣ) we have

∇i∇j∇kf = ∇j∇i∇kf + Rieml
ijk∇lf, (8)

and by raising and lowering indices using the metric tensor we get

∇l∇j∇kui −∇j∇l∇kui

= gpi
{

(∇kuh) Riemh
plj − (∇hup) Riemh

klj

}
, (9)

as well as

∇j∇l∇h∇kui −∇l∇j∇h∇kui

= gqi
ß

(∇p∇kuq) Riemp
hjl + (∇h∇puq)Riemp

kjl + (∇p∇kuh)Riemp
hjl

™
. (10)

Next, we remark that the usual Sobolev embedding theorems continue to hold on
the surface Σ in our case. This follows from a more general result due to Varopoulos
([56]): Sobolev embedding theorems hold on complete Riemannian manifolds of
arbitrary dimensions with Ricci curvature lower bound and a strictly positive lower
bound for the volume of unit geodesic balls. As a consequence, any inequalities
obtained from the Sobolev embeddings via interpolation continue to hold; e.g., the
Gagliardo–Nirenberg and the Ladyzhenskaya inequalities.

Let us also state an inequality due to Brezis–Wainger; see [12, 28] on Euclidean
domains and [29] on closed manifolds. It is an end-point case of the classical Sobolev
inequalities. We write log+ s := max{log s, 0}.

Lemma 2.2 (Brezis–Wainger). Let (Σ, g) be a closed Riemannian manifold. As-
sume f ∈ L2(Σ)∩Ẇ 1,p(Σ). Then there exists a constant c depending only on p and
Σ such that

‖f‖L∞(Σ) ≤ c(1 + ‖∇f‖L2(Σ))
»

1 + log+(‖∇f‖Lp(Σ)) + c‖f‖L2(Σ). (11)

In addition, we have the following Calderón–Zygmund estimate on Σ.

Lemma 2.3. Let (Σ, g) be a closed surface with Lipschitz-bounded curvature. Then,
for each differential s-form ψ on Σ and any 1 < p < ∞, there exists a constant
c = c(p, s,Σ, ι0, V, ‖Riem‖L∞(Σ)) such that

‖∇2ψ‖Lp(Σ) ≤ c
(
‖∆ψ‖Lp(Σ) + ‖ψ‖Lp(Σ)

)
.
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The proof follows from Wang [57] with slight modifications (e.g., using the
Green’s function on Σ; see [8]). In [57] it is proved that, in the above setting,
if ψ is L2-orthogonal to the space of harmonic s-forms on Σ, then there exists a
constant c′ = c(p, s,Σ, ι0, V, ‖Riem‖L∞(Σ)) such that

‖∇2ψ‖Lp(Σ) ≤ c′‖∆ψ‖Lp(Σ).

For the general case we include ‖ψ‖Lp(Σ) on the right-hand side to control the non-
trivial harmonic part of ψ. It follows immediately from the finite dimensionality of
the space of harmonic forms on Σ, thanks to the theory of de Rham cohomology.

3. Existence and uniqueness of weak solutions.

Definition 3.1. Let Σ be a closed surface with Lipschitz-bounded curvature. Let
(u◦, θ◦) ∈ L2(Σ;TΣ) × L2(Σ) be initial data satisfying div u◦ = 0. (u, θ) is a weak
solution to the Boussinesq equations (1)–(4) if®

u ∈ L∞
(
0, T ;L2(Σ;TΣ)

)
∩ L2(0, T ;H),

θ ∈ L∞
(
0, T ;L2(Σ)

)
∩ L2

(
0, T ;H1(Σ)

)
,

(12)

and they satisfy Eqs. (1)–(4) in the distributional sense:∫
Σ

〈u◦(x),Φ(x)〉dx+

∫ T

0

∫
Σ

ß
〈u(t, x), ∂tΦ(x)〉+

[
u(t, x)⊗ u(t, x)

]
: ∇Φ(x)

− ν∇u(t, x) : ∇Φ(x) + θ(t, x)〈Φ(x), e(x)〉
™

dxdt = 0 (13)

for every test vector field Φ ∈ C∞([0, T ]× Σ) with div Φ = 0 and Φ|t=T = 0, and∫
Σ

θ◦(x)ϕ(x) dx+

∫ T

0

∫
Σ

ß
θ(t, x)∂tϕ(x)

+ θ(t, x)〈u(t, x),∇ϕ(x)〉 − κ〈∇θ(t, x),∇ϕ(x)〉
™

dxdt = 0 (14)

for each test function ϕ ∈ C∞([0, T ]× Σ) with ϕ|t=T = 0.

By standard methods of linearisation and Galerkin approximation, we can prove
the existence of (distributional) weak solutions to Eqs.(1)–(4) under more stringent
regularity assumptions on the initial data, e.g., (u◦, θ◦) ∈ H3(Σ, TΣ)×H3(Σ). In-
deed, adapting the arguments in [30] by Guo–Yuan for 2D or 3D bounded Euclidean
domains, which in turn are based on the classical work [13] by Caffarelli–Kohn–
Nirenberg on the incompressible Navier–Stokes equations, it is possible to establish
the existence of “suitable weak solutions”; see the appendix in [13] for the proof on
compact surfaces-with-boundary.

It remains a major open problem regarding the uniqueness of weak solutions to
the Boussinesq equations, even in R2 or bounded Euclidean domains. Nevertheless,
the uniqueness of strong solutions in the following sense can be easily established.
For the non-degenerate case, we have:

Theorem 3.2. Let Σ be a closed surface with Lipschitz-bounded curvature. Let
u◦ ∈ H, θ◦ ∈ L2(Σ), and T > 0. Suppose κ > 0 and ν > 0. Then solutions (u, θ)
to the system (1)–(4) on [0, T ] with initial data (u◦, θ◦) is unique in the following
space: ®

u ∈ L2(0, T ;J ) ∩ C0(0, T ;H);

θ ∈ L2
(
0, T ;H1

0 (Σ)
)
∩ C0

(
0, T ;L2(Σ)

)
.

(15)
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Proof. Let (ui, θi, Pi), i ∈ {1, 2}, be two solutions in the indicated function spaces.
Denote v̂ := u1 − u2, θ̂ := θ1 − θ2 and P̂ := P1 − P2. The equations for the
hat-variables are 

∂tv̂ − ν∆v̂ + v̂ · ∇u1 + u2 · ∇v̂ +∇P̂ = θ̂e;

∂tθ̂ − κ∆θ̂ + v̂ · ∇θ1 + u2 · ∇θ̂ = 0;

∇ · v̂ = 0,

(16)

together with the initial data

(v̂, θ̂)|t=0 = (0, 0) on {0} × Σ. (17)

Now, standard energy estimates, Cauchy–Schwarz and the Ladyzhenskaya’s in-
equality

‖f‖L4(Σ) ≤ k1/2
{
‖f‖1/2L2(Σ)‖∇f‖

1/2
L2(Σ) + ‖f‖L2(Σ)

}
give us∫

Σ

|v̂(t, x)|2 dx+ 2ν

∫ t

0

∫
Σ

|∇v̂(τ, x)|2 dxdτ

≤ 2

∫ t

0

ß ∫
Σ

|∇u1(τ, x)||v̂(τ, x)|2 dx+

∫
Σ

|θ̂(τ, x)||v̂(τ, x)|dx
™

dτ

≤ 2

∫ t

0

ß
‖v̂(τ, ·)‖2L4(Σ)‖∇u1(τ, ·)‖L2(Σ) + ‖θ̂(τ, ·)‖L2(Σ)‖v̂(τ, ·)‖L2(Σ)

™
dτ

≤
∫ t

0

ß
4k‖v̂(τ, ·)‖L2(Σ)‖∇v̂(τ, ·)‖L2(Σ)‖∇u1(τ, ·)‖L2(Σ)

+ 4k‖v̂(τ, ·)‖2L2(Σ)‖∇u1(τ, ·)‖L2(Σ) + 2‖θ̂(τ, ·)‖L2(Σ)‖v̂(τ, ·)‖L2(Σ)

™
dτ,

where we used the fundamental inequality: (a+ b)2 ≤ 2(a2 + b2). Here k is a geo-
metric constant depending only on the geometry of Σ. By the Cauchy inequalities
kabc ≤ νa2/4 + (kbc)2/ν and 2ab ≤ a2 + b2, we deduce that∫

Σ

|v̂(t, x)|2 dx+ ν

∫ t

0

∫
Σ

|∇v̂(τ, x)|2 dxdτ

≤ 4k2

ν

∫ t

0

‖∇u1(τ, ·)‖2L2(Σ)

∫
Σ

|v̂(τ, x)|2 dxdτ +

∫ t

0

∫
Σ

|θ̂(τ, x)|2 dxdτ

+

∫ t

0

(
1 + 4k‖∇u1(τ, ·)‖L2(Σ)

)∫
Σ

|v̂(τ, x)|2 dxdτ. (18)

On the other hand, similar arguments for the θ̂-equation lead to∫
Σ

|θ̂(t, x)|2 dx+ 2κ

∫ t

0

∫
Σ

|∇θ̂(τ, x)|2 dxdτ

≤ 2

∫ t

0

∫
Σ

|θ1〈v̂,∇θ̂〉|(τ, x) dxdτ

≤
∫ t

0

ß
κ‖∇θ̂(τ, ·)‖2L2(Σ) + κ−1‖θ1(τ, ·)‖2L4(Σ)‖v̂(τ, ·)‖2L4(Σ)

™
dτ

≤
∫ t

0

ß
κ‖∇θ̂(τ, ·)‖2L2(Σ) +

4k

κ

(
‖v̂(τ, ·)‖L2(Σ)‖∇v̂(τ, ·)‖L2(Σ) + ‖v̂(τ, ·)‖2L2(Σ)

)
×
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×
(
‖θ̂1(τ, ·)‖L2(Σ)‖∇θ̂1(τ, ·)‖L2(Σ) + ‖θ̂1(τ, ·)‖2L2(Σ)

)™
dτ.

Applying the Cauchy’s inequality, one may infer∫
Σ

|θ̂(t, x)|2 dx+ κ

∫ t

0

∫
Σ

|∇θ(τ, x)|2 dxdτ

≤ 4kκ−1

∫ t

0

‖v̂(τ, ·)‖L2(Σ)‖∇v̂(τ, ·)‖L2(Σ)×

×
(
‖θ̂1(τ, ·)‖L2(Σ)‖∇θ̂1(τ, ·)‖L2(Σ) + ‖θ̂1(τ, ·)‖2L2(Σ)

)
dτ

+ 2kκ−1

∫ t

0

‖v̂(τ, ·)‖2L2(Σ)

(
‖∇θ̂1(τ, ·)‖2L2(Σ) + 3‖θ̂1(τ, ·)‖2L2(Σ)

)
dτ

≤ ν

2

∫ t

0

‖∇v̂(τ, ·)‖2L2(Σ) dτ

+
16k2

νκ2

∫ t

0

‖v̂(τ, ·)‖2L2(Σ)

(
‖θ̂1(τ, ·)‖2L2(Σ)‖∇θ̂1(τ, ·)‖2L2(Σ) + ‖θ̂1(τ, ·)‖4L2(Σ)

)
dτ

+ 2kκ−1

∫ t

0

‖v̂(τ, ·)‖2L2(Σ)

(
‖∇θ̂1(τ, ·)‖2L2(Σ) + 3‖θ̂1(τ, ·)‖2L2(Σ)

)
dτ. (19)

Now we add up Eqs. (18) and (19) together. Denoting by

Y(t) :=

∫
Σ

(
|v̂(t, x)|2 + |θ̂(t, x)|2

)
dx, (20)

one has

Y(t) .
∫ t

0

(
1 + ‖∇u1(τ, ·)‖2L2(Σ) + ‖∇θ̂1(τ, ·)‖2L2(Σ)

)
Y(τ) dτ, (21)

where X . Y stands for X ≤ cY for some constant depending on ν, k, κ and the
uniform (in time) estimate of ‖θ̂1(τ, ·)‖L2(Σ). Therefore, in view of the integrability
assumptions for u1, θ1, we conclude from Grönwall’s inequality Y(t) ≡ 0. This
completes the proof.

Theorem 3.2remains valid on surfaces-with-boundaries under the following boundary
conditions: ®

〈v̂,n〉 = 0 or ∂nv̂ = 0 on ∂Σ,

θ̂ = 0 on ∂Σ.

In contrast, to prove the uniqueness in the degenerate case, one needs more stringent
regularity assumptions on at least one of the solutions:

Theorem 3.3. Let Σ be a closed surface with Lipschitz-bounded curvature. Let
(ui, θi, Pi), i ∈ {1, 2} be two solutions to the system (1)–(4) on [0, T ] with the same
initial data. Assume as in Theorem 3.2 that®

ui ∈ L2(0, T ;J ) ∩ C0(0, T ;H),

θi ∈ L2
(
0, T ;H1

0 (Σ)
)
∩ C0

(
0, T ;L2(Σ)

)
,

(22)

for i ∈ {1, 2}. Then (u1, θ1, P1) ≡ (u2, θ2, P2) under the additional hypotheses below:
1. When ν = 0, κ > 0, assume θ1 ∈ L2(0, T ;L∞(Σ)) and u1 ∈ L1(0, T ;W 1,∞(Σ;TΣ));
2. When ν > 0, κ = 0, assume θ1 ∈ L1(0, T ;W 1,∞(Σ)) and u1 ∈ L2(0, T ;L∞(Σ;TΣ));
3. When ν = κ = 0, assume θ1 ∈ L1(0, T ;W 1,∞(Σ)) and u1 ∈ L1(0, T ;W 1,∞(Σ;TΣ)).
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Proof. Let us show (1) in detail and sketch the proof for (2) and (3).
Define (v̂, θ̂, P̂ ) as in the proof of Theorem 3.2. The equations (16) and (17) for

the hat-variables remain valid. For ν = 0, κ > 0, standard energy estimate gives us∫
Σ

|v̂(t, x)|2 dx

≤ 2

∫ t

0

ß ∫
Σ

|v̂(τ, x)|2|∇u1(τ, x)|dx+

∫
Σ

∣∣〈v̂(τ, x), e(x)〉
∣∣|θ̂(τ, x)|

™
dτ, (23)

and via integration by parts,∫
Σ

|θ̂(t, x)|2 dx+ 2κ

∫ t

0

∫
Σ

|∇θ̂(τ, x)|2 dxdτ

≤ 2

∫ t

0

∫
Σ

|∇θ̂(τ, x)||v̂(τ, x)||θ1(τ, x)|dxdτ. (24)

Eq. (23) is controlled by∫
Σ

|v̂(t, x)|2 dx

≤
∫ t

0

(
1 + ‖u1(τ, ·)‖W 1,∞(Σ)

)∫
Σ

|v̂(τ, x)|2 dxdτ +

∫ t

0

∫
Σ

|θ̂(τ, x)|2 dxdτ.

For Eq. (24), thanks to κ > 0, one utilises Cauchy’s inequality to get∫
Σ

|θ̂(t, x)|2 dx+ κ

∫ t

0

∫
Σ

|∇θ̂(τ, x)|2 dxdτ ≤ 1

κ

∫ t

0

‖θ1(τ, ·)‖2L∞(Σ)

∫
Σ

|v̂(τ, x)|2 dxdτ.

We can now deduce (1) from Grönwall’s inequality, by considering the quantity Y
as in (20).

When ν > 0, κ = 0, in place of Eq. (23) there holds∫
Σ

|v̂(t, x)|2 dx+ 2ν

∫ t

0

∫
Σ

|∇v̂(τ, x)|2 dxdτ

≤ 2

∫ t

0

ß ∫
Σ

|∇v̂(τ, x)||v̂(τ, x)||u1(τ, x)|dx

+

∫
Σ

∣∣〈v̂(τ, x), e(x)〉
∣∣|θ̂(τ, x)|dx

™
dτ, (25)

and, in place of Eq. (24),∫
Σ

|θ̂(t, x)|2 dx ≤ 2

∫ t

0

∫
Σ

|θ̂(τ, x)||v̂(τ, x)||∇θ1(τ, x)|dxdτ. (26)

We apply Cauchy’s inequality to Eq. (25) and argue by Grönwall as before. This
proves (2).

Finally, if ν = κ = 0, then only Eqs. (23) and (26) are available. We thus need
the L1

tW
1,∞
x bounds on both u1 and θ1 for the Grönwall inequality. This proves

(3).

We also consider the strong solution (u, θ) in the space:®
u ∈ C0

(
0, T ;H3(Σ;TΣ) ∩H

)
,

θ ∈ C0
(
0, T ;H3(Σ)

)
.
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The subsequent two sections will be based on a Beale–Kato–Majda-type breakdown
criterion:

Theorem 3.4. Let Σ be a closed surface with Lipschitz curvature. Let (u◦, θ◦) ∈
H3(Σ;TΣ) × H3(Σ) be initial data satisfying div u◦ = 0. Assume that (u, θ) is a
strong solution to the Boussinesq equations (1)–(4) on [0, T ]× Σ. If∫ T

0

‖∇θ(t, ·)‖L∞(Σ) dt <∞, (27)

then the strong solution can be continued to [0, T + ε[ for some ε > 0.

The proof is based on energy estimates and an end-point case of the Sobolev–
Morrey embeddings (Lemma 2.2). To avoid repetitions with the following sections,
we postpone the proof to the Appendix.

4. Strong solutions: Non-degenerate viscosity. In this section, we establish
the existence of global strong solutions of the Boussinesq equations on a closed
surface Σ with non-degenerate viscosity. More precisely, let us prove:

Theorem 4.1. Let Σ be a closed surface with Lipschitz-bounded curvature, and let
T > 0 be arbitrary. Suppose that ν > 0, κ ≥ 0, and u◦, θ◦ ∈ H3 with div(u◦) = 0.
Then, there exists a unique solution (u, θ) to the Boussinesq equations (1)–(4) on
[0, T ]× Σ in the following space:®

u ∈ C0
(
0, T ;H3(Σ;TΣ) ∩H

)
∩ L2

(
0, T ;H4(Σ;TΣ)

)
,

θ ∈ C0
(
0, T ;H3(Σ)

)
.

Proof. The strategy of the proof is largely based on [16] by D. Chae, which made
use of energy estimates and the Brezis–Wainger inequality in Lemma 2.2. We divide
the arguments into nine steps.

1. First, we multiply p|θ|p−2θ to Eq. (2) for any p ≥ 1 to get
d

dt
‖θ(t, ·)‖pLp(Σ) + κp(p− 1)

∫
Σ

|θ(t, ·)|p−2|∇θ(t, ·)|2 dx = 0. (28)

As a result,
‖θ(t, ·)‖Lp(Σ) ≤ ‖θ◦‖Lp(Σ), (29)

and

κp(p− 1)

∫ t

0

∫
Σ

|θ(t, ·)|p−2|∇θ(τ, x)|2 dxdτ ≤ ‖θ◦‖pLp(Σ). (30)

2. Next, multiplying u to Eq. (1), one obtains
d

dt

Å∫
Σ

|u(t, x)|2 dx

ã
+ 2ν

∫
Σ

|∇u(t, x)|2 dx = 2

∫
Σ

〈
θ(t, x)u(t, x), e(x)

〉
dx.

As |e| = 1, the right-hand side can be bounded by

2
∣∣∣ ∫

Σ

〈
θ(t, x)u(t, x), e(x)

〉
dx
∣∣∣ ≤ ‖θ◦‖2L2(Σ) + ‖u‖2L2(Σ).

Hence, the Grönwall’s inequality implies

‖u(t, ·)‖2L2(Σ) ≤ ‖u
◦‖2L2(Σ)e

t + ‖θ◦‖2L2(Σ)(e
t − 1) =: K0(t), (31)

for any t ∈]0, T ].
3. Now we consider the vorticity

ω = rotu. (32)
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In any local coordinate {e1, e2} of TΣ, we define

rotu := −∇2u
1 +∇1u

2 ≡ ∇⊥ · u, (33)

where u = u1e1 + u2e2. Let us emphasize that ω is a scalar function on Σ.
We claim that ω satisfies the vorticity equation below, which shall be used fre-

quently in the subsequent developments:

∂tω + u · ∇ω − ν∆ω + Riem ? |u|2 = rot (θe). (34)

To see this, we take rot to Eq. (1); thus

0 = ∂tω +∇⊥ · (u · ∇u)− ν∇⊥ ·∆u− rot (θe)

= ∂tω + u · ∇ω − ν∆ω + ν[∆,∇⊥·]u− [∇⊥·, u · ∇]u− rot (θe),

where [·, ·] denotes the commutator of two differential operators. The first com-
mutator vanishes: recall that the Hodge Laplacian is ∆ = −dd∗ − d∗d where d∗ is
the L2-adjoint of d, namely the co-differential operator. Also, let u[ be the 1-form
canonically dual to u ∈ Γ(TΣ) via the metric; then

rotu = ?H [d(u[)],

where ?H is the Hodge star operator on differential forms. Thus, the 2-form
?H [∆,∇⊥·]u equals

?H
{

[∆,∇⊥·]u
}

= d(d∗d+ dd∗)u− (d∗d+ dd∗)du = 0,

as dd = 0 and d∗d∗ = 0. For the second commutator term one may compute
directly:

∇⊥ · (u · ∇u) = ∇2

(
u1∇1u

1 + u2∇2u
1
)
−∇1

(
u1∇1u

2 + u2∇2u
2
)

= (∇2u
1)(∇1u

1)− (∇1u
1)(∇1u

2) + (∇2u
2)(∇2u

1)− (∇1u
2)(∇2u

2)

+ u1∇1

(
∇2u

1 −∇1u
2
)

+ u2∇2

(
∇2u

1 −∇1u
2
)

+ u1∇2∇1u
1 − u1∇1∇2u

1 + u2∇2∇1u
2 − u2∇1∇2u

2

= (div u)(rotu) + u · ∇(rotu) + uiRiem ? ui,

where the last line follows from the Ricci identity (Lemma 2.1). Hence the claim
follows.

4. To resume, multiplying p|ω|p−2ω to Eq. (34), one gets

0 = ∂t(|ω|p) + u · ∇(|ω|p)− ν∆(|ω|p)
+ p(p− 1)ν|ω|p−2|∇ω|2

+ pν〈ω,Riem ? ω〉|ω|p−2 − p|ω|p−2〈ω, rot (θe)〉+ pω|ω|p−2Riem ? u ? u. (35)

Integrating over Σ, we thus get
d

dt
‖ω(t, ·)‖pLp(Σ) + p(p− 1)ν

∫
Σ

|∇ω(t, x)|2|ω(t, x)|p−2 dx

≤ Rpν‖ω(t, ·)‖pLp(Σ) + p(p− 1)

∫
Σ

|ω(t, x)|p−2|∇ω(t, x)||θ(t, x)|dx

+ pR

∫
Σ

|ω(t, x)|p−1|u(t, x)|2 dx,

where R only depends on ‖Riem‖L∞(Σ).
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By Hölder’s inequality, we have∫
Σ

|ω(t, x)|p−1|u(t, x)|2 dx ≤ ‖ω(t, ·)‖p−1
Lp(Σ)‖u(t, ·)‖2L2p(Σ). (36)

Then, by the Gargliardo–Nirenberg interpolation inequality, there is a constant
c = c(p,Σ) such that

‖u(t, ·)‖2L2p(Σ) ≤ c
Ä
‖∇u(t, ·)‖Lp‖u(t, ·)‖L2(Σ) + ‖u(t, ·)‖2L2(Σ)

ä
.

But by Calderón–Zygmund (Lemma 2.3) and an obvious interpolation there holds

‖∇u(t, ·)‖Lp(Σ) ≤ c‖ω(t, ·)‖Lp(Σ) + c‖u‖L∞(Σ).

To estimate the L∞-norm of u, we notice that by the Calderón–Zygmund es-
timates (Lemma 2.3), the Gagliardo–Nirenberg interpolation inequality and the
Young inequality, there are constants c = C(p,Σ) for 2 < p < ∞ and δ > 0 (to be
determined) such that

‖u(t, ·)‖L∞(Σ) ≤ c‖u(t, ·)‖
p−2
2p−2

L2(Σ)

{
‖ω(t, ·)‖Lp(Σ) + ‖u(t, ·)‖Lp(Σ)

} p
2p−2

≤ c‖u(t, ·)‖
p−2
2p−2

L2(Σ)‖ω(t, ·)‖
p

2p−2

Lp(Σ) + c‖u(t, ·)‖
p−2
2p−2

L∞(Σ)‖u(t, ·)‖
p

2p−2

L2(Σ)

≤ c‖u(t, ·)‖
p−2
2p−2

L2(Σ)‖ω(t, ·)‖
p

2p−2

Lp(Σ) +
p

2p− 2

( c
δ

) 2p−2
p

+
p− 2

2p− 2
δ

2p−2
p−2 ‖u(t, ·)‖L∞(Σ).

By choosing δ > 0 sufficiently small (depending on p), the final term can be absorbed
to the left-hand side. Thus, for another constant c = c(p,Σ), it holds that

‖u(t, ·)‖L∞(Σ) ≤ c
ß

1 + ‖u(t, ·)‖
p−2
2p−2

L2(Σ)‖ω(t, ·)‖
p

2p−2

Lp(Σ)

™
. (37)

Hence, we can continue Eq. (36) as follows:∫
Σ

|ω(t, x)|p−1|u(t, x)|2 dx

≤ ‖ω(t, ·)‖p−1
Lp(Σ) × c

√
K0

ß
‖ω(t, ·)‖Lp(Σ) + 1 + (K0)

p−2
4p−4 ‖ω(t, ·)‖

p
2p−2

Lp(Σ) +
√
K0

™
≤ c
Ä
‖ω(t, ·)‖pLp(Σ) + 1

ä
. (38)

The constant c depends on Σ, p, T and K0 (hence on ‖u◦‖L2(Σ) and ‖θ◦‖L2(Σ)).
Here it is crucial that p ≥ 2, so that p

2p−2 ≤ 1 and we may apply interpolation to
the term in the parenthesis on the second line.

Using (38) we deduce that
d

dt
‖ω(t, ·)‖pLp(Σ) + p(p− 1)ν

∫
Σ

|∇ω(t, x)|2|ω(t, x)|p−2 dx

≤ Rpν‖ω(t, ·)‖pLp(Σ) + p

∫
Σ

|ω(t, x)|p−2|∇ω(t, x)||θ(t, x)|dx

+ c
Ä
‖ω(t, ·)‖pLp(Σ) + 1

ä
. (39)

As a special case, when p = 2 there holds
d

dt
‖ω(t, ·)‖2L2(Σ) + 2ν‖∇ω(t, ·)‖2L2(Σ)
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≤ 2Rν‖ω(t, ·)‖2L2(Σ) + 2

∫
Σ

|∇ω(t, x)||θ(t, x)|dx+ c
Ä
‖ω(t, ·)‖2L2(Σ) + 1

ä
.

For the second term on the right-hand side, we apply ab ≤ ν
2a

2 + 1
2ν b

2 and the
conservation of ‖θ(t, ·)‖L2(Σ) to infer that

d

dt
‖ω(t, ·)‖2L2(Σ) + ν‖∇ω(t, ·)‖2L2(Σ) ≤ 2Rν‖ω(t, ·)‖2L2(Σ) +

1

ν
‖θ◦‖2L2(Σ)

+ c
Ä
‖ω(t, ·)‖2L2(Σ) + 1

ä
.

By the Grönwall inequality, we get

‖ω(t, ·)‖2L2(Σ) + ν

∫ t

0

‖∇ω(τ, ·)‖2L2(Σ) dτ ≤ K1(t), (40)

where K1(t) = C(R, ν, ν−1, ‖θ◦‖L2(Σ), ‖ω◦‖L2(Σ),Σ,K0(t)).
5. To proceed, let us take the gradient of the temperature equation (2). Note

that
∇(u · ∇θ) = u · ∇(∇θ) + 〈∇u,∇θ〉,

as well as
∇∆θ = ∆∇θ − Riem ?∇θ.

Hence
∂t(∇θ) + u · ∇(∇θ) + 〈∇u,∇θ〉 − κ∆(∇θ) + κRiem ?∇θ = 0. (41)

Now, taking the inner product with p|∇θ|p−2∇θ to (41), we get

0 = ∂t(|∇θ|p) + p div
(

(u · ∇θ)|∇θ|p−2∇θ
)

+ u · ∇(|∇θ|p) + p|∇θ|p−2∇u : ∇θ ⊗∇θ

− 1

2
pκdiv

(
|∇θ|p−2∇(|∇θ|2)

)
+ pκ|∇θ|p−2|∇∇θ|2

+ p(p− 2)κ|∇θ|p−4|〈∇∇θ,∇θ〉|2

+ pκ|∇θ|p−2〈∇θ,Riem ?∇θ〉, (42)

where ∇∇θ is the Hessian matrix of θ. Thus, for any κ ≥ 0,
d

dt
‖∇θ(t, ·)‖pLp(Σ) + pκ

∫
Σ

|∇∇θ(t, x)|2|∇θ(t, x)|p−2 dx

+ p(p− 2)κ

∫
Σ

|∇θ(t, x)|p−4|〈∇∇θ(t, x),∇θ(t, x)〉|2 dx

≤ p
∫

Σ

|∇θ(t, x)|p−2|∇u(t, x) : ∇θ(t, x)⊗∇θ(t, x)|dx+ pκR‖∇θ(t, ·)‖pLp(Σ)

≤ p‖∇u(t, ·)‖L∞(Σ)‖∇θ(t, ·)‖pLp(Σ) + pκR‖∇θ(t, ·)‖pLp(Σ).

For ‖∇u(t, ·)‖L∞(Σ), by the Brezis–Wainger inequality (Lemma 2.2) and Calderón–
Zygmund estimate (Lemma 2.3), it holds that

‖∇u‖L∞(Σ) ≤ c(1 + ‖∇ω‖L2(Σ))
»

1 + log+(‖∇ω‖Lp(Σ)) + c‖ω‖L2(Σ). (43)

By plugging (43) into its preceding estimate, we get
d

dt
‖∇θ(t, ·)‖pLp(Σ) + pκ

∫
Σ

|∇∇θ(t, x)|2|∇θ(t, x)|p−2 dx

+ p(p− 2)κ

∫
Σ

|∇θ(t, x)|p−4|〈∇∇θ(t, x),∇θ(t, x)〉|2 dx
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≤ pκR‖∇θ(t, ·)‖pLp(Σ) + pc‖ω(t, ·)‖L2(Σ)‖∇θ(t, ·)‖pLp(Σ)

+ pc(1 + ‖∇ω(t, ·)‖L2(Σ))
»

1 + log+(‖∇ω(t, ·)‖Lp(Σ))‖∇θ(t, ·)‖pLp(Σ)

≤ pκR‖∇θ(t, ·)‖pLp(Σ) + pc
»
K2(t)‖∇θ(t, ·)‖pLp(Σ)

+ pc(1 + ‖∇ω(t, ·)‖L2(Σ))
»

1 + log+(‖∇ω(t, ·)‖Lp(Σ))‖∇θ(t, ·)‖pLp(Σ), (44)

where the estimate (40) was applied.
6. Now let us bound ‖∇ω(t, ·)‖Lp(Σ) and ‖∇θ(t, ·)‖pLp(Σ). To this end, we take

the gradient of the vorticity equation (34) to get

∂t(∇ω) +∇(u · ∇ω)− ν∇∆ω +∇(Riem ? {ω + |u|2})−∇rot (θe) = 0. (45)

Commuting ∇ and ∆ yields a curvature term as before; hence,

∂t(∇ω) +∇(u · ∇ω)− ν∆(∇ω)

+ νRiem ? ω + ν(∇Riem) ? (ω + |u|2)

+ νRiem ? (∇ω + u · ∇u)−∇rot (θe) = 0. (46)

In the above we have utilized the Ricci identities (Lemma 2.1).
Let us now take the inner product with p∇ω|∇ω|p−2 for p ≥ 2. Then

0 = ∂t(|∇ω|p) + u · ∇(|∇ω|p) + p|∇ω|p−2∇u : ∇ω ⊗∇ω

− 1

2
pν div

(
|∇ω|p−2∇(|∇ω|2)

)
+ νp|∇ω|p−2|∇∇ω|2

+ p(p− 2)ν|∇ω|p−4|〈∇∇ω,∇ω〉|2

+ νp|∇ω|p−2
〈
∇ω,Riem ? ω +∇Riem ? ω + Riem ?∇ω

〉
+ p div

(
∇ω|∇ω|p−2rot (θe)

)
+ p rot (θe)|∇ω|p−2∆ω + p(p− 2) rot (θe)|∇ω|p−4∇∇ω : ∇ω ⊗∇ω
+ pν|∇ω|p−2∇ωRiem ? (u · ∇u). (47)

Integration over Σ gives us

d

dt
‖∇ω(t, ·)‖pLp(Σ) + νp

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx

+ p(p− 2)ν

∫
Σ

|∇ω(t, x)|p−4|〈∇∇ω(t, x),∇ω(t, x)〉|2 dx

≤ p
∣∣∣ ∫

Σ

|∇ω(t, x)|p−2∇u(t, x) : ∇ω(t, x)⊗∇ω(t, x) dx
∣∣∣

+ νp

ß
R

∫
Σ

|∇ω(t, x)|p−1|ω(t, x)|dx+R‖∇ω(t, ·)‖pLp(Σ)

™
+ p(p− 1)

∫
Σ

∣∣rot
(
θ(t, x)e(x)

)∣∣|∇ω(t, x)|p−2|∇∇ω(t, x)|dx

+ pνR

∫
Σ

|∇ω(t, x)|p−1|u(t, x)||∇u(t, x)|dx. (48)
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Estimates for (48), Step 1. Let us first bound the third line in Eq. (48). It is
less than or equal to

p2

∫
Σ

(
|∇ω(t, x)|

p−2
2 |∇∇ω(t, x)|

)(
|u(t, x)||∇ω(t, x)|

p
2

)
dx.

As ν > 0, we utilise Cauchy–Schwarz and ab ≤ νa2

p + pb2

2ν to bound it by

pν

2

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx+
p3

2ν
‖∇ω(t, ·)‖pLp(Σ)‖u(t, ·)‖2L∞(Σ).

To continue, we need Eq. (39) to bound the Lp-norm of ω. The second term on
the right-hand side of (39) can be estimated as follows, via Hölder inequality:∫

Σ

|ω(t, x)|p−2|∇ω(t, x)||θ(t, x)|dx

≤
Å∫

Σ

|ω(t, x)|p−2|∇ω(t, x)|2 dx

ã1/2Å∫
Σ

|θ(t, x)|p dx

ã1/pÅ ∫
Σ

|ω(t, x)|p dx

ã p−2
2p

≤ (p− 1)ν

2

∫
Σ

|ω(t, x)|p−2|∇ω(t, x)|2 dx+
1

2(p− 1)ν
‖θ(t, ·)‖2Lp(Σ)‖ω(t, ·)‖p−2

Lp(Σ).

As ‖θ(t, ·)‖Lp(Σ) ≤ ‖θ◦‖Lp(Σ), we may infer that

d

dt
‖ω(t, ·)‖pLp(Σ) +

p(p− 1)ν

2

∫
Σ

|∇ω(t, x)|2|ω(t, x)|p−2 dx

≤ Rpν‖ω(t, ·)‖pLp(Σ) +
c

ν
‖θ◦‖2Lp(Σ)

(
1 + ‖ω(t, ·)‖pLp(Σ)

)
+ c
Ä
‖ω(t, ·)‖pLp(Σ) + 1

ä
.

Now, the Grönwall inequality implies

‖ω(t, ·)‖pLp(Σ) ≤ K2(t), (49)

where K2 depends on K0(t), p, ν,Vol Σ, ν−1, ‖ω◦‖Lp(Σ) and ‖θ◦‖Lp(Σ). It grows ex-
ponentially in t. Substituting into Eq. (37), we get

‖u(t, ·)‖L∞(Σ)

≤ c
Å

1 +K2(t)
1

2p−2

¶
et‖u◦‖2L2(Σ) + (et − 1)‖θ◦‖2L2(Σ)

© p−2
4(p−1)

ã
=: K3(t), (50)

where we applied (31) for the estimate of ‖u(t, ·)‖L2(Σ).
To sum up, the third line in Eq. (48) can be bounded by

p
∣∣∣ ∫

Σ

|∇ω(t, x)|p−2∇u(t, x) : ∇ω(t, x)⊗∇ω(t, x) dx
∣∣∣

≤ pν

2

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx+
p3

2ν

(
K3(t)

)2‖∇ω(t, ·)‖pLp(Σ). (51)

Estimates for (48), Step 2.We can bound the fourth line in Eq. (48) using the

Hölder inequality, a
p−1
p b

1
p ≤ p−1

p a+ b
p and Eq. (49):

pν

ß
R

∫
Σ

|∇ω(t, x)|p−1|ω(t, x)|dx+R‖∇ω(t, ·)‖pLp(Σ)

™
≤ νRK2(t) + pν

(p− 1

p
R+R

)
‖∇ω(t, ·)‖pLp(Σ). (52)
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Estimates for (48), Step 3. For the fifth line in Eq. (48) we estimate as follows:

pν

4

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx

+
2p(p− 1)2

ν

∫
Σ

|∇ω(t, x)|p−2
(
|∇θ(t, x)|2 + S|θ(t, x)|2

)
dx

≤ pν

4

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx

+
2p(p− 1)2

ν

ß
‖∇ω(t, ·)‖p−2

Lp(Σ)‖∇θ(t, ·)‖
2
Lp(Σ) + S‖∇ω(t, ·)‖p−2

Lp(Σ)‖θ(t, ·)‖
2
Lp(Σ)

™
≤ pν

4

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx+
2(p− 1)2(p− 2)(1 + S)

ν
‖∇ω(t, ·)‖pLp(Σ)

+
4(p− 1)2

ν
‖∇θ(t, ·)‖pLp(Σ) +

4(p− 1)2S

ν
‖θ◦‖pLp(Σ), (53)

where S = ‖e‖W 1,∞(Σ). In the first inequality we utilised the Hölder inequality and
ab ≤ νa2

4(p−1) + b2(p−1)
ν , and in the second the Young’s inequality ab ≤ p−2

p a
p
p−2 + 2

pb
p
2 .

Estimates for (48), Step 4. The estimate for the last line in Eq. (48) is as
follows. By Hölder inequality∫

Σ

|∇ω(t, x)|p−1|u(t, x)||∇u(t, x)|dx ≤ ‖u(t, ·)‖L∞(Σ)‖∇ω(t, ·)‖p−1
Lp(Σ)‖∇u(t, ·)‖Lp(Σ),

where ‖u(t, ·)‖L∞(Σ) is bounded by K3 in Eq. (50). Moreover, by Lemma 2.3 we
have

‖∇u(t, ·)‖Lp(Σ) ≤ c‖ω(t, ·)‖Lp(Σ) + c‖u(t, ·)‖L∞(Σ)

for some c = c(p,Σ). But the Lp-norm of ω is bounded in Eq. (49). Therefore, by

the above estimates and the Young’s inequality ab ≤ (p−1)a
p
p−1

p + bp

p , we can get

pνR

∫
Σ

|∇ω(t, x)|p−1|u(t, x)||∇u(t, x)|dx ≤ p− 1

p

(
‖∇ω(t, ·)‖pLp(Σ)

)
+K4(t),

where

K4(t) :=

(
cpνRK3(t)

{[
K2(t)

] 1
p +K3(t)

})p
p

.

Estimates for (48), Step 5. Thus, combining the estimates in (51), (52) and
(53), we arrive at

d

dt
‖∇ω(t, ·)‖pLp(Σ) +

νp

4

∫
Σ

|∇ω(t, x)|p−2|∇∇ω(t, x)|2 dx

≤ K5(t) +K6‖∇θ(t, ·)‖pLp(Σ) +K7(t)‖∇ω(t, ·)‖pLp(Σ), (54)

where for notational convenience we defined the constants:

K5(t) :=
4(p− 1)S

pν
‖θ◦‖pLp(Σ) + νRK2(t) +K4(t),

K6 :=
4(p− 1)2

ν
,

K7(t) :=

ß
p− 1

p
+

2(p− 1)2(p− 2)(1 + S)

ν
+ ν(2p− 1)R+

p3K3(t)

2ν

™
.
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7. By combining the estimates (44) and (54), we see that the quantity

X1(t) := ‖∇θ(t, ·)‖pLp(Σ) + ‖∇ω(t, ·)‖pLp(Σ) + 1 (55)

satisfies the differential inequality

d

dt
X1(t) ≤

Ç
K8(t) + pc(1 + ‖∇ω(t, ·)‖L2(Σ))

 
1 +

1

p
log X1(t)

å
X1(t), (56)

where
K8(t) := max

{
K5(t) +K6 +K7(t) + pc

»
K2(t) + pκR

}
.

It is crucial that the bound is still valid for κ = 0. Moreover, by letting

X2(t) := 1 +
1

p
log X1(t),

we get
d

dt
X2(t) ≤ 1

p

(
K8(t) + pc(1 + ‖∇ω(t, ·)‖L2(Σ))X2(t)

)
.

Then Grönwall’s inequality implies for any 0 < T <∞ and t ∈ [0, T ],

X2(t) ≤ exp

®
c

∫ t

0

(1 + ‖∇ω(τ, ·)‖L2(Σ))dτ

´Ç
1

p

∫ t

0

K8(τ)dτ + X2(0)

å
=: K9(t),

where K9(t) is finite for any t ∈ [0, T ], due to the Hölder inequality and (40). Hence,

X1(t) ≤ epK9(t) =: K10(t). (57)

Notice that K10(t) ≤ K10(T ), where K10(T ) depends on p, T , ν, κ, ‖θ◦‖W 1,p(Σ),
‖u◦‖W 1,p(Σ), ‖e‖W 1,∞(Σ) and the geometry of Σ, and it does not blow up when
κ = 0. In particular, Eqs. (43), (55) and (57) imply that

‖∇u(t, ·)‖L∞(Σ) ≤ K11(t), (58)

where K11(t) depends on the previous time-dependent constants and all of which
are evaluated at some fixed p > 2, e.g. p = 3. Moreover, K11(t) is finite for any
finite t > 0.

8. To proceed, notice that the estimate right before Eq. (43) leads to
d

dt
‖∇θ(t, ·)‖pLp(Σ) ≤ p

(
K11(t) + κR

)
‖∇θ(t, ·)‖pLp(Σ),

which implies
d

dt
‖∇θ(t, ·)‖Lp(Σ) ≤

(
K11(t) + κR

)
‖∇θ(t, ·)‖Lp(Σ).

Thus, by Grönwall inequality,

‖∇θ(t, ·)‖Lp(Σ) ≤ ‖∇θ◦‖Lp(Σ) exp

®
κRt+

∫ t

0

K11(τ) dτ

´
. (59)

Since K11(t) does not depend on p, we may send p to ∞ to get

‖∇θ(t, ·)‖L∞(Σ) ≤ ‖∇θ◦‖L∞(Σ) exp

®
κRt+

∫ t

0

K11(τ) dτ

´
. (60)

Thus, for all t ∈]0, T ], there holds

‖∇θ(t, ·)‖L∞(Σ) ≤ ‖∇θ◦‖L∞(Σ)e
[κR+K11(T )]T <∞. (61)

9. We are now ready to conclude. First, in view of the remark ensuing Defini-
tion 3.1, the strong solution exists on [0, T1] for some T1 > 0. Then, suppose that
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the maximal lifespan T of the solution is finite. In view of the breakdown criterion
in Theorem 3.4, we can extend the solution up to time (T + ε) for some ε > 0, thus
contradicting the maximality of T ; hence, the strong solution exists globally. The
uniqueness of solutions follows from Theorems 3.2 and 3.3. Finally, all the above
estimates are valid for both κ > 0 and κ = 0. So the proof is complete.

5. Strong solutions: Non-degenerate thermal diffusivity. In this section we
consider the case ν ≥ 0 but κ > 0 (non-degenerate thermal diffusivity).

Theorem 5.1. Let Σ be a closed surface with Lipschitz curvature, and let T > 0
be arbitrary. Suppose that κ > 0, ν ≥ 0, and u◦, θ◦ ∈ H3 with div(u◦) = 0. Then,
there exists a unique solution (u, θ) on [0, T ] in the following space:®

u ∈ C0
(
0, T ;H3(Σ;TΣ) ∩H

)
,

θ ∈ C0
(
0, T ;H3(Σ)

)
∩ L2

(
0, T ;H4(Σ)

)
.

(62)

Proof. We divide the arguments into eight steps.
1. First let us summarise some estimates from the previous section which carry

over to this case. By setting ν = 0 in Eqs. (31), (28) and (44), we obtain

‖u(t, ·)‖2L2(Σ) ≤ ‖u
◦‖2L2(Σ)e

t + ‖θ◦‖2L2(Σ)(e
t − 1) = K0(t), (63)

d

dt
‖θ(t, ·)‖pLp(Σ) = −p(p− 1)κ

∫
Σ

|θ(t, x)|p−2|∇θ(t, x)|2 dx, (64)

and
d

dt
‖∇θ(t, ·)‖pLp(Σ) + pκ

∫
Σ

|∇∇θ(t, x)|2|∇θ(t, x)|p−2 dx

+ p(p− 2)κ

∫
Σ

|∇θ(t, x)|p−4|〈∇∇θ(t, x),∇θ(t, x)〉|2 dx

≤ p
∣∣∣ ∫

Σ

|∇θ(t, x)|p−2∇u(t, x) : ∇θ(t, x)⊗∇θ(t, x) dx
∣∣∣

+ pκR‖∇θ(t, ·)‖pLp(Σ), (65)

for each p ≥ 2 and t ∈]0, T ].
In addition, taking ν = 0 in the vorticity equation (34) and applying the Lp-

energy estimate as before, we get
d

dt
‖ω(t, ·)‖pLp(Σ) ≤ pR

∫
Σ

|u(t, x)|2|ω(t, x)|p−1 dx

+ p

∫
Σ

|ω(t, x)|p−1
(
|∇θ(t, x)|+ S|θ(t, x)|

)
dx. (66)

Again, R depends only on the Lipschitz norm of the curvature of Σ, and S depends
only on the Lipschitz norm of the vector field e.

2. When p = 2, we derive from (66) by using the Hölder, Ladyzhenskaya and
Cauchy inequalities and the Calderón–Zygmund estimates (Lemma 2.3) that

d

dt
‖ω(t, ·)‖2L2(Σ) ≤ 2R‖ω(t, ·)‖L2(Σ)‖u(t, ·)‖2L4(Σ)

+ 2‖ω(t, ·)‖L2(Σ)

(
‖∇θ(t, ·)‖L2(Σ) + S‖θ(t, ·)‖L2(Σ)

)
≤ 2Rc‖ω(t, ·)‖L2(Σ)

Ä
‖u(t, ·)‖L2(Σ)‖ω(t, ·)‖L2(Σ) + ‖u(t, ·)‖2L2(Σ)

ä
+ ‖ω(t, ·)‖2L2(Σ) + ‖∇θ(t, ·)‖2L2(Σ) + S2‖θ(t, ·)‖2L2(Σ)
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= 2Rc‖ω(t, ·)‖2L2(Σ)‖u(t, ·)‖L2(Σ) + 2Rc‖ω(t, ·)‖L2(Σ)‖u(t, ·)‖2L2(Σ)

+ ‖ω(t, ·)‖2L2(Σ) + ‖∇θ(t, ·)‖2L2(Σ) + S2‖θ(t, ·)‖2L2(Σ)

≤ Rc‖ω(t, ·)‖2L2(Σ)

Ä
‖u(t, ·)‖2L2(Σ) + 1

ä
+Rc

Ä
‖ω(t, ·)‖2L2(Σ) + 1

ä
‖u(t, ·)‖2L2(Σ)

+ ‖ω(t, ·)‖2L2(Σ) + ‖∇θ(t, ·)‖2L2(Σ) + S2‖θ(t, ·)‖2L2(Σ)

= ‖ω(t, ·)‖2L2(Σ) (2RcK0(t) +Rc+ 1) +K0(t)

+ ‖∇θ(t, ·)‖2L2(Σ) + S2‖θ(t, ·)‖2L2(Σ), (67)

where we also applied (63) for the estimate of ‖u(t, ·)‖2L2(Σ). In addition, by (64)
with p = 2, we can get that

‖θ(t, ·)‖2L2(Σ) + 2κ

∫ t

0

∫
Σ

|∇θ(τ, x)|2 dx dτ = ‖θ◦‖2L2(Σ). (68)

Then by applying Grönwall inequality to (67) and using (68), we have

‖ω(t, ·)‖2L2(Σ)

≤ exp

®
2Rc

∫ t

0

K0(τ)dτ +Rct+ t

´
×

×
Ç∫ t

0

K0(τ)dτ +

Å
1

2κ
+ S2t

ã
‖θ◦‖2L2(Σ)

å
=: K12(t). (69)

3. We deduce from Eq. (65) that
d

dt
‖∇θ(t, ·)‖pLp(Σ) + pκ

∫
Σ

|∇∇θ(t, x)|2|∇θ(t, x)|p−2 dx

≤ p2

∫
Σ

|u(t, x)||∇θ(t, x)|p−1|∇∇θ(t, x)|dx+ pκR1‖∇θ(t, ·)‖pLp(Σ)

≤ pκ

2

∫
Σ

|∇θ(t, x)|p−2|∇∇θ(t, x)|2 dx

+
p3

2κ

∫
Σ

|u(t, x)|2|∇θ(t, x)|p dx+ pκR‖∇θ(t, ·)‖pLp(Σ), (70)

via integration by parts, Hölder and Cauchy inequalities. Hence,

d

dt
‖∇θ(t, ·)‖pLp(Σ) ≤

p3

2κ
‖u(t, ·)‖2L∞(Σ)‖∇θ(t, ·)‖

p
Lp(Σ) + pκR‖∇θ(t, ·)‖pLp(Σ). (71)

The ‖u(t, ·)‖L∞(Σ) term can be controlled by Brezis–Wainger inequality (Lemma
2.3), Calderón–Zygmund estimate (Lemma 2.4), Eqs. (63) and (69) as

‖u(t, ·)‖L∞(Σ) ≤ c
(
1 + ‖ω(t, ·)‖L2(Σ) + ‖u(t, ·)‖L2(Σ)

)
×
»

1 + log+(‖ω(t, ·)‖Lp(Σ) + ‖u(t, ·)‖Lp(Σ)) + c‖u(t, ·)‖L2(Σ)

≤ c
(

1 +
»
K12(t) +

»
K0(t)

)
×
»

1 + log+(‖ω(t, ·)‖Lp(Σ) + ‖u(t, ·)‖Lp(Σ)) + c
»
K0(t). (72)

By substituting (72) into (71), we have

d

dt
‖∇θ(t, ·)‖Lp(Σ) ≤

p2c

2κ

{(
1 +K12(t) +K0(t)

)
‖∇θ(t, ·)‖Lp(Σ)×
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×
[
1 + log+(‖ω(t, ·)‖Lp(Σ) + ‖u(t, ·)‖Lp(Σ))

] }
+ κR‖∇θ(t, ·)‖Lp(Σ). (73)

Moreover, from (66) we deduce that

d

dt
‖ω(t, ·)‖pLp(Σ) ≤ pR‖u(t, ·)‖2L2p(Σ)‖ω(t, ·)‖p−1

Lp(Σ)

+ p‖ω(t, ·)‖p−1
Lp(Σ)

(
‖∇θ(t, ·)‖Lp(Σ) + S‖θ(t, ·)‖Lp(Σ)

)
,

which implies

d

dt
‖ω(t, ·)‖Lp(Σ) ≤ R‖u(t, ·)‖2L∞(Σ)(Vol Σ)

1
p + ‖∇θ(t, ·)‖Lp(Σ) + S‖θ(t, ·)‖Lp(Σ)

≤ Rc(Vol Σ)
1
p

{(
1 +K12(t) +K0(t)

)
×
[
1 + log+(‖ω(t, ·)‖Lp(Σ) + ‖u(t, ·)‖Lp(Σ))

] }
+ ‖∇θ(t, ·)‖Lp(Σ) + S‖θ(t, ·)‖Lp(Σ). (74)

4. By combining (73) and (74), and using (64), we have

d

dt

(
‖∇θ(t, ·)‖Lp(Σ) + ‖ω(t, ·)‖Lp(Σ)

)
≤ max

ß
p2c

2κ
,Rc(Vol Σ)

1
p

™ (
‖∇θ(t, ·)‖Lp(Σ) + 1

)
×

×
{(

1 +K12(t) +K0(t)
) [

1 + log+(‖ω(t, ·)‖Lp(Σ) + ‖u(t, ·)‖Lp(Σ))
] }

+ (κR+ 1)‖∇θ(t, ·)‖Lp(Σ) + S‖θ◦‖Lp(Σ). (75)

Due to the Sobolev embedding H1(Σ) ↪→ Lp(Σ), and the Calderón-Zygmund esti-
mate (Lemma 2.3), we know that ‖u(t, ·)‖Lp(Σ) . ‖ω(t, ·)‖L2(Σ) + ‖u(t, ·)‖L2(Σ) for
any 2 < p <∞. According to (63) and (69), we deduce that ‖u(t, ·)‖Lp(Σ) ≤ K13(t).
Hence, for any 0 < T <∞ and any t ∈ [0, T ], it holds that ‖u(t, ·)‖Lp(Σ) ≤ K13(T ).

Let us define for any t ∈ [0, T ],

Z(t) := ‖∇θ(t, ·)‖pLp(Σ) + ‖ω(t, ·)‖pLp(Σ) +K13(T ).

Then we derive from (75) that

d

dt
Z(t) ≤C

[
1 + log+(Z(t))

]
Z(t),

where C = C(p, c, κ,R,Vol Σ, S, θ◦, T ), from which we may deduce

Z(t) ≤ K14(t) ≤ K14(T ). (76)

5. Next, we derive the Lp-estimates for ∇∇θ, the Hessian of θ. We adopt
Einstein’s summation convention for i, j, k, l, . . . ∈ {1, 2}.

Taking two covariant derivatives to Eq. (2), one obtains

∂t∇i∇jθ +∇i∇j(uk∇kθ)− κ∇i∇j∆θ = 0. (77)

We then utilise the Ricci identities (Lemma 2.1) repeatedly to deduce

∇i∇j∆θ −∆∇i∇jθ
= ∇l(Riemm

lij∇mθ) +∇i(Riemm
jll∇mθ) + Riemm

ill∇m∇jθ. (78)
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Thus, multiplying p|∇∇θ|p−2∇i∇jθ to Eq.(77) and taking
∑

1≤i,j≤2, we get

∂t

(
|∇∇θ|p

)
= pκ|∇∇θ|p−2

(
∆∇∇θ : ∇∇θ

)
+ pκ|∇∇θ|p−2

{
∇∇θ :

[
∇Riem ?∇θ + Riem ?∇∇θ

]}
− p|∇∇θ|p−2

(
∇∇θ : ∇∇[u · ∇θ]

)
=: J1 + J2 + J3. (79)

In what follows we estimate J1, J2 and J3 one by one.
First, due to the Leibniz’ rule, there holds

J1 = pκdiv

ß
|∇∇θ|p−2∇∇∇θ : ∇∇θ

™
− p(p− 1)κ|∇∇∇θ|2|∇∇θ|p−2.

Second, it is clear that

|J2| ≤ pκR
ß
|∇∇θ|p + |∇∇θ|p−1|∇θ|

™
,

where R depends only on ‖Riem‖W 1,∞(Σ) as before.
Third, we note that J3 = J31 + J32 + J33, where

J31 = p∇i
ß
|∇∇θ|p−2(∇i∇jθ)∇j [uk∇kθ]

™
is of the divergence form,

J32 = −p(p− 2)|∇∇θ|p−4(∇l∇mθ)(∇i∇l∇mθ)(∇i∇jθ)∇j [uk∇kθ],
and

J33 = −p|∇∇θ|p−2(∇i∇i∇jθ)∇j [uk∇kθ].
Clearly we have

|J32 + J33| ≤ p(p− 1)|∇∇θ|p−2|∇∇∇θ||∇[u · ∇θ]|;
thus, we may deduce the following by integrating Eq. (79) over space-time:∫

Σ

|∇∇θ(t, x)|p dx+ p(p− 1)κ

∫ t

0

∫
Σ

|∇∇∇θ(τ, x)|2|∇∇θ(τ, x)|p−2 dxdτ

≤ pκR
∫ t

0

∫
Σ

ß
|∇∇θ(τ, x)|p + |∇∇θ(τ, x)|p−1|∇θ(τ, x)|

™
dxdτ

+ p(p− 1)

∫ t

0

∫
Σ

ß
|u(τ, x)||∇∇θ(τ, x)|p−1|∇∇∇θ(τ, x)|

™
dxdτ

+ p(p− 1)

∫ t

0

∫
Σ

ß
|∇u(τ, x)||∇θ(τ, x)||∇∇θ(τ, x)|p−2|∇∇∇θ(τ, x)|

™
dxdτ

=: J4 + J5 + J6. (80)

6. We continue the estimate ‖∇∇θ(t, ·)‖Lp(Σ) by bounding J4, J5 and J6 in order.
Indeed, by Hölder and Young inequalities, one can bound

J4 ≤
(
pκR+ (p− 1)κR

)∫ t

0

∫
Σ

|∇∇θ(τ, x)|p dxdτ + κR

∫ t

0

∫
Σ

|∇θ(τ, x)|p dxdτ,

J5 ≤
p(p− 1)κ

2

∫ t

0

∫
Σ

|∇∇∇θ(τ, x)|2|∇∇θ(τ, x)|p−2 dxdτ

+
p(p− 1)

2κ

∫ t

0

∫
Σ

|u(τ, x)|2|∇∇θ(τ, x)|p dxdτ,
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and

J6 ≤
p(p− 1)κ

4

∫ t

0

∫
Σ

|∇∇∇θ(τ, x)|2|∇∇θ(τ, x)|p−2 dxdτ

+
p(p− 1)

κ

∫ t

0

∫
Σ

|∇u(τ, x)|2|∇θ(τ, x)|2|∇∇θ(τ, x)|p−2 dxdτ =: J61 + J62.

For J62, one applies the Hölder inequality, Gagliardo–Nirenberg interpolation
inequality, and Calderón-Zygmund estimate (Lemma 2.3) to deduce, for any t ∈
[0, T ],

J62 ≤
p(p− 1)

κ

∫ t

0

‖∇θ(τ, ·)‖2L∞(Σ)

Å∫
Σ

|∇u(τ, x)|p dx

ã2/pÅ ∫
Σ

|∇∇θ(τ, x)|p dx

ã p−2
p

dτ

≤ cκ−1

∫ t

0

‖∇u(τ, ·)‖2Lp(Σ)

Å∫
Σ

|∇∇θ(τ, x)|p dx

ã p2−p+2

p2
Å ∫

Σ

|θ(τ, x)|p dx

ã p−2

p2

dτ

+ cκ−1

∫ t

0

‖∇u(τ, ·)‖2Lp(Σ)

Å ∫
Σ

|∇∇θ(τ, x)|p dx

ã p−2
p

‖θ(τ, ·)‖2L2(Σ) dτ

≤ cκ−1‖θ◦‖
p−2
p

Lp(Σ)

∫ t

0

Ä
‖ω(τ, ·)‖2Lp(Σ) + ‖u(τ, ·)‖2Lp(Σ)

äÅ∫
Σ

|∇∇θ(τ, x)|p dx

ã p2−p+2

p2

dτ

+ cκ−1‖θ◦‖2L2(Σ)

∫ t

0

Ä
‖ω(τ, ·)‖2Lp(Σ) + ‖u(τ, ·)‖2Lp(Σ)

äÅ ∫
Σ

|∇∇θ(τ, x)|p dx

ã p−2
p

dτ

≤ cκ−1

∫ t

0

Å ∫
Σ

|∇∇θ(τ, x)|p dx

ã p2−p+2

p2

+

Å∫
Σ

|∇∇θ(τ, x)|p dx

ã p−2
p

dτ,

where we applied (76), and the constant c = c(p,Σ, θ◦, T ). For p > 2, by applying
the Young inequality, we have

J62 ≤ cκ−1

∫ t

0

∫
Σ

|∇∇θ(τ, x)|p dxdτ + cκ−1T.

Substituting the above estimates into Eq. (80) and using Eq. (64), one has∫
Σ

|∇∇θ(t, x)|p dx+
p(p− 1)κ

4

∫ t

0

∫
Σ

|∇∇∇θ(τ, x)|2|∇∇θ(τ, x)|p−2 dxdτ

≤ 2pRκ

∫ t

0

∫
Σ

|∇∇θ(τ, x)|p dxdτ + κR

∫ t

0

∫
Σ

|∇θ(τ, x)|p dxdτ

+
p(p− 1)

2κ

∫ t

0

‖u(τ, ·)‖2L∞(Σ)

∫
Σ

|∇∇θ(τ, x)|p dxdτ

+ cκ−1

∫ t

0

∫
Σ

|∇∇θ(τ, x)|p dxdτ + cκ−1T.

Applying the Sobolev embedding W 1,p(Σ) ↪→ L∞(Σ) plus (76) to ‖u(τ, ·)‖L∞(Σ),
we obtain the differential inequality∫

Σ

|∇∇θ(t, x)|p dx ≤ c
∫ t

0

∫
Σ

|∇∇θ(τ, x)|p dxdτ + cκ−1T, (81)

for each t ∈ [0, T ]. Therefore, we conclude from Grönwall inequality that∫
Σ

|∇∇θ(t, x)|p dx ≤ K15(T ) for all t ∈ [0, T ]. (82)

Here K15 depends on Σ, T, κ, p, u◦ and θ◦; note that K15(T )→∞ as κ→ 0+.
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7. Again, in view of the breakdown criterion (Theorem 3.4), the Sobolev–Morrey
embedding W 2,p(Σ) ↪→ W 1,∞(Σ) for p > 2 and the uniqueness Theorems 3.2 and
3.3, the proof is now complete.

6. Vanishing viscosity and diffusivity limits. In this section we study two
singular limits of the Boussinesq equations on surfaces.

Throughout, we let (u, θ, P ) be the strong solution to the non-degenerate Boussi-
nesq system (1)–(3) on [0, T ]× Σ, (uN , θN , PN ) be the strong solution to the same
system with degenerate viscosity (ν = 0), and (uK , θK , PK) with degenerate thermal
diffusivity (κ = 0). That is, on [0, T ]× Σ there hold

∂tuN + uN · ∇uN +∇PN = θNe,

∂tθN + u · ∇θN − κ∆θN = 0,

div uN = 0,

(83)

and 
∂tuK + uK · ∇uK − ν∆uK +∇PK = θKe,

∂tθK + uK · ∇θK = 0,

div uK = 0.

(84)

We impose the same initial conditions:

(u, θ)|t=0 = (uN , θN )|t=0 = (uK , θK)|t=0 = (u◦, θ◦), (85)

where div u◦ = 0 for the sake of compatibility. Let us emphasise that we require
κ > 0 in (83) and ν > 0 in (84).

We first establish the vanishing viscosity limit:

Theorem 6.1. Let Σ be a closed surface with Lipschitz curvature, and let T >
0 be arbitrary. Let (u, θ) be the strong solution to the non-degenerate Boussi-
nesq equations (1)–(3), and let (uN , θN ) be the strong solution to Eq. (83) with
zero viscosity, with the same initial data (u◦, θ◦) ∈ H3(Σ;TΣ) × H3(Σ) satis-
fying div u◦ = 0. Assume u ∈ C0(0, T ;H3(Σ;TΣ) ∩ H) ∩ L2(0, T ;H4(Σ;TΣ)),
uN ∈ C0(0, T ;H3(Σ;TΣ) ∩H)) and θ, θN ∈ C0(0, T ;H3(Σ;TΣ)).

Then u→ uN , θ → θN in C0(0, T ;Hj(Σ)) as ν → 0+ for each j < 3.

Proof. Define
v := u− uN , ζ := θ − θN . (86)

Taking the difference between the non-degenerate and zero-diffusivity Boussinesq
equations, we obtain the following system on [0, T ]× Σ:

∂tv + u · ∇v + v · ∇uN − ν∆v − ν∆uN +∇(p− pN ) = ζe, (87)
∂tζ + u · ∇ζ + v · ∇θN − κ∆ζ = 0, (88)
div v = 0. (89)

Multiplying ζ to Eq. (88), one gets
1

2
∂t(ζ

2) + ζv · ∇θN + κ|∇ζ|2 + div
(1

2
uζ2 − κζ∇ζ

)
= 0.

Thus, by the Stokes’ theorem and integration by parts, we have
d

dt

Å ∫
Σ

|ζ(t, x)|2 dx

ã
+ 2κ

∫
Σ

|∇ζ(t, x)|2 dx =

− 2

∫
Σ

ζ(t, x)v(t, x) · ∇θN (t, x) dx. (90)
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Similarly, the standard L2 estimate for v gives us
d

dt

Å ∫
Σ

|v(t, x)|2 dx

ã
+ 2ν

∫
Σ

|∇v(t, x)|2 dx

= 2

∫
Σ

ß〈
v(t, x), e(x)

〉
ζ(t, x)− ν∇v(t, x) : ∇uN (t, x)

−∇uN (t, x) :
(
v(t, x)⊗ v(t, x)

)™
dx. (91)

Adding Eqs. (90) and (91) together, we find that the L2-energy

E(t) :=

∫
Σ

ß
|v(t, x)|2 + |ζ(t, x)|2

™
dx (92)

verifies the differential inequality

E′(t) + 2κ

∫
Σ

|∇ζ(t, x)|2 dx+ 2ν

∫
Σ

|∇v(t, x)|2 dx

≤
(
1 + 2‖∇θN (t, ·)‖L∞(Σ)

)
‖v(t, ·)‖L2(Σ)‖ζ(t, ·)‖L2(Σ)

+ ν‖∇uN (t, ·)‖L2(Σ)‖∇v(t, ·)‖L2(Σ) + ‖∇uN (t, ·)‖L∞(Σ)‖v(t, ·)‖2L2(Σ).

Applying the usual Cauchy’s inequality to the penultimate term, we deduce

E′(t) ≤
(

1+2‖∇θN (t, ·)‖L∞(Σ)+‖∇uN (t, ·)‖L∞(Σ)

)
E(t)+

ν

4
‖∇uN (t, ·)‖2L2(Σ). (93)

Now let us invoke Theorem 5.1 to establish the existence of strong solutions
(uN , θN ) to the limiting system. Indeed, we have uN ∈ C0(0, T ;H3(Σ;TΣ)) ∩
L2(0, T ;H4(Σ;TΣ)) and θN ∈ C0(0, T ;H3(Σ)), where, in particular, the indicated
norms are independent of ν. Let Λ denote a generic constant that depends only on
these norms. Then

E(t) ≤ Λν,

by the Grönwall inequality and E(0) = 0. Sending ν → 0+, we obtain the conver-
gence of the L2 energy.

For higher energies, by interpolation one has

‖v(t, ·)‖Hj(Σ) ≤ K16‖v(t, ·)‖1−j/3L2(Σ)‖v(t, ·)‖j/3
Hk(Σ)

+K16‖v(t, ·)‖L2(Σ),

where K16 = K(Σ, j). Let us bound the H3 norm of v by ‖u(t, ·)‖H3(Σ) and
‖uN (t, ·)‖Hk(Σ), following the arguments in §5, this bound is independent of ν.
Therefore, for every t ∈ [0, T ],

‖v(t, ·)‖Hj(Σ) ≤ K17ν
3−j
6 +K16(Λν)

1
2 −→ 0 as ν → 0+, (94)

with the constant K17 = K(j,Σ,Λ, κ). The same convergence result holds for
‖ζ(t, ·)‖Hj(Σ). Hence the assertion is proved.

Next, we prove the vanishing thermal diffusivity limit:

Theorem 6.2. Let Σ be a closed surface with Lipschitz curvature, and let T > 0
be arbitrary. Let (u, θ) be the strong solution to the non-degenerate Boussinesq
equations (1)–(3) and let (uK , θK) be the strong solution to Eq. (84) with zero ther-
mal diffusivity, with the same initial data (u◦, θ◦) ∈ H3(Σ;TΣ)×H3(Σ) satisfying
div u◦ = 0. Assume that u, uK ∈ C0(0, T ;H3(Σ;TΣ) ∩ H) ∩ L2(0, T ;H4(Σ;TΣ))
and θ, θK ∈ C0(0, T ;H3(Σ;TΣ)).

Then u→ uK , θ → θK in C0(0, T ;Hj(Σ)) as κ→ 0+ for each j < 3.
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Proof. The arguments are analogous to the proof of Theorem 6.1 in the large, hence
some details are safely omitted.

First, define
w := u− uK , χ := θ − θK . (95)

These variables satisfy

∂tw + u · ∇w + w · ∇uK − ν∆w +∇(p− pK) = χe, (96)
∂tχ+ w · ∇θK + u · ∇χ− κ∆χ− κ∆θK = 0, (97)
divw = 0 on [0, T ]× Σ, (98)

which can be seen by subtracting Eq. (84) from Eqs. (1)–(3).
Standard L2 energy estimates lead to

d

dt

(∫
Σ

|w(t, x)|2 dx
)

+ 2ν

∫
Σ

|∇w(t, x)|2 dx

≤ 2

∫
Σ

ß
|w(t, x)|2|∇uK(t, x)|+ |χ(t, x)||w(t, x)|

™
dx,

together with
d

dt

(∫
Σ

|χ(t, x)|2 dx
)

+ 2κ

∫
Σ

|∇χ(t, x)|2 dx

≤ 2

∫
Σ

ß
|χ(t, x)||w(t, x)||∇θK(t, x)|+ κ|∇θK(t, x)||∇χ(t, x)|

™
dx,

where we have applied integration by parts and the Stokes’ theorem. Denoting the
total L2 energy by

F(t) :=

∫
Σ

ß
|w(t, x)|2 + |χ(t, x)|2

™
dx, (99)

one obtains

F′(t) + 2ν

∫
Σ

|∇w(t, x)|2 dx+ 2κ

∫
Σ

|∇χ(t, x)|2 dx

≤
(

1 + 2‖∇uK(t, ·)‖L∞(Σ) + ‖∇θK(t, ·)‖L∞(Σ)

)
F(t)

+ 2κ

∫
Σ

|∇θK(t, x)||∇χ(t, x)|dx.

Hence, we infer from Cauchy’s inequality that

F′(t) ≤
(

1 + 2‖∇uK(t, ·)‖L∞(Σ) + ‖∇θK(t, ·)‖L∞(Σ)

)
F(t)

+
κ

4
‖∇θK(t, ·)‖2L2(Σ). (100)

Similarly as in the proof of Theorem 6.1 above, we may now invoke Theo-
rem 5.1 to deduce the existence of strong solution uK ∈ C0(0, T ;H3(Σ;TΣ)) ∩
L2(0, T ;H4(Σ;TΣ)) and θK ∈ C0(0, T ;H3(Σ)). Let Λ′ denote an upper bound
for the indicated norms, modulo a uniform constant. Then, Grönwall’s inequality
implies

F(t) ≤ Λ′κ.

By an interpolation argument, for each t ∈ [0, T ] and j < 3 we may now infer

‖w(t, ·)‖Hj(Σ) + ‖χ(t, ·)‖Hj(Σ) ≤ K18κ
3−j
6 +K18(Λ′κ)

1
2 −→ 0 as κ→ 0+. (101)

Here K18 = K(j,Σ,Λ′, ν). Hence the assertion follows.
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7. Conclusion. We have studied the Cauchy problem for the Boussinesq equations
on a closed surface. By utilising energy methods, we established a group of results
concerning the global well-posedness and breakdown criteria of large data classical
solutions to the Boussinesq equations with non-degenerate and partially degenerate
dissipation. The results appear to be among the first ones concerning the Boussinesq
equations on manifolds. The proofs adopt classical approaches for the 2-dimensional
Boussinesq equations in Euclidean space, yet are considerably more involved due
to the geometric complications which appear in the energy estimates for the higher
order derivatives of the solutions.

In passing, we remark that the theorems of this paper appear to remain valid if
we take the Bochner Laplacian in place of the Hodge Laplacian in the equations,
namely

∆′ := −∇∗∇
in Eq. (1), where ∇∗ is the adjoint of the Levi-Civita connection. This is because

∆u−∆′u = Riem ? u

due to the Bochner–Weitzenböck formulae ([43]), hence the only extra terms are of
lower order in the energy estimates.

We would also like to remark that the long-time behaviours of the global-in-
time solutions constructed in this paper have not been studied. Technically, the
proofs for the case of Riemannian manifolds are significantly different from and
more difficult than the case of Euclidean space (cf. [26, 54, 62]), again due to the
geometric complications appearing in higher order energy estimates. In addition,
the Boussinesq equations on Riemannian manifolds with fractional dissipation (i.e.,
fractional Laplace–Beltrami operators Λαg u,Λ

α
g θ) are also of considerable interests.

We leave the investigation for the future.

Appendix. In the Appendix we prove Theorem 3.4. The strategy for the proof is
similar to that for the breakdown criterion of the Boussinesq equations on R2. We
adapt the arguments from Chae–Nam [18]; also see Chae–Kim–Nam [19]. These
works were motivated in turn by the classical paper [9] due to Beale, Kato and
Majda. We need more delicate estimates to account for the non-trivial geometry of
Σ. The heart of the matter is the commutator identity (110).

Indeed, we shall establish a more general result:

Theorem 7.1. Let Σ be a closed surface with Lipschitz curvature, and let T > 0 be
arbitrary. Let (u◦, θ◦) ∈ Hm(Σ;TΣ) ×Hm(Σ) be initial data satisfying div u◦ = 0
for some m > 2. Assume that (u, θ) is a strong solution to the Boussinesq equations
(1)–(4) on [0, T ]× Σ:

u ∈ C0
(

0, T ;Hm(Σ, TΣ) ∩H
)
, θ ∈ C0

(
0, T ;Hm(Σ)

)
.

We allow either κ ≥ 0 or ν ≥ 0 to degenerate. In addition, assume that the
Wm−2,∞-norms of the curvature and the vector field e are finite (cf. Assumptions
7.2, 7.3 below).

Then, if ∫ T

0

‖∇θ(t, ·)‖L∞(Σ) dt <∞, (102)

then the strong solution can be continued to [0, T + ε[ for some ε > 0.

Theorem 3.4 corresponds to the special case of m = 3 in Theorem 7.1.
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Proof. We divide the proof into eleven steps. The generic constants Ai depend on
the geometry of Σ and the lifespan T , and they remain finite when ν, κ→ 0+.

1. We consider the Boussinesq equations on [0, T ] × Σ for a fixed T > 0. It is
clear that ‖∇θ‖L1(0,T ;L∞(Σ)) =∞ is necessary for the blowup of the strong solution
in Hm, m ≥ 2 + δ for any δ > 0. So, we assume that ‖∇θ‖L1(0,T ;L∞(Σ)) < ∞ and
prove that the strong solution does not blow up before the fixed time T .

2. Let us first recall the L2-estimate (31) for u:

‖u(t, ·)‖2L2(Σ) ≤ K0(T ) = eT
(
‖u◦‖2L2(Σ) + ‖θ◦‖2L2(Σ)

)
for any t ∈]0, T ].

Next, from the vorticity equation (34), reproduced below:

∂tω + u · ∇ω − ν∆ω + Riem ? |u|2 − rot (θe) = 0,

we may estimate
d

dt
‖ω(t, ·)‖pLp(Σ) ≤ pR

∫
Σ

|ω(t, x)|p−1|u(t, x)|2 dx

+ pS

∫
Σ

(
|∇θ(t, x)|+ |θ(t, x)|

)
|ω(t, x)|p−1 dx. (103)

As before, R, S depend on the Lipschitz norm of the curvature and the vector field
e, respectively. The estimate of the first term on the right-hand side is the same as
(38): ∫

Σ

|ω(t, x)|p−1|u(t, x)|2 dx ≤ A1

Ä
‖ω(t, ·)‖pLp(Σ) + 1

ä
, (104)

where the constant A1 depends on Σ, p, T and K0. On the other hand, the last
term in Eq. (103) can be treated by Hölder:∫

Σ

(
|∇θ(t, x)|+ |θ(t, x)|

)
|ω(t, x)|p−1 dx ≤ ‖ω(t, ·)‖p−1

Lp(Σ)‖θ(t, ·)‖W 1,p(Σ).

Thus, by Young’s inequality∫
Σ

(
|∇θ(t, x)|+ |θ(t, x)|

)
|ω(t, x)|p−1 dx

≤ p− 1

p
‖ω(t, ·)‖pLp(Σ) +

1

p
‖θ(t, ·)‖pW 1,p(Σ). (105)

Therefore, putting together Eqs. (104)–(105), we can deduce from Eq. (103) that

d

dt
‖ω(t, ·)‖pLp(Σ) ≤ A2

(
1 + ‖ω(t, ·)‖pLp(Σ) + ‖θ(t, ·)‖pW 1,p(Σ)

)
. (106)

The constant A2 depends on Σ, S, p, T , ‖u◦‖L2(Σ) and ‖θ◦‖L2(Σ). Note that
Eq. (106) remains valid for ν = 0.

3. Now we derive the differential inequality for the W 1,p-norm of θ. We have
proved (see Eq. (28)) that ‖θ(t, ·)‖Lp(Σ) is non-increasing in time:

d

dt
‖θ(t, ·)‖pLp(Σ) ≤ 0. (107)

Moreover, taking the covariant derivative of the temperature equation (2) and
utilising Lemma 2.1 again, one gets

∂t(∇θ) +∇θ · ∇u+ u · ∇∇θ − κ∆∇θ + κRiem ?∇θ = 0.
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Hence, for any p ≥ 1,
d

dt
‖∇θ(t, ·)‖pLp(Σ)

≤ p‖∇u(t, ·)‖Lp(Σ)‖∇θ(t, ·)‖L∞(Σ)‖∇θ(t, ·)‖p−1
Lp(Σ) + κRp‖∇θ(t, ·)‖pLp(Σ).

By Eq. (37) we may loosely bound

‖∇u(t, ·)‖Lp(Σ) ≤ c‖ω(t, ·)‖Lp(Σ) + c‖u(t, ·)‖L∞(Σ)

≤ c‖ω(t, ·)‖Lp(Σ) + cK
p−2
2p−2

0 ‖ω(t, ·)‖
p

2p−2

Lp(Σ) + c

for c = c(Σ, p). By Young’s inequality, we thus deduce for p ≥ 2 that
d

dt
‖∇θ(t, ·)‖pLp(Σ)

≤ A3

ß
1 + ‖ω(t, ·)‖pLp(Σ) + ‖∇θ(t, ·)‖pLp(Σ)

™
‖∇θ(t, ·)‖L∞(Σ)

+ κRp‖∇θ(t, ·)‖pLp(Σ), (108)

where A3 = A(K0, p,Σ). Again, p ≥ 2 is crucial since we need p
2p−2 ≤ 1.

4. Consider the functional

E(t) := ‖θ(t, ·)‖pW 1,p(Σ) + ‖ω(t, ·)‖pLp(Σ) + 1, where p ≥ 2.

Adding up Eqs. (106), (107) and (108) together, we get
d

dt
E(t) ≤ A4

(
1 + ‖∇θ(t, ·)‖L∞(Σ)

)
E(t).

The constant A4 depends on Σ, ‖e‖W 1,∞(Σ), p, T , ‖u◦‖L2(Σ), ‖θ◦‖L2(Σ) and κ, ν.
Therefore, by Grönwall’s inequality, for all t ∈ [0, T ] there holds

E(t) ≤ A5

(
‖u◦‖Hm(Σ), ‖θ◦‖Hm(Σ), κ, ν, T, p,Σ,

∫ T

0

‖∇θ(τ, ·)‖L∞(Σ) dτ
)
, (109)

whenever m ≥ 2 + δ. Here, for the initial data we utilised the Sobolev–Morrey
embedding Hm(Σ) ↪→W 1,p(Σ).

In particular, A4 (hence A5) does not blow up as κ, ν → 0+.
5. Next we deduce the energy estimates for higher derivatives of u. For our

purpose we only need ‖u(t, ·)‖Hm(Σ) with m = 3; nevertheless, let us tackle the
case of general m, which is of independent interest. It requires higher regularity
assumptions for the curvature than ‖Riem‖W 1,∞(Σ) ≤ R. In this step we introduce
a crucial geometric identity (Eq. (110) below).

Let I ∈ {1, 2}|I| be a multi-index of order |I|. By an abuse of notations, we
sometimes write ∇|J| ≡ ∇J . Denote by ∇I a generic covariant derivative iterated
for |I| times. For instance, ∇Iu is an (|I|+ 1)-form (or equivalently, a multi-vector
field of the same valence).

Applying the Ricci identity (Lemma 2.1) for |I| times, we get

[∇I ,∇]u =
∑

0≤j≤|I|−2

Cj∇|I|−2−ju ?∇j (Riem). (110)

Here the bracket [·, ·] is the commutator of differential operators. This identity also
holds if we take a scalar function on Σ in place of the vector field u. Therefore, it
is natural to require:

Assumption 7.2. ‖Riem‖Wm−2,∞(Σ) ≤ Rm <∞.
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6. Applying ∇I to Eq. (1), we get

∂t∇Iu+ u · (∇Iu)− ν∆∇Iu+∇I∇P
= ∇I(θe) + ν[∇I ,∆]u− [∇I , u · ∇]u. (111)

Taking the inner product with ∇Iu and integrating by parts, the left-hand side of
Eq. (111) becomes

1

2

d

dt
‖∇Iu(t, ·)‖2L2(Σ) +

∫
Σ

〈
∇Iu(t, x),∇I∇P (t, x)

〉
dx.

For the second term we first move the innermost derivative on p to the outside (i.e.,
obtaining ∇∇IP ), then move it to div∇Iu via integration by parts, and finally
get ∇Idiv u, which vanishes due to incompressibility. The error for this process is
quantified by the identity (110):∣∣∣∣ ∫

Σ

〈
∇Iu(t, x),∇I∇P (t, x)

〉
dx

∣∣∣∣
≤ CR2

m

ß ∑
0≤|J|≤|I|−2

∥∥∇|J|u(t, ·)
∥∥
L2(Σ)

™ß ∑
0≤|K|≤|I|−2

∥∥∇|K|P (t, ·)
∥∥
L2(Σ)

™
,

where |I| ≤ m and C is a combinatorial constant depending only on |I|.
To proceed, we need to estimate the Hs-norm of P , where s ≤ m − 2. This is

postponed to the next step. We further assume

Assumption 7.3. ‖e‖Wm−2,∞(Σ) ≤ Sm <∞.

Then, in view of the right-hand side of Eq. (111), we need to bound

CSm

∫
Σ

∣∣∇Iθ(t, x)
∣∣∣∣∇Iu(t, x)

∣∣dx+ CRmν

∫
Σ

∣∣∇Iu(t, x)
∣∣ ∑

0≤|J|≤|I|−2

∣∣∇Ju(t, x)
∣∣ dx

+ CRm

∫
Σ

∑
0≤|K|≤|I|+1

∣∣∇|K|u(t, x)
∣∣dx.

Again, C = C(|I|) is a combinatorial constant, and |I| ≤ m. The terms involving
(|I|+ 1) derivatives of u come from the nonlinear term [∇I , u · ∇]u.

To summarise, we have the following estimate:

d

dt
‖∇Iu(t, ·)‖2L2(Σ) ≤ CR

2
m

ß ∑
0≤|J|≤|I|−2

∥∥∇|J|u(t, ·)
∥∥
L2(Σ)

™
×

×
ß ∑

0≤|K|≤|I|−2

∥∥∇|K|P (t, ·)
∥∥
L2(Σ)

™
+ CSm

∫
Σ

∣∣∇Iθ(t, x)
∣∣∣∣∇Iu(t, x)

∣∣ dx
+ CRmν

∫
Σ

∣∣∇Iu(t, x)
∣∣ ∑

0≤|J|≤|I|−2

∣∣∇Ju(t, x)
∣∣dx

+ CRm

∫
Σ

∑
0≤|K|≤|I|+1

∣∣∇|K|u(t, x)
∣∣dx. (112)
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7. Now we control the L2-norm of the derivatives of P . This is done by the
Poisson equation:

∆P = −∇i∇j(uiuj) +∇i(θei).
Thus, using the standard elliptic estimates for closed manifolds, we have∥∥∇|K|P (t, ·)

∥∥
L2(Σ)

≤
∥∥u(t, ·)⊗ u(t, ·)

∥∥
H|K|(Σ)

+ Sm
∥∥θ(t, ·)∥∥

H|K|−1(Σ)

≤ C‖u(t, ·)‖H|K|(Σ)‖u(t, ·)‖L∞(Σ) + Sm
∥∥θ(t, ·)∥∥

H|K|−1(Σ)
.

The second line follows from an interpolation result due to Morrey; C depends only
on |K|. However, the L∞-norm of u is estimated by Eq. (37) once more:

‖u(t, ·)‖L∞(Σ) ≤ c
ß

1 + ‖u(t, ·)‖
p−2
2p−2

L2(Σ)‖ω(t, ·)‖
p

2p−2

Lp(Σ)

™
.

In addition, we have already obtained the uniform bound for ‖ω(t, ·)‖Lp(Σ) in
Eq. (109), as well as ‖u(t, ·)‖L2(Σ) ≤

√
K0. So, for some A6 = A(T, p,Σ, ν, κ, θ◦, u◦)

we have
‖u(t, ·)‖L∞(Σ) ≤ A6 for all t ∈ [0, T ]. (113)

Therefore, for each |K| ≤ |I| − 2, |I| ≤ m, we can bound the L2-norm of |K|
derivatives of the pressure by lower order energies of u and θ:∥∥∇|K|P (t, ·)

∥∥
L2(Σ)

≤ C|K|A6‖u(t, ·)‖H|K|(Σ) + Sm
∥∥θ(t, ·)∥∥

H|K|−1(Σ)
.

The constant A6 remains finite when κ, ν → 0+. We can continue the estimate
Eq. (112) by

d

dt

∥∥∇Iu(t, ·)
∥∥2

L2(Σ)
≤ CR2

m

ß ∑
0≤|J|≤|I|−2

∥∥∇|J|u(t, ·)
∥∥
L2(Σ)

™
×

×
ß ∑

0≤|K|≤|I|−2

C|K|A6‖u(t, ·)‖H|K|(Σ) + Sm
∥∥θ(t, ·)∥∥

H|K|−1(Σ)

™
+ CSm

∫
Σ

∣∣∇Iθ(t, x)
∣∣∣∣∇Iu(t, x)

∣∣dx
+ CRmν

∫
Σ

∣∣∇Iu(t, x)
∣∣ ∑

0≤|J|≤|I|−2

∣∣∇Ju(t, x)
∣∣dx

+ CRm

∫
Σ

∑
0≤|K|≤|I|+1

∣∣∇|K|u(t, x)
∣∣ dx. (114)

8. Next we derive the higher order energy estimates for θ.
Taking ∇I to Eq. (2), we get

∂t∇Iθ + u · ∇(∇Iθ)− κ∆∇Iθ = [u · ∇,∇I ]θ + κ[∆,∇I ]θ.
Thus, by the identity (110) again, we obtain the following energy estimate:

d

dt

∥∥∇Iθ(t, ·)∥∥2

L2(Σ)

≤ CRm
∫

Σ

∑
1≤|J|≤|I|

∣∣∇Ju(t, x)
∣∣dx

+ CκRm

∫
Σ

∑
0≤|L|≤|I|−2

∣∣∇Lθ(t, x)
∣∣dx. (115)
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Once more, the constant C depends only on |I|.
9. Let us denote by

Es(t) := 1 +
∑

0≤|I|≤s

∫
Σ

ß
|∇Iu(t, x)|2 + |∇Iθ(t, x)|2

™
dx. (116)

Eqs. (114)-(115) yield the following: for any |I| ≤ m (where m ≥ 2 + δ as before),
we have

d

dt
E|I| ≤ CR2

mA6E|I|−2 + CR2
mS

2
m

»
E|I|−2

»
E|I|−3 + CSmE|I|

+ CRmν
»
E|I|
»
E|I|−2 + CRm‖∇u(t, ·)‖L∞(Σ)E|I|

+ CRm
√

Vol ΣE|I| + CκRm
√

Vol ΣE|I|−2.

Here we use Cauchy–Schwarz, and C depends only on |I|. The ‖∇u(t, ·)‖L∞(Σ)

term comes from
∫

Σ

∑
0≤|K|≤|I|+1

∣∣∇|K|u(t, x)
∣∣dx in the final line of Eq. (114).

Thus, there is a constant

A7 = A
(
m,Σ, T,Rm, Sm, ν, κ, ‖u◦‖Hm(Σ), ‖θ◦‖Hm(Σ)

)
such that

d

dt
E|I| ≤ A7

(
1 + ‖∇u(t, ·)‖L∞(Σ)

)
E|I|(t). (117)

This can be seen from a simple induction; notice that E1 ≡ E is already bounded
in Step 4 (with p = 2 therein).

10. It thus remains to bound ‖∇u(t, ·)‖L∞(Σ). This is done by the Brezis–
Wainger inequality (Lemma 2.2). From now on we restrict to p > 2; then

‖∇u(t, ·)‖L∞(Σ)

≤ c
(

1 + ‖ω(t, ·)‖L∞(Σ)

)(
1 + log+ ‖u(t, ·)‖Hm(Ω)

)
+ c‖ω(t, ·)‖Lp(Σ). (118)

for a geometric constant c > 0. The Lp-norm of ω is again already bounded in Step
4. Moreover, a bound for the L∞-norm of ω can be directly obtained from Eq. (103)
above, reproduced here:

d

dt
‖ω(t, ·)‖pLp(Σ) ≤ pR

∫
Σ

|ω(t, x)|p−1|u(t, x)|2 dx

+ pS

∫
Σ

(
|∇θ(t, x)|+ |θ(t, x)|

)
|ω(t, x)|p−1 dx.

Indeed, noting that
d

dt
‖ω(t, ·)‖pLp(Σ) = p‖ω(t, ·)‖p−1

Lp(Σ)

d

dt
‖ω(t, ·)‖Lp(Σ)

and invoking the L∞-bound for u, one obtains
d

dt
‖ω(t, ·)‖Lp(Σ) ≤ c‖u(t, ·)‖2L∞(Σ) + c‖θ(t, ·)‖W 1,∞(Σ), (119)

where c depends on R and S. We have already bounded ‖u(t, ·)‖L∞(Σ) ≤ A6 in
Eq. (113). There A6 depends on some index p′, but we can fix p′ once and for all.

Sending p→∞ in Eq. (119), we obtain

d

dt
‖ω(t, ·)‖L∞(Σ) ≤ A7

(
1 + ‖∇θ(t, ·)‖L∞(Σ)

)
.
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Here we used ‖θ(t, ·)‖L∞(Σ) ≤ ‖θ◦‖L∞(Σ) for all t; A7 is a constant independent of
p (and has the same dependence as A6 apart from p).

Therefore, integrating this differential inequality, we get

‖ω(t, ·)‖L∞(Σ) ≤ A8

(
Σ, ν, κ, T,

∫ T

0

‖∇θ(t, ·)‖L∞(Σ) dt, ‖u◦‖Hm(Σ), ‖θ◦‖Hm(Σ)

)
(120)

for all t ∈ [0, T ]. Here A8 does not blow up as ν, κ→ 0.
As a result, we deduce from Eqs. (118) and (120) that, for arbitrary p′′ > 2,

‖∇u(t, ·)‖L∞(Σ) ≤ A9

(
1 + log+ ‖u(t, ·)‖Hm(Ω)

)
, (121)

where

A9 = A
(
p′′,Σ, ν, κ, T,

∫ T

0

‖∇θ(t, ·)‖L∞(Σ) dt, ‖u◦‖Hm(Σ), ‖θ◦‖Hm(Σ)

)
.

We can also fix p′′ once and for all.
11. Finally, by Eqs. (121) and (117), for any 0 ≤ |I| ≤ m we have

d

dt
Em(t) ≤ A10

(
1 + log+ Em(t)

)
Em(t), (122)

where A10 depends on Σ, ν, κ, Rm, Sm, T , m, ‖u◦‖Hm(Σ), ‖θ◦‖Hm(Σ), and∫ T
0
‖∇θ(t, ·)‖L∞(Σ) dt, and it remains finite even if we send κ, ν to 0.
Integrate this differential inequality, one obtains:

Em(t) ≤ exp

{Å
1 + log+ Em(0)

ã
eA10t

}
<∞. (123)

Thus we can further continue the strong solution in time. The proof is complete.
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