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Abstract

This work intends to understand the stability and large-time behavior of perturbations near a stationary 
solution of the 2D resistive magnetohydrodynamic (MHD) equation. The stationary solution is taken to be 
a background magnetic field parallel to the horizontal axis. We obtain three main results. The first result 
assesses the stability and the precise large-time asymptotic behavior for solutions to the linearzied system 
satisfied by the perturbation. Due to the lack of viscosity, the standard energy estimates do not work and the 
proof is achieved by constructing a suitable Lyapunov function. The second result makes use of the special 
wave structure of the linearization to establish the linear stability and decay rates. The third result obtains 
the H 1-stability for the full nonlinear system and shows that the Lq -norm (q ∈ (2, ∞)) of the magnetic 
field perturbation ̃b and the L2-norm of the gradient of ̃b approach zero as t → ∞.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

The MHD equations govern the motion of electrically conducting fluids such as plasmas, 
liquid metals, and electrolytes. They consist of a coupled system of the Navier-Stokes equations 
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of fluid dynamics and Maxwell’s equations of electromagnetism. Since their initial derivation by 
the Nobel Laureate H. Alfven in 1924, the MHD equations have played pivotal roles in the study 
of many phenomena in geophysics, astrophysics, cosmology and engineering (see, e.g., [2,6]).

Besides their wide physical applicability, the MHD equations are also of great interest in 
mathematics. As a coupled system, the MHD equations contain much richer structures than the 
Navier-Stokes equations. They are not merely a combination of two parallel Navier-Stokes type 
equations but an interactive and integrated system. Their distinctive features make analytic stud-
ies a great challenge but offer new opportunities.

This paper focuses on the 2D resistive MHD equations with general magnetic diffusion, 
namely ⎧⎨⎩

∂tu + u · ∇u = −∇p + b · ∇b, x ∈ R2, t > 0,

∂tb + u · ∇b + η (−�)βb = b · ∇u, x ∈R2, t > 0,

∇ · u = 0, ∇ · b = 0, x ∈R2, t > 0,

(1.1)

where u denotes the velocity field, p the pressure, b the magnetic field, η > 0 denotes the mag-
netic diffusivity (resistivity) and β ≥ 0 is a real parameter. The fractional Laplacian (−�)β is 
defined in terms of the Fourier transform,

̂(−�)βf (ξ) = |ξ |2βf̂ (ξ), f̂ (ξ) =
∫
R2

e−ix·ξ f (x) dx.

In addition, for notational convenience, we also write � = (−�)
1
2 and use the direction fractional 

Laplacian operator �1 or �2 defined by

̂�
γ

1 f (ξ) = |ξ1|γ f̂ (ξ), ̂�
γ

2 f (ξ) = |ξ2|γ f̂ (ξ).

(1.1) is applicable when the fluid viscosity can be ignored while the role of resistivity is im-
portant such as in magnetic reconnection and magnetic turbulence (see, e.g., [17]). This general 
MHD system in (1.1) includes the standard resistive MHD equation as a special case and has the 
advantage of allowing simultaneous study of a family of equations.

The stability and the regularity problems are two of the most fundamental problems on the 
MHD equations. There have been significant developments on these problems, especially on 
those MHD system with only partial or fractional dissipation. The global regularity problem 
on (1.1) is not trivial, even in the 2D case. In fact, whether or not smooth solutions of (1.1)
with β ≤ 1 can blow up in a finite time remains an outstanding open problem. In particular, 
the resistive MHD equation with the standard Laplacian dissipation is not yet known to always 
possess global smooth solutions no matter how smooth the initial data are. Due to extensive 
efforts in the last few years, this problem is now much better understood (see, e.g., [3,8–12,14,
15,22,24–28]). Especially, we now know that the global regularity problem on (1.1) with β = 1 in 
the 2D case is a critical problem and a slight more regularization is sufficient for global regularity.

Our paper will be focusing on the stability and large-time behavior of perturbations near a sta-
tionary solution of (1.1). The stability problem on the MHD equations has attracted considerable 
renewed interests in recent years. The study of the stability problem on the MHD equations has a 
long history. In his 1942 paper entitled “Existence of electromagnetic-Hydrodynamic waves” [1], 
Alfvén considered the linear stability of a background magnetic field associated with the MHD 
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equations without resistivity. The study on the nonlinear stability problem is more recent, but 
significant progress has been made on this issue (see, e.g., [4,13,16,19,21,23,29]). Our focus is 
on the stability problem when the fluid viscosity can be ignored while the role of resistivity dom-
inates. We also mention that the stability problem on other fluid models such as the Boussinesq 
equations has also garnered the interests of many researchers (see, e.g., [5,7,18,20]).

We consider the steady solution of (1.1) given by the background magnetic field

u(0)(x) = (0,0), p(0)(x) = 0, b(0)(x) = (R,0),

where R is a real number. The perturbation around this steady solution, namely

(̃u, p̃, b̃) = (u,p, b) − (u(0), p(0), b(0))

satisfies ⎧⎨⎩
∂t ũ + ũ · ∇ũ = −∇p̃ + b̃ · ∇b̃ + R ∂x1 b̃,

∂t b̃ + ũ · ∇b̃ + η (−�)βb̃ = b̃ · ∇ũ + R ∂x1 ũ,

∇ · ũ = 0, ∇ · b̃ = 0.

(1.2)

Due to the lack of viscosity and the strong nonlinear coupling, the stability problem on (1.2)
is not trivial. Our study appears to be among the very first investigations on the stability of 
(1.2). We obtain three main results. Due to the significance of understanding the linearization 
of (1.2), our first two results are on the stability, large-time behavior and the spectra properties 
of solutions to the linearized system of (1.2). Our first result constructs a suitable Lyapunov 
function to show the linear stability and obtain explicit decay rates. The second result intends to 
understand the spectra property of the linearization. We discover that the linearization has a very 
special structure and can be reduced to a system of decoupled degenerate wave type equations. 
This allows us to represent the solution to the linearization explicitly in terms of the eigenvalues 
and the initial data. Explicit decay rates follow as a special consequence of this representation. 
Our third result is a global H 1-stability result for the full nonlinear system. In particular, we show 
that the magnetic field perturbation ̃b of (1.2) obeys the large-time behavior, for any q ∈ (2, ∞),

‖∇b̃(t)‖L2 → 0, ‖b̃(t)‖Lq → 0 as t → ∞.

We now explain the difficulties that we would encounter in establishing the aforementioned 
results. The linearized system of (1.2) is given by⎧⎪⎪⎨⎪⎪⎩

∂t ũ = R ∂x1 b̃,

∂t b̃ + η (−�)βb̃ = R ∂x1 ũ,

∇ · ũ = 0, ∇ · b̃ = 0,

ũ(x,0) = ũ0(x), b̃(x,0) = b̃0(x).

(1.3)

Even though (1.3) appears to be really simple, but the large-time behavior is not apparent due to 
the lack of the kinematic viscosity. Powerful tools designed for systems with full dissipation such 
as Schonbek’s Fourier splitting method can no longer be applied here. The L2 energy equality 
associated with (1.3) or (1.2) is given by



R. Ji, J. Wu / J. Differential Equations 268 (2020) 1854–1871 1857
‖ũ(t)‖2
L2 + ‖b̃(t)‖2

L2 + 2η

t∫
0

‖�βb̃(τ )‖2
L2 dτ = ‖ũ0‖2

L2 + ‖b̃0‖2
L2, (1.4)

which does not allow us to extract the desired decay rates for ‖ũ(t)‖L2 or ‖b̃(t)‖L2 . One approach 
is to design a suitable Lyapunov function together with an assumption that the initial data is in 
an appropriate Sobolev space with negative indices. We obtain the following result.

Theorem 1.1. Consider (1.3) with β ≤ 1. Let σ > 0. Assume that (̃u0, ̃b0) satisfies

(̃u0, b̃0) ∈ L2(R2), (�−σ
1 ũ0,�

−σ
1 b̃0) ∈ H 1+σ (R2). (1.5)

Then, the corresponding solution (̃u, ̃b) of (1.3) satisfies, for a constant C,

‖ũ(t)‖L2 + ‖b̃(t))‖L2 + ‖∇ũ(t)‖L2 + ‖∇b̃(t))‖L2 ≤ C (1 + t)−
σ
2 . (1.6)

Furthermore, if (∂k
x1

ũ0, ∂k
x1

b̃0) ∈ L2 for a positive integer k, then

‖∂k
x1

ũ(t)‖L2 + ‖∂k
x1

b̃(t))‖L2 + ‖∂k
x1

∇ũ(t)‖L2 + ‖∂k
x1

∇b̃(t))‖L2 ≤ C (1 + t)−
σ+k

2 . (1.7)

Theorem 1.1 assesses the linear stability and provides precise decay rates. Due to the lack of 
the velocity dissipation, the time integral in (1.4) only contains the term involving ̃b but not ̃u. As 
a consequence, this energy equality is not useful in seeking the decay rates. The idea of proving 
Theorem 1.1 is to construct a suitable Lyapunov function so that its time derivative also includes 
some positive terms involving ̃u. The Lyapunov function L(t) we construct here is given by

L(t) = ‖ũ(t)‖2
L2 + ‖b̃(t))‖2

L2 + ‖∇ũ(t)‖2
L2 + ‖∇b̃(t))‖2

L2 + ε〈j̃ , ũ2〉,

where ε > 0 is a small real number, j̃ = ∇ × b̃ denotes the current density, and 〈j̃ , ̃u2〉 denotes 
the inner product,

〈j̃ , ũ2〉 =
∫
R2

j̃ ũ2 dx

For small ε > 0, we can show that L(t) remains positive and serves as a suitable Lyapunov 
function. The term ε〈j̃ , ̃u2〉 generates a positive term involving ̃u as intended. More details can 
be found in the proof of Theorem 1.1.

Our second result intends to understand the behavior of the spectra of the linearization and the 
large-time behavior of (̃u, ̃b) of (1.3). The idea here is to diagonalize and decouple the system 
(1.3). The special structure of (1.3) allows us to avoid the standard eigenvalue and eigen-function 
approach. Differentiating the equations in (1.3) in time and making suitable substitutions, we find 
(̃u, ̃b) satisfies ⎧⎪⎪⎨⎪⎪⎩

∂tt ũ + η(−�)β∂t ũ − R2 ∂x1x1 ũ = 0,

∂tt b̃ + η(−�)β∂t b̃ − R2 ∂x1x1 b̃ = 0,

∇ · ũ = 0, ∇ · b̃ = 0,

ũ(x,0) = ũ (x), b̃(x,0) = b̃ (x).

(1.8)
0 0
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This is a decoupled system with ũ and b̃ each satisfying a degenerate and fractionally damped 
wave equation. The solution (̃u, ̃b) can then be explicitly represented in terms of the initial data. 
More precisely,

ũ = G0

(
R∂xb̃0 + 1

2
η(−�)βũ0

)
+ G1ũ0, (1.9)

b̃ = G0

(
R∂xũ0 − 1

2
η(−�)βb̃0

)
+ G1b̃0, (1.10)

where G0 and G1 are Fourier multiplier operators

Ĝ0(ξ, t) = eλ1(ξ)t − eλ2(ξ)t

λ1(ξ) − λ2(ξ)
, Ĝ1(ξ, t) = 1

2

(
eλ1(ξ)t + eλ2(ξ)t

)
(1.11)

with λ1(k) and λ2(k) being the roots of the characteristic equation

λ2 + η|ξ |2β λ + R2ξ2
1 = 0,

or, more precisely,

λ1 = −1

2
η |ξ |2β

⎛⎝1 −
√

1 − 4R2 ξ2
1

η2|ξ |4β

⎞⎠ , (1.12)

λ2 = −1

2
η |ξ |2β

⎛⎝1 +
√

1 − 4R2 ξ2
1

η2|ξ |4β

⎞⎠ . (1.13)

These explicit solution representation allows us to prove the following result.

Theorem 1.2. Consider (1.3) with β ≤ 1. Assume that ̃u0 and ̃b0 satisfy

(̃u0, b̃0) ∈ L2(R2), (�−βũ0,�
−β b̃0) ∈ L1(R2), (�−1

1 ũ0,�
−1
1 b̃0) ∈ Hβ(R2).

Then the corresponding solution (̃u, ̃b) of (1.3) obeys the following decay estimates

‖(̃u(t), b̃(t))‖L2 ≤ C (1 + t)−1/(2β)‖�−β (̃u0, b̃0)‖L1 + C (1 + t)−1/2 ‖�−1
1 (̃u0, b̃0)‖Hβ ,

where C is a pure constant.

Our third main result focuses on the full nonlinear system in (1.2) with β = 1. We establish 
the global H 1-stability and obtains the large-time behavior of the perturbations.

Theorem 1.3. Consider (1.2) with β = 1. Assume (̃u0, ̃b0) ∈ H 1(R2). Then (1.2) has a global 
weak solution (̃u, ̃b) ∈ H 1 with the following properties:
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(1) (̃u, ̃b) is uniformly bounded in H 1, namely, for any t > 0,

‖ũ(t)‖2
L2 + ‖b̃(t)‖2

L2 ≤ ‖ũ0‖2
L2 + ‖b̃0‖2

L2,

‖∇ũ(t)‖2
L2 + ‖∇b̃(t)‖2

L2 ≤ (‖∇ũ0‖2
L2 + ‖∇b̃0‖2

L2) e
C (‖ũ0‖2

L2 +‖b̃0‖2
L2 )

,

which especially implies the global H 1-stability.
(2) ‖b̃(t)‖2

L2 is a Lipschitz function in t ∈ [0, ∞).
(3) As t → ∞,

‖∇b̃(t)‖2
L2 → 0

Especially, for any 2 < q < ∞, as t → ∞,

‖b̃(t)‖Lq → 0.

The rest of this paper is divided into three sections with each one devoted to the proof of one 
of the three theorems stated above.

2. Proof of Theorem 1.1

This section proves Theorem 1.1. As aforementioned in the introduction, the idea is to con-
struct a suitable Lyapunov function.

Proof of Theorem 1.1. We set

L(t) = ‖ũ(t)‖2
L2 + ‖b̃(t))‖2

L2 + ‖∇ũ(t)‖2
L2 + ‖∇b̃(t))‖2

L2 + ε〈j̃ , ũ2〉
M(t) = 2η‖�βb̃‖2

L2 + 2η‖�1+βb̃‖2
L2 + εR‖∇ũ2‖2

L2 − εR‖∇b̃2‖2
L2 + εη〈�2β j̃ , ũ2〉.

By making use of the equations in (1.3), we can check that

d

dt
L(t) + M(t) = 0. (2.1)

In fact, dotting the first two equations of (1.3) with (̃u, ̃b) yields

d

dt

(
‖ũ(t)‖2

L2 + ‖b̃(t))‖2
L2

)
+ 2η‖�βb̃‖2

L2 = 0, (2.2)

where we have used the simple fact that

〈∂1b̃, ũ〉 + 〈̃b, ∂1ũ〉 = 0.

Similarly,

d (
‖∇ũ(t)‖2

2 + ‖∇b̃(t))‖2
2

)
+ 2η‖�1+β b̃(t)‖2

2 = 0. (2.3)

dt L L L
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Furthermore, since j̃ = ∇ × b̃ satisfies

∂t j̃ = −η(−�)βj̃ + ∂1ω̃

with ω̃ = ∇ × ũ, we find

∂t 〈j̃ , ũ2〉 = 〈∂t j̃ , ũ2〉 + 〈j̃ , ∂t ũ2〉
= 〈−η(−�)βj̃ , ũ2〉 + 〈∂1ω̃, ũ2〉 + R〈j̃ , ∂1b̃2〉
= 〈−η(−�)βj̃ , ũ2〉 − ‖∇ũ2‖2

L2 + R‖∇b̃2‖2
L2, (2.4)

where we have used the simple fact that

〈∂1ω̃, ũ2〉 = 〈�ũ2, ũ2〉 = −‖∇ũ2‖2
L2 , 〈j̃ , ∂1b̃2〉 = ‖∇b̃2‖2

L2 .

Combining (2.2), (2.3) and (2.4) leads to (2.1). We remark that, for ε > 0 sufficiently small,

L(t) ≥ ‖ũ(t)‖2
L2 + ‖b̃(t))‖2

L2 + ‖∇ũ(t)‖2
L2 + ‖∇b̃(t))‖2

L2 − ε‖j̃‖L2 ‖ũ2‖L2

≥ 1

2
‖ũ(t)‖2

L2 + ‖b̃(t))‖2
L2 + ‖∇ũ(t)‖2

L2 + 1

2
‖∇b̃(t))‖2

L2 . (2.5)

For β ≤ 1, we can also show M(t) > 0. The key is to bound the last term. It can be bounded by∣∣∣εη〈�2β j̃ , ũ2〉
∣∣∣ ≤ εη‖�2β−1j̃‖L2 ‖∇ũ2‖L2 = εη‖�2β b̃‖L2 ‖∇ũ2‖L2

≤ εη‖�βb̃‖1−β

L2 ‖�1+β b̃‖β

L2 ‖∇ũ2‖L2

≤
{

ε
2‖∇ũ2‖2

L2 + Cεη‖�βb̃‖2
L2 + Cεη‖�1+β b̃‖2

L2, if β < 1,

ε
2‖∇ũ2‖2

L2 + 1
2εη2‖�2b̃‖2

L2, if β = 1.

In addition,

ε‖∇b2‖2
L2 ≤ C ε‖�βb̃‖2

L2 + C ε‖�1+β b̃‖2
L2 .

As a consequence, for ε > 0 sufficiently small,

M(t) ≥ η

2
‖�βb̃‖2

L2 + η

2
‖�1+β b̃‖2

L2 + ε

2
‖∇ũ2‖2

L2 > 0.

The energy equality in (2.1) is not sufficient for the large-time behavior. To find the exact decay 
rates, we further define

N(t) = ‖�−σ
1 ũ(t)‖2

L2 + ‖�−σ
1 b̃(t)‖2

L2 + ‖�1+σ �−σ
1 ũ(t)‖2

L2 + ‖�1+σ �−σ
1 b̃(t)‖2

L2 .

It is easy to check that

d
N(t) + 2η‖�β�−σ

1 b̃(t)‖2
2 + 2η‖�1+σ+β�−σ

1 b̃(t)‖2
2 = 0.
dt L L
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Especially, for any t ≥ 0,

N(t) ≤ N(0).

Next we show that, for a constant C > 0,

L(t) ≤ C M(t)
σ

1+σ N(t)
1

1+σ . (2.6)

We check that each term of L(t) obeys the bound above. In fact,

‖ũ‖2
L2 ≤ C ‖∇ũ2‖

2σ
1+σ

L2 ‖�−σ
1 ũ‖

2
1+σ

L2 ≤ C M(t)
σ

1+σ N(t)
1

1+σ , (2.7)

‖∇ũ‖2
L2 ≤ C ‖∇ũ2‖

2σ
1+σ

L2 ‖�1+σ �−σ
1 ũ‖

2
1+σ

L2 ≤ C M(t)
σ

1+σ N(t)
1

1+σ . (2.8)

(2.7) can be easily verified by resorting to the stream function. Due to ̃u = ∇⊥φ̃ and the interpo-
lation

|ξ |2|̂̃φ(ξ)|2 =
(
|ξ |2|ξ1|2|̂̃φ(ξ)|2

) σ
1+σ

(
|ξ |2|ξ1|−2σ |̂̃φ(ξ)|2

) 1
1+σ

,

we find, by Hölder’s inequality,

‖ũ‖2
L2 = ‖∇⊥φ̃‖2

L2 =
∫
R2

|ξ |2|̂̃φ(ξ)|2 dξ

≤
⎛⎜⎝∫
R2

|ξ |2|ξ1|2|̂̃φ(ξ)|2 dξ

⎞⎟⎠
σ

1+σ
⎛⎜⎝∫
R2

|ξ |2|ξ1|−2σ |̂̃φ(ξ)|2 dξ

⎞⎟⎠
1

1+σ

= ‖∇∂1φ̃‖
2σ

1+σ

L2 ‖�−σ
1 ∇⊥φ̃‖

2
1+σ

L2 = ‖∇ũ2‖
2σ

1+σ

L2 ‖�−σ
1 ũ‖

2
1+σ

L2 ,

which verifies (2.7). (2.8) can be similarly verified. Similarly,

‖b̃‖2
L2 ≤ C ‖∇b̃2‖

2σ
1+σ

L2 ‖�−σ
1 b̃‖

2
1+σ

L2 .

Invoking the interpolation inequality

‖∇b̃2‖L2 ≤ C ‖�βb̃‖β

L2 ‖�1+β b̃‖1−β

L2 ≤ C
(
‖�βb̃‖L2 + ‖�1+β b̃‖L2

)
,

we find

‖b̃‖2
L2 ≤ C M(t)

σ
1+σ N(t)

1
1+σ . (2.9)

Similarly,
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‖∇b̃‖2
L2 ≤ C ‖∇b̃2‖

2σ
1+σ

L2 ‖�1+σ �−σ
1 b̃‖

2
1+σ

L2

≤ C
(
‖�βb̃‖L2 + ‖�1+β b̃‖L2

) 2σ
1+σ ‖�1+σ �−σ

1 b̃‖
2

1+σ

L2

≤ C M(t)
σ

1+σ N(t)
1

1+σ . (2.10)

(2.7), (2.8), (2.9) and (2.10) imply (2.6). It follows from (2.6) that

L(t) ≤ CM(t)
σ

1+σ N
1

1+σ

0 or M(t) ≥ C N
− 1

σ

0 L(t)1+ 1
σ .

Inserting this inequality in (2.1), we find

d

dt
L(t) + C N

− 1
σ

0 L(t)1+ 1
σ ≤ 0,

which yields, for a pure constant C,

L(t) ≤
(

L(0)−
1
σ + C

1

σN(0)1/σ
t

)−σ

.

This leads to the desired decay rate in (1.6). To prove the decay rate in (1.7), we set

U = ∂k
x1

ũ, B = ∂k
x1

b̃.

Clearly, (U, B) satisfies the same equations as (1.3) but with the initial data

U(x,0) = U0(x) := ∂k
x1

ũ0(x), B(x,0) = B0(x) := ∂k
x1

b̃0(x).

Since (U0, B0) satisfies (U0, B0) ∈ L2 and

(�
−(k+σ)
1 U0,�

−(k+σ)
1 B0) ∈ H 1+σ (R2).

The argument above can be repeated and the result is (1.7). This completes the proof of Theo-
rem 1.1. �
3. Proof of Theorem 1.2

This section provides the proof of Theorem 1.2. The proof relies crucially on two lemmas. The 
first lemma presents the solution formula for a fractionally damped degenerate wave type equa-
tion while the second lemma provides bounds on the decay rates for Fourier multiplier operators 
G0 and G1 defined in (1.11). The behavior of Ĝ0 and Ĝ1 depends on the Fourier frequencies ξ .

Lemma 3.1. Assume that f satisfies the degenerate wave type equation{
∂ttf + η(−�)β∂tf − R2 ∂x1x1f = 0, x ∈R2, t > 0,

f (x,0) = f0(x), (∂tf )(x,0) = f1(x).
(3.1)
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Then f can be explicitly represented as

f = G0

(
f1 + 1

2
η(−�)βf0

)
+ G1f0

where G0 and G1 are as in (1.11).

Proof. Taking the Fourier transform of the equation of f , we have

∂tt f̂ + η|ξ |2β∂t f̂ + R2ξ2
1 f̂ = 0.

Using the method of operator splitting, we find(
∂t + 1

2
η|ξ |2β + 1

2

√
η2|ξ |4β − 4R2ξ2

1

)(
∂t + 1

2
η|ξ |2β − 1

2

√
η2|ξ |4β − 4R2ξ2

1

)
f̂ = 0.

This equation can be written into two different systems of equations,(
∂t + 1

2
η|ξ |2β + 1

2

√
η2|ξ |4β − 4R2ξ2

1

)
g = 0, (3.2)(

∂t + 1

2
η|ξ |2β − 1

2

√
η2|ξ |4β − 4R2ξ2

1

)
f̂ = g (3.3)

and (
∂t + 1

2
η|ξ |2β − 1

2

√
η2|ξ |4β − 4R2ξ2

1

)
h = 0, (3.4)(

∂t + 1

2
η|ξ |2β + 1

2

√
η2|ξ |4β − 4R2ξ2

1

)
f̂ = h (3.5)

Taking the difference of (3.5) and (3.3), we find

f̂ (ξ, t) = h(ξ, t) − g(ξ, t)√
η2|ξ |4β − 4R2ξ2

1

By (3.2) and (3.4), and also (1.12) and (1.13),

g(ξ, t) = g(ξ,0) eλ2(ξ)t , h(ξ, t) = h(ξ,0) eλ1(ξ)t

The initial data can be obtained via (3.3) and (3.5),

g(ξ,0) = f̂1 − λ1f̂0, h(ξ,0) = f̂1 − λ2f̂0.

Therefore,



1864 R. Ji, J. Wu / J. Differential Equations 268 (2020) 1854–1871
f̂ (ξ, t) = (f̂1 − λ2f̂0) eλ1(ξ)t − (f̂1 − λ1f̂0)e
λ2(ξ)t

λ1 − λ2

= Ĝ0

(
f̂1 + 1

2
η|ξ |2βf̂0

)
+ Ĝ1f̂0.

This completes the proof of Lemma 3.1. �
Clearly the behavior of Ĝ0(ξ, t) and Ĝ1(ξ, t) depends on the Fourier frequencies ξ . The 

second lemma provides upper bounds for Ĝ0 and Ĝ1 in different frequency domains. We will 
use ReA to denote the real part of a complex number A.

Lemma 3.2. Let S1 and S2 be the following subsets of R2,

S1 :=
⎧⎨⎩k ∈ R2 : ξ2

1 ≥ η2

4R2 |ξ |4β or

√
1 − 4R2ξ2

1

η2|ξ |4β
≤ 1

2

⎫⎬⎭
S2 :=

⎧⎨⎩k ∈ R2 : ξ2
1 <

η2

4R2 |ξ |4β or

√
1 − 4R2ξ2

1

η2|ξ |4β
>

1

2

⎫⎬⎭ .

Then Ĝ0 and Ĝ1 obey the following bounds:

(1) For any ξ ∈ S1,

Reλ2 ≤ −1

2
η|ξ |2β, Re λ1 ≤ −1

4
η|ξ |2β,

|Ĝ0| ≤ t e− 1
4 η|ξ |2β t , |Ĝ0| ≤ |ξ |−2βe−Cη|ξ |2β t ,

|Ĝ1| ≤ C e− 1
4 η|ξ |2β t ,

where C > 0 is a constant.
(2) For any ξ ∈ S2,

Reλ2 ≤ −3

4
η|ξ |2β, Re λ1 ≤ − 4R2ξ2

1

3η|ξ |2β
,

|Ĝ0| ≤ 1

η|ξ |2β
e− 1

2 η|ξ |2β t + 1

η|ξ |2β
e
− 4R2ξ2

1
3η|ξ |2β t

,

|Ĝ1| ≤ C e− 1
2 η|ξ |2β t + C e

− 4R2ξ2
1

3η|ξ |2β t
.

Proof. The proof is not difficult. For k ∈ S1, λ1 and λ2 clearly satisfy the bounds specified 
above. The bound for Ĝ0 follows from the mean-value theorem, which implies that there is 
ρ ∈ (Reλ2, Reλ1) such that

|Ĝ0| = teρ t ≤ t e− 1
4 η|ξ |2β t .
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When ξ ∈ S2, the bound for λ2 is obvious. To obtain the bound for λ1, we write λ1 as

λ1 = −1

2
η |ξ |2β

⎛⎝1 −
√

1 − 4R2 ξ2
1

η2|ξ |4β

⎞⎠ = −
2R2ξ2

1
η|ξ |2β

1 +
√

1 − 4R2ξ2
1

η2|ξ |4β

≤ − 4R2ξ2
1

3η|ξ |2β
.

The bounds for |Ĝ0| and |Ĝ1| follow directly from the bounds for λ1 and λ2. This completes the 
proof of Lemma 3.2. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. We compute the L2-norm of ̃u via (1.9),

‖ũ(t)‖2
L2 ≤

∫
|Ĝ0(ξ, t)|2 ξ2

1 |̂̃b0(ξ)|2 dξ + C

∫
|Ĝ0(ξ, t)|2 |ξ |4β |̂̃u0(ξ)|2 dξ

+
∫

|Ĝ1(ξ, t)|2 |̂̃u0(ξ)|2 dξ.

Since Ĝ0(ξ, t) and Ĝ1(ξ, t) behave differently for different ξ , we split each of the summations 
above into two parts and apply Lemma 3.2, which implies∫

|Ĝ0(ξ, t)|2 ξ2
1 |̂̃b0(ξ)|2 dξ

=
∫

ξ∈S1

|Ĝ0(ξ, t)|2 ξ2
1 |̂̃b0(ξ)|2 dξ +

∫
ξ∈S2

|Ĝ0(ξ, t)|2 ξ2
1 |̂̃b0(ξ)|2 dξ

≤ C

∫
|ξ |−4β e−C0|ξ |2β t ξ2

1 |̂̃b0(ξ)|2 dξ + C

∫
|ξ |−4βe

− 4R2ξ2
1

3η|ξ |2β t
ξ2

1 |̂̃b0(ξ)|2 dξ

≤ C (1 + t)
− 2

β
+1 ‖|ξ |−β̂̃b0(ξ)‖2

L∞ + C (1 + t)−1
∫

|ξ |−2β |̂̃b0(k)|2 dξ

≤ C (1 + t)
− 2

β
+1 ‖�−β b̃0‖2

L1 + C (1 + t)−1‖�−β b̃0‖2
L2

≤ C (1 + t)
− 1

β ‖�−βb̃0‖2
L1 + C (1 + t)−1‖�−βb̃0‖2

L2

where we have used β ≤ 1 and the simple fact that ‖|ξ |−β̂̃b0(ξ)‖L∞ ≤ ‖�−βb̃0‖L1 . Similarly,∫
|Ĝ0(ξ, t)|2 |ξ |4β |̂̃u0(ξ)|2 dξ

≤ C

∫
e−C0|ξ |2β t |̂̃u0(ξ)|2 dξ + C

∫
e
− 4R2ξ2

1
3η|ξ |2β t |̂̃u0(ξ)|2 dξ

≤ C (1 + t)
− 1

β ‖�−βũ0‖2
1 + C (1 + t)−1‖�−1ũ0‖2

2 .
L 1 L
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Applying the bounds on Ĝ1 in Lemma 3.2, we have∫
|Ĝ1(ξ, t)|2 |̂̃u0|2 dξ

=
∫

ξ∈S1

|Ĝ1(ξ, t)|2 |̂̃u0|2 dξ +
∫

ξ∈S2

|Ĝ1(ξ, t)|2 |̂̃u0|2 dξ

≤ C

∫
e−C|ξ |2β t |̂̃u0(ξ)|2 dξ + C

∫
e
−C

ξ2
1

|ξ |2β t |̂̃u0(ξ)|2 dξ

≤ C (1 + t)−1 ‖�−βũ0‖2
L2 + C (1 + t)−1 ‖�β�−1

1 ũ0‖2
L2 .

Combining the estimates above, we find

‖ũ(t)‖L2 ≤ C (1 + t)−1/(2β)‖�−β (̃u0, b̃0)‖L1

+C (1 + t)−1/2
(
‖�−1

1 (̃u0, b̃0)‖L2 + ‖�−β (̃u0, b̃0)‖L2 + ‖�β�−1
1 (̃u0, b̃0)‖L2

)
.

The bound for ‖b̃(t)‖L2 is very similar. This completes the proof of Theorem 1.2. �
4. Proof of Theorem 1.3

This section proves Theorem 1.3. We need the following lemma, whose proof can be found 
in [7].

Lemma 4.1. Assume f ∈ L1(0, ∞) is a nonnegative and uniformly continuous function. Then,

f (t) → 0 as t → ∞.

Especially, if f ∈ L1(0, ∞) is nonnegative and satisfies, for a constant C and any 0 ≤ s < t < ∞,

|f (t) − f (s)| ≤ C |t − s|,

then f (t) → 0 as t → ∞.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Dotting (1.2) with (̃u, ̃b) and integrating in time yield

‖ũ(t)‖2
L2 + ‖b̃(t)‖2

L2 + 2η

t∫
0

‖∇b̃(τ )‖2
L2 dτ = ‖ũ0‖2

L2 + ‖b̃0‖2
L2, (4.1)

where we have used the following identities, due to ∇ · ũ = 0 and ∇ · b̃ = 0,
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∫
ũ · ∇ũ · ũ dx = 0,

∫
ũ · ∇b̃ · b̃ dx = 0,∫

b̃ · ∇b̃ · ũ dx +
∫

b̃ · ∇ũ · b̃ dx = 0,

∫
∂x1 b̃ · ũ dx +

∫
∂x1 ũ · b̃ dx = 0.

To estimate the H 1-norm, we recall that ω̃ = ∇ × ũ and j̃ = ∇ × b̃ satisfy

{
∂t ω̃ + ũ · ∇ω̃ = b̃ · ∇ j̃ + ∂x1 j̃ ,

∂t j̃ + ũ · ∇ j̃ = η�j̃ + b̃ · ∇ω̃ + Q(∇ũ,∇b̃) + R∂x1 ω̃,
(4.2)

where

Q(∇ũ,∇b̃) = 2∂1b̃1(∂2ũ1 + ∂1ũ2) − 2∂1ũ1(∂2b̃1 + ∂1b̃2).

A simple energy estimate yields

1

2

d

dt
(‖ω̃‖2

L2 + ‖j̃‖2
L2) + η‖∇ j̃‖2

L2 =
∫

Qj̃ dx

The term on the right can be bounded as follows,

∫
Qj̃ dx ≤ ‖∇ũ‖L2 ‖∇b̃‖L4 ‖j̃‖L4 ≤ C ‖ω̃‖L2 ‖j̃‖L2‖∇ j̃‖L2

≤ η

2
‖∇ j̃‖2

L2 + C ‖j̃‖2
L2‖ω̃‖2

L2 .

Therefore,

d

dt
(‖ω̃‖2

L2 + ‖j̃‖2
L2) + η‖∇ j̃‖2

L2 ≤ C ‖j̃‖2
L2‖ω̃‖2

L2

or

‖ω̃(t)‖2
L2 + ‖j̃ (t)‖2

L2 ≤ (‖ω̃0‖2
L2 + ‖j̃0‖2

L2) e
C

∫ t
0 ‖j̃‖2

L2 dτ

Noticing (4.1), we have

‖ω̃(t)‖2
L2 + ‖j̃ (t)‖2

L2 ≤ (‖ω̃0‖2
L2 + ‖j̃0‖2

L2) e
C (‖ũ0‖2

L2 +‖b̃0‖2
L2 )

.

Since ‖ω̃‖L2 = ‖∇ũ‖L2 and ‖j̃‖L2 = ‖∇b̃‖L2 , we have completed the first part of Theorem 1.3. 
Now we show the time Lipschitz property of ‖b̃(t)‖L2 and ‖∇b̃(t)‖L2 . For any 0 ≤ t1 ≤ t2, we 
take the dot product of ̃b with the equation of ̃b and integrate in t ∈ [t1, t2] to obtain
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‖b̃(t2)‖2
L2 − ‖b̃(t1)‖2

L2 = −2η

t2∫
t1

‖∇b̃(τ )‖2
L2 dτ

+
t2∫

t1

∫
b̃ · ∇ũ · b̃ dx +

t2∫
t1

∫
R∂x1 ũ · b̃ dx.

By Hölder’s inequality and Sobolev’s inequality,

t2∫
t1

∫
b̃ · ∇ũ · b̃ dx dτ ≤

t2∫
t1

‖b̃‖2
L4‖∇ũ‖L2 dτ

≤
t2∫

t1

‖b̃‖L2 ‖∇b̃‖L2‖ω̃‖L2 dτ

≤ η

t2∫
t1

‖∇b̃‖2
L2 dτ + C |t2 − t1| sup

t∈[t1,t2]
‖ω̃(t)‖2

L2 ‖b̃(t)‖2
L2 .

Therefore, ∣∣∣‖b̃(t2)‖2
L2 − ‖b̃(t1)‖2

L2

∣∣∣
≤ η|t2 − t1| sup

t∈[t1,t2]
‖j̃ (t)‖2

L2 + C |t2 − t1| sup
t∈[t1,t2]

‖ω̃(t)‖2
L2‖b̃(t)‖2

L2

+C |t2 − t1| sup
t∈[t1,t2]

‖ω̃(t)‖L2 ‖b̃(t)‖L2 .

Together with the uniform-in-time global bounds for ‖b̃(t)‖L2 , ‖j̃ (t)‖L2 and ‖ω̃(t)‖L2 , the in-
equality above implies the Lipschitz property of ‖b̃(t)‖2

L2 . We now show the uniform continuity 
of ‖j̃ (t)‖2

L2 . It follows from the equation of j̃ that

d

dt
‖j̃ (t)‖2

L2 + 2η‖∇ j̃ (t)‖2
L2 =

∫
b̃ · ∇ω̃j̃ dx +

∫
Qj̃ dx +

∫
R∂x1 ω̃ j̃ dx

For any 0 ≤ t1 ≤ t2, we integrate the equation above in t ∈ [t1, t2] to obtain

‖j̃ (t2)‖2
L2 − ‖j̃ (t1)‖2

L2 = −2η

t2∫
t1

‖∇ j̃ (t)‖2
L2 dt + K1 + K2 + K3, (4.3)

where

K1 =
t2∫ ∫

b̃ · ∇ω̃j̃ dx, K2 =
t2∫ ∫

Qj̃ dx, K3 =
t2∫ ∫

R∂x1 ω̃ j̃ dx.
t1 t1 t1



R. Ji, J. Wu / J. Differential Equations 268 (2020) 1854–1871 1869
K2 can be bounded as before,

|K2| ≤ C

t2∫
t1

‖j̃‖2
L4 ‖ω̃‖L2 dt ≤ η

2

t2∫
t1

‖∇ j̃‖2
L2 dt + C

t2∫
t1

‖j̃‖2
L2 ‖ω‖2

L2 dt.

Integrating by parts and applying Sobolev’s inequality lead to

|K1| ≤
t2∫

t1

‖b̃‖L∞ ‖∇ j̃‖L2 ‖ω̃‖L2 dt.

By Sobolev’s inequality, for 0 < a < 1
2 ,

‖b̃‖L∞ ≤ C‖b̃‖a
L2 ‖∇b̃‖1−2a

L2 ‖∇ j̃‖a
L2 .

Therefore,

|K1| ≤ C

t2∫
t1

‖b̃‖a
L2 ‖∇b̃‖1−2a

L2 ‖∇ j̃‖1+a

L2 ‖ω̃‖L2 dt

≤ η

2

t2∫
t1

‖∇ j̃‖2
L2 dt + C

t2∫
t1

‖ω̃‖
2

1−a

L2 ‖b̃‖
2a

1−a

L2 ‖∇b̃‖2− 2a
1−a

L2 dt.

By integrating by parts, K3 can be bounded by

|K3| ≤ R

t2∫
t1

‖ω̃‖L2‖∇ j̃‖L2 dt ≤ η

2

t2∫
t1

‖∇ j̃‖2
L2 dt + C

t2∫
t1

‖ω̃‖2
L2 dt.

Inserting the estimates for K1, K2 and K3 in (4.3) yields

‖j̃ (t2)‖2
L2 − ‖j̃ (t1)‖2

L2 ≤ −η

2

t2∫
t1

‖∇ j̃‖2
L2 dt

+C|t2 − t1| sup
t∈[t1,t2]

(1 + ‖j̃ (t)‖2
L2)‖ω̃(t)‖2

L2

+C |t2 − t1| sup
t∈[t1,t2]

‖ω̃(t)‖
2

1−a

L2 ‖b̃(t)‖
2a

1−a

L2 ‖∇b̃(t)‖2− 2a
1−a

L2 .

Combining this inequality with the integrability

∞∫
‖j̃ (t)‖2

L2dt ≤ ‖(̃u0, b̃0)‖2
L2
0
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and Lemma 4.1, we can show that, as t → ∞,

‖j̃ (t)‖L2 → 0

By Sobolev’s embedding and the simple fact ‖j̃ (t)‖L2 = ‖∇b̃(t)‖L2 ,

‖b̃(t)‖Lq ≤ C‖b̃(t)‖
2
q

L2 ‖∇b̃(t)‖1− 2
q

L2 → 0.

This completes the proof of Theorem 1.3. �
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