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BOUNDARY CONTROL FOR OPTIMAL MIXING VIA
NAVIER--STOKES FLOWS\ast 

WEIWEI HU\dagger \mathrm{A}\mathrm{N}\mathrm{D} JIAHONG WU\dagger 

Abstract. We discuss the problem of optimal mixing of an inhomogeneous distribution of a
scalar field \theta via an active control of the flow velocity v, governed by the incompressible Navier--
Stokes equations, in an open bounded and connected domain \Omega \subset \BbbR 2. We consider the velocity field
generated by a control input that acts tangentially on the boundary of the domain through the Navier
slip boundary conditions. This problem is motivated by mixing the fluids within a cavity or vessel
by moving the walls or stirring at the boundaries. Our main objective is to design an optimal Navier
slip boundary control that optimizes mixing at a given final time T > 0. Nondissipative scalars,
both passive and active, governed by the transport equation will be addressed. In the absence of
diffusion, transport and mixing occur due to pure advection. This essentially leads to a nonlinear
control problem of a semidissipative system. Sobolev norm for the dual space (H1(\Omega ))\prime of H1(\Omega ) is
adopted to quantify mixing due to the property of weak convergence. The challenge arises from the
vanishing diffusivity and nonlinear coupling of the system, which results in requiring the velocity field

to satisfy
\int T
0 \| \nabla v\| L\infty (\Omega ) d\tau < \infty . We present a rigorous proof to show the existence of an optimal

controller for both passive and active scalars and that the compatibility conditions for initial and
boundary data are not required for Navier slip boundary control. Finally, we establish the first-order
necessary conditions for optimality for both cases by using a variational inequality.
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1. Introduction. Transport and mixing play central roles in many natural phe-
nomena and engineering problems, such as the circulation of the atmosphere and
oceans, the spreading of environmental pollutants, the ventilation in buildings, or
the mixing of chemical substances in combustion. Effectively enhancing mixing has
attracted increasing attention in both academic and industrial communities; see,
e.g., [20, 21, 34, 36, 37, 38, 39, 45, 47]. The current work is concerned with the
problem of optimal mixing of a scalar field via an active control of the incompressible
Navier--Stokes equations. More precisely, we aim at determining an optimal flow ve-
locity with optimal control inputs that optimizes mixing in a two-dimensional open
bounded domain. In particular, nondissipative scalars, both passive and active, gov-
erned by the transport equation will be investigated in this paper.

Optimal mixing and stirring of passive scalar fields due to pure advection has
been widely discussed; see, e.g., [1, 28, 34, 37, 38, 45, 50]. However, the prescribed
constraints were often imposed on the flow fields in order to formulate an optimization
problem. A final time optimal control problem was discussed for mixing in stationary
Stokes flows by Matthew et al. [38]. The flow was assumed to be induced by a finite
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set of force fields that can be controlled in time. Moreover, a fixed value of the control
action was imposed. No dynamics was incorporated for the flow velocity during the
mixing process. Recently, Foures, Caufield, and Schmid [15] considered the case where
the velocity field was governed by Navier--Stokes equations and derived the optimal
initial and boundary conditions to be prescribed for the flow velocity. However, the
Navier--Stokes equations were not controlled in real time.

Motivated by the observation that moving walls accelerate mixing (see, e.g., [17,
18, 19, 46]), we consider the problem of Navier boundary control design to steer the
advection by applying the controls tangentially along the wall. In fact, it is found that
fixed walls with no-slip boundary condition can turn an exponential decay in time into
a power decay due to the presence of separatrices on the walls, which slow down the
whole mixing region [17, 18]. However, this can be overcome by moving the walls
to create closed orbits near the walls, which effectively insulate the central mixing
region from the walls [19, 46]. In our present work, we consider that the velocity field
is generated by the control inputs acting on the domain boundary through Navier slip
boundary conditions, which allow the fluid to slip with resistance on the boundary
[9, 40, 42]. Due to vanishing diffusivity, transport and mixing of the scalars are
determined solely through advection by the nonlocal velocity field. This essentially
leads to a nonlinear control problem of a semidissipative system.

To quantify mixing, a classical measure is the variance of the concentration of
the scalar, which can be related to the L2-norm of the scalar field [12]. However, this
measurement fails in the case of zero diffusivity since it is unable to quantify pure
stirring effects [39]. It can be shown that the scalar field is conserved in terms of
any Lp-norm for 1 \leq p \leq \infty . Recently, the mix-norm and negative Sobolev norms
are adopted to quantify mixing based on ergodic theory, which are sensitive to both
stirring and diffusion [34, 39, 45]. Mathew, Mezi\'c, and Petzold in [39] first showed the
equivalence of the mix-norm to the H - 1/2-norm. In fact, any negative Sobolev norm
H - s for s > 0 can be used as a mix-norm since the bridge that connects negative
Sobolev norms and mixing is the property of weak convergence, as first stated in [34].
To have the negative Sobolev norms well-defined, periodic boundary conditions are
often considered. In our present approach, we consider a general domain for the scalar
field without imposing any additional boundary conditions other than no-penetration
on the velocity field. We replace the negative Sobolev norm by the norm of the dual
space (Hs(\Omega ))\prime of Hs(\Omega ) with s > 0. Very recently, Hu in [23] applied Navier slip
boundary control for enhancing mixing in unsteady Stokes flows at a given final time
T > 0, where (H1(\Omega ))\prime was adopted for qualifying mixing [23]. We shall continue to
use this norm in our current work.

1.1. Mathematical models. Consider a scalar field that is advected by an
incompressible flow in an open bounded and connected domain \Omega \subset \BbbR 2 with a smooth
boundary \Gamma . The transport equation is used to describe the mass distribution or scalar
concentration, where molecular diffusion is assumed to be negligible. Although active
and passive scalars are governed by the same transport equation considered in this
paper, their nature is essentially different. In the case of passive scalars, there is a
one-way coupling between the scalar and the flow: The transported scalar does not
influence the velocity field. The feedback of the scalar field is negligible, and the
velocity determines the properties of the scalar. In contrast, in the case of active
scalars, which, while transported, act on the velocity through local forces (such as
buoyancy), the presence of the feedback couples the transported scalar to the velocity.
The complexity of the two-way coupling between the scalar and the flow presents a
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major challenge in analysis. The understanding of the active transport is far behind
that of the passive counterpart [5]. This motivates the use of case studies of mixing
of passive and active scalars via flow advection. Especially for active scalars, this
work focuses on mixing via the buoyancy-driven flow modeled with the Boussinesq
approximation in the absence of diffusivity. We introduce the following two models
to address the problems in details.

Model I. Consider a passive scalar field advected by an incompressible flow.
The system is governed by

\partial t\theta + v \cdot \nabla \theta = 0(1.1)

\partial tv  - \nu \Delta v + v \cdot \nabla v +\nabla p = 0(1.2)

\nabla \cdot v = 0,(1.3)

where \theta is the mass distribution or scalar concentration, v is the velocity of the
flow, \nu > 0 is the viscosity, and p is the pressure. As a result of one-way coupling,
investigating the optimal control design for the coupled system (1.1)--(1.3) is tied to
understanding the control problems of the Navier--Stokes equations.

Model II. In the case of active scalars, we focus on the transport and mixing
in the buoyancy-driven flow modeled by the Boussinesq approximation with zero
diffusivity in the scalar equation. The system is now governed by

\partial t\theta + v \cdot \nabla \theta = 0(1.4)

\partial tv  - \nu \Delta v + v \cdot \nabla v +\nabla p = \theta e2(1.5)

\nabla \cdot v = 0,(1.6)

where e2 = (0, 1)T is a unit vector in the direction of gravitational acceleration. Be-
cause of the complexity of two-way coupling, whether singularities of \nabla \theta can develop
as the molecular diffusivity vanishes has been a challenging problem in fluid mechan-
ics literature [41]. A particular difficulty if the domain is bounded is the creation of
vorticity on the domain boundary, which requires a careful mathematical treatment
of the nonlinearity and the coupling.

Navier slip boundary conditions are defined as follows [42]:

v \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = g \cdot \tau ,(1.7)

where n and \tau denote the outward unit normal and tangential vectors with respect
to the domain \Omega and \BbbD (v) = (1/2)(\nabla v + (\nabla v)T ). The friction between the fluid and
the wall is proportional to  - v with the positive coefficient of proportionality \alpha . The
nonhomogeneous boundary term g with g \cdot n| \Gamma = 0 is the control input depending on
both space and time, which is employed to generate the velocity field for mixing. The
initial condition is given by

(\theta (0), v(0)) = (\theta 0, v0).(1.8)

Throughout this paper, we use (\cdot , \cdot ) and \langle \cdot , \cdot \rangle , without ambiguity, for the L2-inner
products as well as the duality in the interior of the domain \Omega and on the boundary
\Gamma , respectively.

1.2. Formulation of the optimal control problem. It is widely recognized
that mixing can be enhanced by introducing strong streamwise vortices [7, 16, 48, 49].
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The fundamental idea is to utilize a streamwise vortical structure with its associated
cross-stream circulation to augment the rate of mixing. In fact, when the scalar field
is convected in the velocity field of a vortex, the stretching of the interface between
two fluids of different properties creates two interrelated effects. First, the interfacial
surface area is increased. Second, the magnitude of gradients normal to the interface
is increased. Both effects augment mixing [48]. This naturally motives the study of
vortex-enhanced mixing.

We formulate the optimal control problem as follows: For a given T > 0, find a
control g minimizing the cost functional

J(g) =
1

2
\| \theta (T )\| 2(H1(\Omega ))\prime +

\gamma 

2
\| g\| 2U\mathrm{a}\mathrm{d}

 - \zeta 

2

\int T

0

\| \nabla \times v\| 2L2 dt, (P)

where\nabla \times v = \partial 1v2 - \partial 2v1 stands for the vorticity, \zeta > 0 is the regularization parameter
for vorticity, U\mathrm{a}\mathrm{d} is the set of admissible controls, and \gamma > 0 is the control weight
parameter, which is chosen to establish the relative weight depending on the first and
the third terms; \gamma and \zeta can be adjusted based on specific physical applications. On
the other hand, it is also true that the long-time dynamics may be dominated by
strong coherent vortices that can possibly slow down mixing. Thus, \zeta can be used to
test the sensitivity of mixing rate with respect to vorticity.

The Soblev norm \| \cdot \| (H1(\Omega ))\prime is adopted to quantify the degree of mixedness and
is defined by

\| f\| (Hs(\Omega ))\prime = sup
\phi \in Hs(\Omega )

| (f, \phi )((Hs(\Omega ))\prime ,Hs(\Omega ))| 
\| \phi \| Hs

, f \in (Hs(\Omega ))\prime for s > 0,(1.9)

where (f, \phi )((Hs(\Omega ))\prime ,Hs(\Omega )) =
\int 
\Omega 
f \=\phi dx. We have the Gelfand triple

Hs(\Omega ) \subset L2(\Omega ) \subset (Hs(\Omega ))\prime , s > 0,

with the embeddings being continuous and compact. The spaceHs(\Omega ) may be defined
as the domain of an operator \Lambda s equipped with the norm \| \cdot \| Hs , where \Lambda is self-
adjoint, positive, and unbounded in L2(\Omega ). Correspondingly, the space (Hs(\Omega ))\prime 

can be identified as the domain of \Lambda  - s equipped with the norm \| \cdot \| (Hs(\Omega ))\prime . Thus,
\Lambda 2s \in \scrL (Hs(\Omega ), (Hs(\Omega ))\prime ). We write \| \theta (T )\| (H1(\Omega ))\prime = \| \Lambda  - 1\theta (T )\| L2(\Omega ).

Problem (P) is called well-posed if for any initial condition (\theta 0, v0), there exist a
control g \in U\mathrm{a}\mathrm{d} and the corresponding solution (\theta , v) to the governing system such
that the cost functional J is finite. The choice of U\mathrm{a}\mathrm{d} is influenced by the physical
properties as well as the need to establish the existence of an optimal solution. Note
that boundary control of the velocity field essentially leads to a nonlinear control prob-
lem of the scalar equation. Thus, problem (P) becomes nonconvex. Investigating the
optimal control problem of Model I and Model II is tied to understanding the Navier
slip boundary control problem of the Navier--Stokes equations. However, the nonlinear
coupling creates technical difficulties in studying the existence and uniqueness of an
optimal control. A critical challenge arises in deriving the first-order necessary condi-
tions of optimality. To establish the well-posedness of the optimality system, one needs

supt\in [0,T ] \| \nabla \theta \| L2(\Omega ) <\infty , which in turn demands a priori control on
\int T

0
\| \nabla v\| L\infty (\Omega ) dt

due to zero diffusivity. As a result, the initial condition and control input should be
chosen such that \int T

0

\| \nabla v\| L\infty (\Omega ) dt <\infty .
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This requires a sharp estimate on the state space in order to possibly avoid the
compatibility conditions to come into play, which is particularly difficult in the active
scalar case to establish the global well-posedness in low-regularity spaces. The main
obstacle is because \| \nabla v\| L\infty cannot be bounded by \| v\| H2 using Sobolev embedding
in a two-dimensional domain. In fact, the global well-posedness with zero diffusivity
(or zero viscosity) of the Boussinesq equations has been open until recently [4, 6, 11,
22, 24, 25, 26, 29, 31, 32]. In the case of a bounded domain with no-slip boundary
condition, Lai, Pan, and Zhan [31] proved the existence of a unique global solution
for initial data (\theta 0, v0) \in H3(\Omega ) \times H3(\Omega ) with some extra compatibility conditions
on v0. Hu, Kukavica, and Ziane [25] proved the existence of a unique global solution
for (\theta 0, v0) \in H1(\Omega ) \times H2(\Omega ) with no additional compatibility condition required
on v0 beyond v0| \Gamma = 0. Ju [29] further improved this result and obtained the global
regularity for (\theta 0, v0) \in H1(\Omega )\times H1(\Omega ) by using spectral decomposition analysis. Very
recently, Hu et al. [27] proved the global regularity for (\theta 0, v0) \in L\infty (\Omega )\times H1(\Omega ) with
Navier sip boundary conditions. The last two results indicate that the compatibility
condition for initial and boundary data may not be needed when using the Navier
slip boundary control.

The rest of this paper is organized as follows. To apply the Navier slip boundary
control for generating the incompressible Navier--Stokes flows, we first address the
Stokes problem with nonhomogeneous Navier slip boundary conditions in section 2
and then provide the explicit formulation for the vorticity on the boundary. In section
3, we identify the conditions that the initial and boundary data of the governing
system have to satisfy in order to establish the well-posedness of the optimal control
problem and define the set of admissible controls. In sections 4 and 5, we discuss the
existence of an optimal solution for Model I and Model II, respectively, and then derive
the first-order necessary optimality conditions by employing a variational inequality.
Moreover, since it is not practical to create arbitrarily distributed force fields for
stirring, we consider that the control inputs are finite dimensional. This will lead
to a more transparent optimality system. Furthermore, the compatibility conditions
will not be required; thus, the controls can act on only a portion of the boundary.
However, we do not have any uniqueness results, mainly due to the nonconvexity of J .

In what follows, the symbol c denotes a generic positive constant, which is allowed
to depend on the domain as well as on indicated parameters.

2. Preliminary: Stokes problem with nonhomogeous Navier slip bound-
ary conditions. Consider the Stokes problem with Navier slip boundary conditions

 - \nu \Delta v +\nabla p = 0(2.1)

\nabla \cdot v = 0(2.2)

v \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = g \cdot \tau .(2.3)

To set up the abstract formulation for the velocity field, we define

V s
n (\Omega ) = \{ v \in Hs(\Omega ) : div v = 0, v \cdot n| \Gamma = 0\} , s \geq 0,

V s
n (\Gamma ) = \{ g \in Hs(\Gamma ) : g \cdot n| \Gamma = 0\} , s \geq 0.

The regularity for the Stokes problem with nonhomogeneous slip-type boundary con-
ditions has been well addressed in [2]. To be more specific, the following results are
stated in [2].
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Lemma 2.1. Assume that \Omega is an open bounded and connected domain with bound-
ary \Gamma \in C1,1. Let g \in H - 1/2(\Gamma ). Then there exists the pressure unique up to a
constant such that

\| v\| 2H1 + \| p\| 2L2 \leq c\| g\| 2H - 1/2(\Gamma ).(2.4)

Moreover, if \Gamma \in C2,1 and g \in V
1/2
n (\Gamma ), then (v, p) \in V 2

n (\Omega )\times H1(\Omega ) and

\| v\| 2H2 + \| p\| 2H1 \leq c\| g\| 2H1/2(\Gamma ).(2.5)

To understand the vorticity on the boundary, we introduce the following lemmas
and provide the complete proofs for the convenience of the reader. Some components
can be found in [8, 27, 30].

Lemma 2.2. Let \Omega \subset \BbbR 2 be an open bounded and connected domain with boundary
\Gamma \in C2.

(1) Assume v \in C1(\Omega ) with v \cdot n = 0 on \partial \Omega . Writing \tau \cdot \nabla v \cdot n = \tau k\partial kvj nj with
Einstein's summation convention, we have

(2.6) \tau \cdot \nabla v \cdot n+ \kappa v \cdot \tau = 0 on \Gamma ,

where \kappa denotes the curvature of \Gamma . If each component of \Gamma is parameterized
by arc length s, then \partial n

\partial \tau = dn
ds = \kappa \tau .

(2) Assume that v \in C1(\Omega ) satisfies the Navier boundary conditions

(2.7) v \cdot n = 0 and 2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau = g \cdot \tau on \Gamma .

Then

2n \cdot \BbbD (v) \cdot \tau + 2\kappa (v \cdot \tau ) = \omega on \Gamma (2.8)

and

\omega =
\Bigl( 
2\kappa  - \alpha 

\nu 

\Bigr) 
(v \cdot \tau ) + 1

\nu 
g \cdot \tau on \Gamma .(2.9)

Especially, \omega = g \cdot \tau on \Gamma if and only if \kappa = \alpha 
2 .

Proof of Lemma 2.2. (1) Since v \cdot n = 0 on \Gamma , the directional derivative of v \cdot n
along \Gamma is zero, that is,

0 =
\partial (v \cdot n)
\partial \tau 

=
\partial v

\partial \tau 
\cdot n+ v \cdot \partial n

\partial \tau 
= 0 or \tau \cdot \nabla v \cdot n+ v \cdot (\tau \cdot \nabla n) = 0 on \Gamma .

Moreover, v=(v \cdot n)n+(v \cdot \tau )\tau =(v \cdot \tau )\tau on \Gamma . Therefore, due to \kappa = \tau \cdot \nabla n \cdot \tau , we get

\tau \cdot \nabla v \cdot n+ (\tau \cdot \nabla n \cdot \tau ) (v \cdot \tau ) = 0 or \tau \cdot \nabla v \cdot n+ \kappa v \cdot \tau = 0 on \Gamma .

(2) To prove (2.8), we recall 2\BbbD (v) = \nabla v + (\nabla v)T and use (2.6) to get

n \cdot \nabla v \cdot \tau = 2n \cdot \BbbD (v) \cdot \tau  - n \cdot (\nabla v)T \cdot \tau 
= 2n \cdot \BbbD (v) \cdot \tau  - \tau \cdot \nabla v \cdot n
= 2n \cdot \BbbD (v) \cdot \tau + \kappa (v \cdot \tau ).(2.10)

On the other hand,

\nabla v = \BbbD (v) +
1

2

\bigl( 
\nabla u - (\nabla v)T

\bigr) 
= \BbbD (v) +

1

2

\biggl( 
0  - \omega 
\omega 0

\biggr) 
.



2774 WEIWEI HU AND JIAHONG WU

Thus,

n \cdot \nabla v \cdot \tau = n \cdot \BbbD (v) \cdot \tau + n \cdot 1
2

\biggl( 
0  - \omega 
\omega 0

\biggr) 
\cdot \tau 

= n \cdot \BbbD (v) \cdot \tau + \omega 

2
( - \tau 1n2 + n1\tau 2)

= n \cdot \BbbD (v) \cdot \tau + \omega 

2
,(2.11)

where we used  - \tau 1n2+n1\tau 2 = \tau 21 + \tau 22 = 1. Combining (2.10) with (2.11) gives (2.8).
As a result, (2.9) holds immediately from (2.7)--(2.8). This completes the proof.

As we shall see in the following sections, n \cdot \nabla v \cdot \tau plays a key role in dealing
with the dissipation, and the identities stated here will be very helpful. Notice that
\tau \cdot \nabla v \cdot n is different from n \cdot \nabla v \cdot \tau in general.

Lemma 2.3. Assume that \Omega obeys the same conditions as in Lemma 2.2. Let
v, \psi \in C2(\Omega ) \cap C1(\Omega ) satisfying the Navier boundary conditions (2.7). Then

\int 
\Omega 

\Delta v \cdot \psi dx =  - 2

\int 
\Omega 

\BbbD (v) \cdot \BbbD (\psi ) dx+

\int 
\Gamma 

\biggl( 
1

\nu 
g \cdot \tau 

\biggr) 
(\psi \cdot \tau ) dx - 

\int 
\Gamma 

\alpha 

\nu 
(v \cdot \tau )(\psi \cdot \tau ) dx.

(2.12)

In particular, when \psi = v, we have\int 
\Omega 

\Delta v \cdot v dx =  - 2

\int 
\Omega 

| \BbbD (v)| 2 dx+

\int 
\Gamma 

\biggl( 
1

\nu 
g \cdot \tau 

\biggr) 
(v \cdot \tau ) dx - 

\int 
\Gamma 

\alpha 

\nu 
(v \cdot \tau )2 dx.

Proof of Lemma 2.3. First, we know that\int 
\Omega 

\Delta v \cdot \psi dx = - 
\int 
\Omega 

\nabla v \cdot \nabla \psi dx+

\int 
\Gamma 

n \cdot \nabla v \cdot \psi dx.

Since v \cdot n = 0 on \Gamma , we write \psi = (\psi \cdot \tau )\tau . By Lemma 2.2, we have\int 
\Gamma 

n \cdot \nabla v \cdot \psi dx =

\int 
\Gamma 

n \cdot \nabla v \cdot \tau (\psi \cdot \tau ) dx

=

\int 
\Gamma 

\biggl( 
1

\nu 
g \cdot \tau 

\biggr) 
(\psi \cdot \tau ) dx+

\int 
\Gamma 

\Bigl( 
\kappa  - \alpha 

\nu 

\Bigr) 
(v \cdot \tau )(\psi \cdot \tau ) dx.

Therefore,

\int 
\Omega 

\Delta v \cdot \psi dx =  - 
\int 
\Omega 

\nabla v \cdot \nabla \psi dx+

\int 
\Gamma 

\biggl( 
1

\nu 
g \cdot \tau 

\biggr) 
(\psi \cdot \tau ) dx+

\int 
\Gamma 

\Bigl( 
\kappa  - \alpha 

\nu 

\Bigr) 
(v \cdot \tau )(\psi \cdot \tau ) dx.

(2.13)

Next, we write out the terms in \BbbD (v) \cdot \BbbD (\psi ) using Einstein's summation convention:

2

\int 
\Omega 

\BbbD (v) \cdot \BbbD (\psi ) dx =

\int 
\Omega 

\bigl( 
\nabla v \cdot \nabla \psi +\nabla v \cdot (\nabla \psi )T

\bigr) 
dx

=

\int 
\Omega 

\nabla v \cdot \nabla \psi dx+

\int 
\Omega 

\partial jvk\partial k\psi j dx

=

\int 
\Omega 

\nabla v \cdot \nabla \psi dx+

\int 
\Omega 

[\partial k(\partial jvk\psi j) - \partial j\partial kvk\psi j ] dx

=

\int 
\Omega 

\nabla v \cdot \nabla \psi dx+

\int 
\Gamma 

nk\partial jvk\psi j dx =

\int 
\Omega 

\nabla v \cdot \nabla \psi dx+

\int 
\Gamma 

\psi \cdot \nabla v \cdot ndx,
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where \partial j\partial kvk\psi j = 0 due to the divergence-free condition. Writing \psi = (\psi \cdot \tau )\tau and
applying Lemma 2.2, we have

2

\int 
\Omega 

\BbbD (v) \cdot \BbbD (\psi ) dx =

\int 
\Omega 

\nabla v \cdot \nabla \psi dx - \kappa 

\int 
\Gamma 

(v \cdot \tau )(\psi \cdot \tau ) dx.(2.14)

Combining (2.13) and (2.14) yields (2.12). This completes the proof of Lemma 2.3.

We now introduce the Stokes operator associated with Navier slip boundary con-
ditions and identify the domains of its fractional powers. With the help of Lemmas
2.2--2.3, we define the bilinear form

a0(v, \psi ) = 2(\BbbD (v),\BbbD (\psi )) +
\alpha 

\nu 
\langle v, \psi \rangle , v, \psi \in V 1

n (\Omega ).

By Korn and Poincare's inequalities and the trace theorem, it is easy to check that

c1\| v\| 2H1 \leq a0(v, v) \leq c2\| v\| 2H1

for some constants c1, c2 > 0. Thus, a0(\cdot , \cdot ) is H1-coercive. Define the operator
A : V 1

n (\Omega ) \rightarrow (V 1
n (\Omega ))

\prime by

(Av, \psi ) = a0(v, \psi ).

The Lax--Milgram theorem implies that A \in \scrL (V 1
n (\Omega ), (V

1
n (\Omega ))

\prime ). This also allows us
to identify A as an operator acting on V 0

n (\Omega ) with the domain

D(A) = \{ v \in V 1
n (\Omega ): \psi \mapsto \rightarrow a0(v, \psi ) is L

2-continuous\} .

In fact, by (2.12), A =  - \BbbP \Delta is the Stokes operator associated with the Navier slip
boundary conditions, where \BbbP is the Leray projector on L2(\Omega ) on the space V 0

n (\Omega )
[44, p. 13]. Note that A is self-adjoint and strictly positive, and hence the fractal
powers of A are well-defined. Moreover, as proven in Lemma 2.2 of [8], operator A
has a countable set of positive eigenvalues \{ \lambda j\} with \lambda j \rightarrow +\infty as j \rightarrow +\infty . The
corresponding eigenfunctions \{ \psi (j)\} \subset H3(\Omega ) form an orthonormal basis for V 0

n (\Omega )
and satisfy

\psi (j) \cdot n = 0 and 2\nu n \cdot \BbbD (\psi (j)) \cdot \tau + \alpha \psi (j) \cdot \tau = 0.

Therefore, we have, for \alpha \geq 0,

A\sigma v =

\infty \sum 
j=1

\lambda \sigma j (v, \psi 
(j))\psi (j), v \in D(A\sigma ),

with domain

D(A\sigma ) =

\left\{   v \in V 0
n (\Omega ):

\infty \sum 
j=1

\lambda 2\sigma j | (v, \psi (j))| 2 <\infty 

\right\}   .(2.15)

Furthermore, the Poincar\'e inequality holds:

\| A\alpha v\| L2 \leq \lambda \alpha  - \beta 
1 \| A\beta v\| L2 , 0 \leq \alpha \leq \beta \leq 1.(2.16)

The domain of A\sigma with 0 \leq \sigma \leq 1 defined in (2.15) can be made more explicit
and identified with Sobolev spaces. We note that the domain of A\sigma with 0 \leq \sigma < 3/4
is different from that of A\sigma with 3/4 < \sigma \leq 1. The details are given by the following
proposition.
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Proposition 2.4. Consider the Stokes problem with Navier slip boundary
conditions

\nu Av = 0(2.17)

\nabla \cdot v = 0(2.18)

v \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = g \cdot \tau .(2.19)

The domains of A\sigma for 0 \leq \sigma \leq 1 can be identified as follows:

D(A\sigma ) = V 2\sigma 
n (\Omega ), 0 \leq \sigma <

3

4
, and

D(A\sigma ) = \{ v \in V 2\sigma 
n (\Omega ): (2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = 0\} , 3

4
< \sigma \leq 1.

Proof of Proposition 2.4. Following the approach in Lemma 2.2 of [8], we intro-
duce \omega (j) = \nabla \times \psi (j), where \psi (j) is the eigenfunction of A associated with eigenvalue
\lambda j . Then with the help of (2.9) and setting g = 0, we know that \omega (j) is a solution to

the following Dirichlet problem for the Laplacian \~A =  - \Delta :

\~A\omega (j) = \lambda j\omega 
(j)(2.20)

\omega (j)| \Gamma =
\Bigl( 
2\kappa  - \alpha 

\nu 

\Bigr) 
(\psi (j) \cdot \tau ).(2.21)

Moreover, \{ \omega (j)\} is a basis for L2(\Omega ) and an orthonormal basis for H - 1(\Omega ), the dual
space of H1

0 (\Omega ). In other words, \{ \~A - 1/2\omega (j)\} forms an orthonormal basis for L2(\Omega ).
By [33, 35], we can identify D( \~A\sigma ) for 0 \leq \sigma \leq 1, the domains of the fractional powers
of the Laplacian with Dirichlet boundary conditions, as follows:

D( \~A\sigma ) = H2\sigma (\Omega ), 0 \leq \sigma <
1

4
, and

(2.22)

D( \~A\sigma ) =
\Bigl\{ 
\omega \in H2\sigma (\Omega ):

\Bigl( 
\omega  - 

\Bigl( 
2\kappa  - \alpha 

\nu 

\Bigr) 
(v \cdot \tau )

\Bigr) 
| \Gamma =0 with \omega =\nabla \times v

\Bigr\} 
,

1

4
< \sigma \leq 1.

(2.23)

For the eigenfunctions \psi (i) and \psi (j) of A, we have

| (\psi (i), \psi (j))| \leq c| ( \~A - 1/2(\nabla \times \psi (i)), \~A - 1/2(\nabla \times \psi (j)))| 

= c\lambda 
 - 1/2
i | (\omega (i), \~A - 1/2\omega (j))| .

Thus, for every v \in D(A\sigma ), we have

\infty \sum 
j=1

\lambda 2\sigma j | (v, \psi (j))| 2 \leq c

\infty \sum 
j=1

\lambda 2\sigma j \lambda  - 1
i | (\omega , \~A - 1/2\omega (j))| 2,

where \omega = \nabla \times v. Therefore, according to (2.22), we derive

D(A\sigma ) = V 2\sigma 
n (\Omega ) for 2\sigma  - 1 <

1

2
or \sigma <

3

4
.

Moreover, based on (2.23) and (2.8), we rewrite (\omega  - (2\kappa  - \alpha 
\nu )(v \cdot \tau ))| \Gamma = 0 as (2\nu n \cdot 

\BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = 0; then we obtain

D(A\sigma ) = \{ v \in V 2\sigma 
n (\Omega ): (2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = 0\} for

3

4
< \sigma \leq 1.

This completes the proof.



BOUNDARY CONTROL FOR OPTIMAL MIXING 2777

It immediately follows for v \in V 1
n (\Omega ) that

c1\| A1/2v\| L2 \leq \| \BbbD (v)\| L2 \leq c2\| A1/2v\| L2 .(2.24)

To handle the nonhomogeneous boundary conditions, we define the Navier slip bound-
ary operator N : L2(\Gamma ) \rightarrow V 0

n (\Omega ) by

Ng = v \Leftarrow \Rightarrow a0(v, \psi ) =

\biggl\langle 
1

\nu 
g, \psi 

\biggr\rangle 
, \psi \in V 1

n (\Omega ).

By (2.12) in Lemma 2.3, we know that v = Ng satisfies the Stokes problem (2.17)--
(2.19). Furthermore, by Lemma 2.1 and Proposition 2.4, we have

N : L2(\Gamma ) \rightarrow V 3/2
n (\Omega ) \subset V 3/2 - \epsilon 

n (\Omega ) = \scrD (A3/4 - \epsilon /2), \epsilon > 0.

This implies that

A3/4 - \epsilon /2N \in \scrL (L2(\Gamma ), V 0
n (\Omega )).(2.25)

3. Well-posedness of the optimal control problem and identification of
the set of admissible controls. To establish the well-posedness of problem (P),
we first derive the conditions such that \theta \in C([0, T ]; (H1(\Omega ))\prime ). For this purpose, we
recall some basic properties of the scalar equation. Taking the inner product of (1.1)
with \theta and using divergence-free condition and boundary condition (1.7) yields

1

2

d

dt
\| \theta \| 2L2 =  - 

\int 
\Omega 

(v \cdot \nabla \theta )\theta dx =  - 1

2

\int 
\Omega 

v \cdot \nabla (\theta 2) dx

=
1

2

\int 
\Omega 

(\nabla \cdot v)\theta 2 dx - 
\int 
\Gamma 

(v \cdot n)\theta dx = 0,

from where

\| \theta (t)\| L2 = \| \theta 0\| L2 , t \geq 0.(3.1)

In fact, it can be verified that any Lp-norm of \theta is conserved, i.e.,

\| \theta (t)\| Lp(\Omega ) = \| \theta 0\| Lp(\Omega ), t \geq 0, p \in [1,\infty ],(3.2)

if no-penetration boundary condition v \cdot n| \Gamma = 0 is imposed on the velocity field [3, 25].
Here n denotes the outward unit normal vector with respect to the domain \Omega . To
have \theta \in C([0, T ]; (H1(\Omega ))\prime ), it suffices to have v \cdot \nabla \theta \in L1(0, T ; (H1(\Omega ))\prime ) in terms
of (1.1). By using (1.9) and (3.2), we get

\| v \cdot \nabla \theta \| (H1(\Omega ))\prime = sup
\phi \in H1(\Omega )

| 
\int 
\Omega 
v \cdot \nabla \theta \phi dx| 
\| \phi \| H1

\leq sup
\phi \in H1(\Omega )

| 
\int 
\Omega 
v \cdot \nabla (\theta \phi ) dx - 

\int 
\Omega 
v\theta \cdot \nabla \phi dx| 

\| \phi \| H1

\leq c sup
\phi \in H1(\Omega )

\| v\| L2\| \theta \| L\infty \| \phi \| H1

\| \phi \| H1

= c\| v\| L2\| \theta \| L\infty 

= c\| v\| L2\| \theta 0\| L\infty ,

which yields \int T

0

\| v \cdot \nabla \theta \| (H1(\Omega ))\prime dt \leq c

\int T

0

\| v\| L2 dt \| \theta 0\| L\infty dt.
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Next, we identify the initial and boundary conditions of the velocity field such

that
\int T

0
\| \nabla \times v\| 2L2 dt < \infty . We first consider the passive scalar case described by

Model I. The active scalar case will be handled similarly in section 5. With the help
of Lemma 2.2, we know that vorticity \omega = \nabla \times v satisfies

\partial t\omega  - \nu \Delta \omega + v \cdot \nabla \omega = 0(3.3)

\omega | \Gamma =
\Bigl( 
2\kappa  - \alpha 

\nu 

\Bigr) 
(v \cdot \tau ) + 1

\nu 
g \cdot \tau .(3.4)

However, instead of estimating
\int T

0
\| \nabla \times v\| 2L2 dt based on (3.3)--(3.4), we use the

fact that
\int T

0
\| \nabla \times v\| 2L2 dt \leq 

\int T

0
\| \nabla v\| 2L2 dt and establish an a priori estimate on

v. Applying the L2-estimate to the velocity equation (1.2) and then making use of
Poincar\'e inequality (2.16) and Lemma 2.3 yields

1

2

d\| v\| 2L2

dt
+ \nu \| \BbbD v\| 2L2 + \alpha \| v\| 2L2(\Gamma ) = \langle g, v\rangle \leq \| g\| L2(\Gamma )\| v\| L2(\Gamma )

\leq c\| g\| L2(\Gamma )\| v\| H1/2 \leq c\lambda 
 - 1/4

1 \| g\| L2(\Gamma )\| A1/2v\| L2 .

Using (2.24), we get

1

2

d\| v\| 2L2

dt
+ c\nu \| A1/2v\| 2L2 + \alpha \| v\| 2L2(\Gamma ) \leq c\lambda 

 - 1/2

1 \| g\| 2L2(\Gamma ) +
c\nu 

2
\| A1/2v\| 2L2 .

Thus,

d\| v\| 2L2

dt
+ c\nu \| A1/2v\| 2L2 + 2\alpha \| v\| 2L2(\Gamma ) \leq c\lambda 

 - 1/2

1 \| g\| 2L2(\Gamma ),(3.5)

which implies

d\| v\| 2L2

dt
+ c\nu \lambda 1\| v\| 2L2 + 2\alpha \| v\| 2L2(\Gamma ) \leq c\lambda 

 - 1/2

1 \| g\| 2L2(\Gamma ).

Assume for every T > 0 that

sup
t\in [0,T ]

\| g\| L2(\Gamma ) \leq M1(3.6)

for some M1 > 0. Further, we may assume without loss of generality that

\| v0\| L2 \leq M0 = c

\Biggl( 
\lambda 

 - 3/2

1

\nu 

\Biggr) 1/2

M1;

then

sup
t\in [0,T ]

\| v\| L2(\Omega ) \leq M0(3.7)

and \int T

0

\| v\| 2L2 dt \leq c

\Biggl( \int T

0

\| g\| 2L2(\Gamma ) dt+M0

\Biggr) 
,(3.8)

while (3.5) gives \int t+1

t

\| A1/2v\| 2L2 d\tau \leq C(M0,M1).
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This also indicates that\int T

0

\| \nabla \times v\| 2L2 dt \leq c

\int T

0

\| A1/2v\| 2L2 dt \leq c(\| g\| 2L2(0,T ;L2(\Gamma )) + \| v0\| 2L2).(3.9)

Thus, J is bounded for g \in L2(0, T ;V 0
n (\Gamma )) and v0 \in V 0

n (\Omega ).
We now determine the initial and boundary conditions such that the G\^ateaux

derivative of J with respect to the control input g is well-defined. To this end, we
first establish the well-posedness of the G\^ateaux derivative of \theta with respect to g.
This lemma was presented in [23]. To be self-contained, we provide a complete proof.

Lemma 3.1. For given \theta 0 \in H1(\Omega ), v and y satisfying\int T

0

\| \nabla v\| L\infty dt <\infty and

\int T

0

\| y\| L\infty dt <\infty ,(3.10)

there exists a unique solution to the linear transport problem

\partial z

\partial t
+ y \cdot \nabla \theta + v \cdot \nabla z = 0(3.11)

z(0) = 0,(3.12)

and z \in L\infty (0, T ;L2(\Omega )), where \theta satisfies (1.1) and \theta (0) = \theta 0.

Proof of Lemma 3.1. To derive the well-posedness of (3.11)--(3.12), it suffices to
show that y \cdot \nabla \theta \in L1(0, T ;L2(\Omega )) [13]. Note that for \theta 0 \in H1(\Omega ) and v satisfying
(3.10), there exists a unique solution \theta \in L\infty (0, T ;H1(\Omega )) satisfying (1.1) and \theta (0) =
\theta 0. In fact, as shown in [25], applying \nabla to the density equation (1.1) and taking the
inner product with \nabla \theta yields

1

2

d

dt
\| \nabla \theta \| 2L2 =  - 

\int 
\Omega 

\partial j(vi\partial i\theta )\partial j\theta dx =  - 
\int 
\Omega 

\partial jvi\partial i\theta \partial j\theta dx - 1

2

\int 
\Omega 

vi\partial i(\partial j\theta \partial j\theta ) dx

=  - 
\int 
\Omega 

\partial jvi\partial i\theta \partial j\theta dx+
1

2

\int 
\Omega 

\partial ivi\partial j\theta \partial j\theta dx - 1

2

\int 
\Gamma 

vini\partial j\theta \partial j\theta dx

=  - 
\int 
\Omega 

\partial jvi\partial i\theta \partial j\theta dx \leq \| \nabla v\| L\infty \| \nabla \theta \| 2L2 .

For \theta 0 \in H1(\Omega ), using the Gronwall inequality and (3.10) gives

sup
t\in [0,T ]

\| \nabla \theta \| L2 \leq c\| \nabla \theta 0\| L2e
\int T
0

\| \nabla v\| L\infty dt <\infty .(3.13)

Thus, by (3.10) and (3.13), we obtain\int T

0

\| y \cdot \nabla \theta \| L2 dt \leq 
\int T

0

\| y\| L\infty \| \nabla \theta \| L2 dt

\leq \| y\| L1(0,T ;L\infty (\Omega ))\| \nabla \theta \| L\infty (0,T ;L2(\Omega )) <\infty .(3.14)

To show that z \in L\infty (0, T ;L2(\Omega )), we take inner product of (3.11) with z and obtain

1

2

d\| z\| 2L2

dt
=  - 

\int 
\Omega 

(y \cdot \nabla \theta )z dx - 
\int 
\Omega 

(v \cdot \nabla z)z dx \leq \| y\| L\infty \| \nabla \theta \| L2\| z\| L2 .

By the Gronwall inequality and (3.14), we get

sup
t\in [0,T ]

\| z\| L2 \leq c

\int T

0

\| y\| L\infty \| \nabla \theta \| L2 dt <\infty .

This completes the proof.
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As we see in Lemma 3.1, to derive the G\^ateaux derivative of \theta with respect g, it
is crucial to identify the initial and boundary conditions of the velocity field such that\int T

0

\| \nabla v\| L\infty dt <\infty .(3.15)

This indicates that to establish an a priori estimate (3.15), we need the time regularity
of g. For computational convenience, we consider the first derivative \partial g/\partial t rather than
the lower-order fractional time derivative in the cost functional.

4. Case I: Optimal mixing of a passive scalar via Navier--Stokes flow.
In this section, we focus on the passive scalar case governed by Model I. We first
introduce the set of admissible controls and then prove the existence of an optimal
control. Using a variational inequality, we derive the first-order necessary conditions
of optimality and establish its well-posedness.

4.1. Well-posedness of the Navier--Stokes equations with nonhomoge-
neous Navier slip boundary conditions. Due to one-way coupling, it is critical
to understand the problem of Navier slip boundary control for Navier--Stokes equa-
tions. To have (3.15) satisfied without going to the state spaces of high regularity, we
provide a sharp estimate based on the special decomposition analysis used in [29].

Define the bilinear operator B : V 1
n (\Omega ) \rightarrow (V 1

n (\Omega ))
\prime by

B(v, w) = \BbbP (v \cdot \nabla w) \forall v, w \in V 1
n (\Omega ).

We set

Uad =

\biggl\{ 
g \in L2(0, T ;V 1/2+\epsilon 

n (\Gamma )) :
\partial g

\partial t
\in L2(0, T ;V 0

n (\Gamma ))

\biggr\} 
, \epsilon > 0,(4.1)

equipped with the norm

\| g\| Uad
= \| g\| 

L2(0,T ;V
1/2+\epsilon 
n (\Gamma ))

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial g\partial t
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(0,T ;V 0

n (\Gamma ))

.(4.2)

Theorem 4.1. Assume that v0 \in V 1
n (\Omega ) and g \in Uad with \| v0\| H1 \leq M0 and

\| g\| Uad
\leq M1, where M0,M1 > 0 are arbitrary. Then there exists a unique global

solution v such that v \in L\infty (0,\infty );V 1
n (\Omega )) \cap L2

loc(0,\infty );V 2
n (\Omega )). Moreover, for each

T > 0, we have \int T

0

\| \nabla v\| L\infty dt \leq C(M0,M1, T ).

To deal with the nonhomogeneous boundary conditions, we first make a change
of variable. Let w = v  - Ng. Then

\partial w

\partial t
= \nu \Delta w  - w \cdot \nabla (Ng) - (Ng) \cdot \nabla w  - w \cdot \nabla w  - \nabla p

 - (Ng) \cdot \nabla (Ng) - \partial (Ng)

\partial t
(4.3)

\nabla \cdot w = 0(4.4)

with the Navier slip boundary conditions

w \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (v) \cdot \tau + \alpha v \cdot \tau )| \Gamma = 0(4.5)

and initial condition

w(0) = v0  - Ng(0).(4.6)
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Employing the similar idea in [29], we define the spectral projection operators
\{ Pm\} \infty m=1 as

P1v =
\sum 
\lambda j<2

(v, \psi (j))\psi (j), Pmv =
\sum 

2m - 1\leq \lambda j<2m

(v, \psi (j))\psi (j), m \geq 2.

Thus,

2(m - 1)s\| Pmv\| 2 \leq \| PmA
sv\| 2 = \| AsPmv\| \leq 2ms\| Pmv\| 2, m \geq 1, s \geq 0.(4.7)

We first introduce the following lemma to address the regularity issue of the
translated system (4.3)--(4.6).

Lemma 4.2. Assume that w0 \in V 1
n (\Omega ) and g \in H1(0, T ;V

1/2
n (\Gamma )) with \| w0\| H1 \leq 

\| v0\| H1 + \| Ng(0)\| H1 and

\| g\| 
H1(0,T ;V

1/2
n (\Gamma ))

= \| g\| 
L2(0,T ;V

1/2
n (\Gamma ))

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial g\partial t
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(0,T ;V 0

n (\Gamma ))

\leq M1,(4.8)

where M1 > 0 is arbitrary. Then there exists a unique global solution w such that

w \in L\infty (0,\infty ;V 1
n (\Omega )) \cap L2

loc(0,\infty ;V 2
n (\Omega )).

Moreover, for each T > 0, we have\int T

0

\| \nabla w(t)\| L\infty dt \leq C(M0,M1, T ).

Proof of Lemma 4.2. By (2.25), we have N \in \scrL (L2(\Gamma ), V 0
n (\Gamma )). Further, due to

(3.6)--(3.8), it is clear that

sup
t\in [0,T ]

\| w\| L2 \leq sup
t\in [0,T ]

\| v\| L2 + sup
t\in [0,T ]

\| Ng\| L2 \leq C(M0,M1)(4.9)

\int T

0

\| w\| 2L2 dt \leq 2

\int T

0

\| v\| 2L2 dt+ 2

\int T

0

\| Ng\| 2L2 dt \leq C(M0,M1),(4.10)

and \int t+1

t

\| A1/2w\| L2 d\tau \leq 
\int t+1

t

\| A1/2v\| L2 d\tau +

\int t+1

t

\| A1/2Ng\| L2 d\tau 

\leq C(M0,M1).(4.11)

To estimate \| \nabla w(t)\| L\infty , we recall Agmon's inequality that for w \in D(A),

\| \nabla Pmw\| \infty \leq c\| \nabla Pmw\| 1/2L2 \| A\nabla Pmw\| 1/2L2 \leq c2m/2\| \nabla Pmw\| L2

= c2m/2\| A1/2Pmw\| L2 \leq c2m\| Pmw\| L2 ,(4.12)

where

(PmAw,Pmw) =
\sum 

2m - 1\leq \lambda j<2m

\lambda j | (w,\psi (j))| 2 \geq 2m - 1\| Pmw\| 2L2 \forall m \geq 1.(4.13)

Applying Pm to (4.3) and then taking the inner product with Pmv yields

1

2

d

dt
\| Pmw\| 2L2 + \nu (PmAw,Pmw)

= (Pm\BbbP ( - w \cdot \nabla (Ng) - (Ng) \cdot \nabla w  - w \cdot \nabla w  - (Ng) \cdot \nabla (Ng)), Pmw)

 - 
\biggl( 
Pm\BbbP 

\partial (Ng)

\partial t
, Pmw

\biggr) 
.
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According to (4.13),

d

dt
\| Pmw\| L2 + 2m - 1\nu \| Pmw\| L2

\leq \| Pm\BbbP ( - w \cdot \nabla (Ng) - (Ng) \cdot \nabla w  - w \cdot \nabla w  - (Ng) \cdot \nabla (Ng))\| L2

+ \| Pm\BbbP 
\partial (Ng)

\partial t
\| 2.(4.14)

Let

I =  - w \cdot \nabla (Ng) - (Ng) \cdot \nabla w  - w \cdot \nabla w  - (Ng) \cdot \nabla (Ng).

Integrating with respect to t on both sides of (4.14) gives

2\| Pmw\| 2 +
\int T

0

2m\nu \| Pmw\| L2 dt \leq 2\| Pmw0\| 2 + 2

\int T

0

\| Pm\BbbP I\| L2 dt

+ 2

\int T

0

\| PmN \.g\| L2 dt.(4.15)

Multiplying (4.15) by 2
m
2 and using (4.7), we get\int T

0

2m+m
2 \nu \| Pmw\| L2 dt \leq c\| A1/2Pmw0\| 2 + c

\int T

0

\| A1/2Pm\BbbP I\| L2 dt

+ c

\int T

0

\| A1/2PmN \.g\| L2 dt.(4.16)

Squaring both sides of (4.16) and summing up with respect to m yields

\infty \sum 
m=1

\Biggl( \int T

0

2m+m
2 \nu \| Pmw\| L2 dt

\Biggr) 2

\leq c

\infty \sum 
m=1

\| A1/2Pmw0\| 22

+ c

\infty \sum 
m=1

\Biggl( \int T

0

\| A1/2Pm\BbbP I\| 2 dt

\Biggr) 2

+ c

\infty \sum 
m=1

\Biggl( \int T

0

\| A1/2PmN \.g\| L2 dt

\Biggr) 2

= c\| A1/2w0\| 22 + c

\infty \sum 
m=1

\Biggl( \int T

0

\| A1/2Pm\BbbP I\| 2 dt

\Biggr) 2

+ c

\infty \sum 
m=1

\Biggl( \int T

0

\| A1/2PmN \.g\| L2 dt

\Biggr) 2

.

Next, taking the square root of the above inequality follows:\left[  \infty \sum 
m=1

\Biggl( \int T

0

2m+m
2 \nu \| Pmw\| L2 dt

\Biggr) 2
\right]  1/2

\leq c\| A1/2w0\| L2

+ c

\left[  \infty \sum 
m=1

\Biggl( \int T

0

\| A1/2Pm\BbbP I\| L2 dt

\Biggr) 2
\right]  1/2

+ c

\left[  \infty \sum 
m=1

\Biggl( \int T

0

\| A1/2PmN \.g\| L2 dt

\Biggr) 2
\right]  1/2

\leq c\| A1/2w0\| L2+c

\int T

0

\Biggl( \infty \sum 
m=1

\| A1/2Pm\BbbP I\| 22

\Biggr) 1/2

dt+ c

\int T

0

\Biggl( \infty \sum 
m=1

\| A1/2PmN \.g\| 2L2

\Biggr) 1/2
dt

\leq c\| A1/2w0\| L2 + c

\int T

0

\| A1/2\BbbP I\| L2 dt+ c

\int T

0

\| A1/2N \.g\| L2 dt.

(4.17)
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Therefore, by (4.12) and (4.17), we have

\nu 

\int T

0

\| \nabla w\| L\infty dt \leq \nu 

\int T

0

\infty \sum 
m=1

\| \nabla Pmw\| \infty dt =

\infty \sum 
m=1

2 - 
m
2

\int T

0

2m+m
2 \nu \| Pmw\| L2 dt

\leq 

\left[  \infty \sum 
m=1

\Biggl( \int T

0

2m+m
2 \nu \| Pmw\| L2 dt

\Biggr) 2
\right]  1/2

\leq c(\| A1/2w0\| L2 +

\int T

0

\| A1/2\BbbP I\| L2 dt+

\int T

0

\| A1/2N \.g\| L2 dt),

(4.18)

where, by (2.25), \int T

0

\| A1/2N \.g\| L2 dt \leq c

\int T

0

\| \.g\| L2 dt.

In addition,\int T

0

\| A1/2\BbbP I\| 2 dt =
\int T

0

\| A1/2(w \cdot \nabla (Ng))\| L2 dt+

\int T

0

\| A1/2(Ng \cdot \nabla w)\| L2 dt

+

\int T

0

\| A1/2(w \cdot \nabla w)\| L2 dt+

\int T

0

\| A1/2(Ng \cdot \nabla (Ng))\| L2 dt.(4.19)

To analyze (4.19), we employ the following inequality [44]:

\| \nabla B(v, w)\| L2 \leq c\| v\| 1/4L2 \| v\| 3/4H2 \| w\| 1/4L2 \| w\| 3/4H2 + c\| v\| 1/2L2 \| v\| 1/2H2 \| w\| H2 , v, w \in V 2
n (\Omega ).

(4.20)

Next, we estimate each term on the right-hand side of (4.19) by using (4.20). First,
with the help of (4.10) and (4.20), we get\int T

0

\| A1/2\BbbP (w \cdot \nabla w)\| L2 dt \leq c

\int T

0

\| w\| 1/2L2 \| Aw\| 3/2L2 dt

\leq c

\Biggl( \int T

0

\| w\| 2L2 dt

\Biggr) 1/4\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 3/4

\leq C(M0,M1)

\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 3/4

.(4.21)

According to assumption (4.8), it follows that\int T

0

\| A1/2\BbbP (w \cdot \nabla (Ng))\| L2 dt

\leq c

\int T

0

(\| w\| 1/4L2 \| Aw\| 3/4L2 \| Ng\| 1/4L2 \| Ng\| 3/4H2 + \| w\| 1/2L2 \| Aw\| 1/2L2 \| Ng\| H2) dt

\leq c

\int T

0

\| Aw\| L2\| Ng\| H2 dt \leq c

\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 1/2\Biggl( \int T

0

\| Ng\| 2H2 dt

\Biggr) 1/2
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\leq c

\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 1/2\Biggl( \int T

0

\| g\| 2H1/2 dt

\Biggr) 1/2

\leq C(M1)

\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 1/2

.

(4.22)

Similarly,\int T

0

\| A1/2\BbbP ((Ng) \cdot \nabla w)\| L2 dt \leq c

\Biggl( \int T

0

\| g\| 2L2 dt

\Biggr) 1/2\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 1/2

\leq C(M1)

\Biggl( \int T

0

\| Aw\| 2L2 dt

\Biggr) 1/2

(4.23)

and\int T

0

\| A1/2\BbbP (Ng \cdot \nabla (Ng))\| L2 dt \leq c

\Biggl( \int T

0

\| Ng\| 2L2 dt

\Biggr) 1/4\Biggl( \int T

0

\| Ng\| 2H2 dt

\Biggr) 3/4

\leq c

\Biggl( \int T

0

\| g\| 2L2(\Gamma ) dt

\Biggr) 1/4\Biggl( \int T

0

\| g\| 2H1/2(\Gamma ) dt

\Biggr) 3/4

\leq C(M1).(4.24)

As we can see from (4.21)--(4.24), it remains to estimate
\int T

0
\| Aw\| 2L2 dt. Taking the

inner product of the velocity equation (4.3) with Aw gives

1

2

d

dt
(w,Aw) + \nu \| Aw\| 2L2 =  - (\BbbP (w \cdot \nabla (Ng)), Aw) - (\BbbP ((Ng) \cdot \nabla w), Aw)

 - (\BbbP (w \cdot \nabla w), Aw) - (\BbbP ((Ng) \cdot \nabla (Ng)), Aw) - (\BbbP 
\partial (Ng)

\partial t
, Aw)

\leq \| w\| L\infty \| \nabla (Ng)\| L2\| Aw\| L2 + \| Ng\| L\infty \| \nabla w\| L2\| Aw\| L2

+ \| w\| 1/2L2 \| A1/2w\| L2\| Aw\| 3/2L2 + \| Ng\| L\infty \| \nabla (Ng)\| L2\| Aw\| L2 + \| N \.g\| L2\| Aw\| L2

(4.25)

\leq c\| w\| 1/2L2 \| g\| L2(\Gamma )\| Aw\| 
3/2
L2 + c\| Ng\| H1+\epsilon \| \nabla w\| L2\| Aw\| L2

+ c\| w\| 1/2L2 \| A1/2w\| L2\| Aw\| 3/2L2 + c\| Ng\| H1+\epsilon \| g\| L2(\Gamma )\| Aw\| L2 + c\| N \.g\| L2\| Aw\| L2

(4.26)

\leq c\| w\| 2L2\| g\| 4L2(\Gamma ) +
\nu 

10
\| Aw\| 2L2 + c\| g\| 2L2(\Gamma )\| A

1/2w\| 2L2 +
\nu 

10
\| Aw\| 2L2

+ c\| w\| 2L2\| A1/2w\| 4L2+
\nu 

10
\| Aw\| 2L2 + c\| g\| 4L2(\Gamma )+

\nu 

10
\| Aw\| 2L2

+ c\| \.g\| 2L2(\Gamma ) +
\nu 

10
\| Aw\| 2L2 ,

where, from (4.25) to (4.26), we used

\| \psi \| L\infty \leq c\| \psi \| H1+\epsilon , for d = 2 and 0 < \epsilon <
1

2
.(4.27)

Further, note that

1

2

d

dt
(w,Aw) =

1

2

d

dt

\Bigl( 
2\| \BbbD (w)\| 2L2 +

\alpha 

\nu 
\| w\| 2L2(\Gamma )

\Bigr) 
.
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Thus,

d

dt

\Bigl( 
\| \BbbD (w)\| 2L2 +

\alpha 

2\nu 
\| w\| 2L2(\Gamma )

\Bigr) 
+ \nu \| Aw\| 2L2 \leq c\| w\| 2L2\| g\| 4L2(\Gamma ) + c\| g\| 2L2(\Gamma )\| A

1/2w\| 2L2

+ c\| w\| 2L2\| A1/2w\| 4L2 + c\| g\| 4L2(\Gamma ) + c\| \.g\| 2L2(\Gamma )

\leq c
\bigl[ 
\| w\| 2L2\| g\| 4L2(\Gamma ) + \| g\| 2L2(\Gamma )(\| \BbbD w\| 

2
L2 +

\alpha 

2\nu 
\| w\| 2L2(\Gamma ))

+ \| w\| 2L2\| \BbbD w\| 2L2(\| \BbbD w\| 2L2 +
\alpha 

2\nu 
\| w\| 2L2(\Gamma )) + \| g\| 4L2(\Gamma ) + \| \.g\| 2L2(\Gamma )

\bigr] 
.

(4.28)

With the help of (3.6), (4.9), and (4.11), we have\int t+1

t

(\| g\| 2L2(\Gamma ) + \| w\| 2L2\| \BbbD w\| 2L2) d\tau < C(M0,M1), t \geq 0,

and \int t+1

t

(\| w\| 2L2\| g\| 4L2(\Gamma ) + \| g\| 4L2(\Gamma )\| \.g\| 
2
L2(\Gamma )) d\tau < C(M0,M1), t \geq 0.

Moreover, note that supt\in [0,T ] \| g(t)\| L2(\Gamma ) \leq c\| g\| H1(0,T ;L2(\Gamma )). Thus,

\| \BbbD w0\| 2L2 \leq c\| A1/2w0\| 2L2 \leq c(\| A1/2v0\| 2L2 + \| A1/2Ng(0)\| 2L2)

\leq c(\| v0\| 2H1 + \| g(0)\| 2L2(\Gamma )) \leq C(M0,M1).

Using the uniform Gronwall inequality to (4.28) gives

\| A1/2w\| 2L2 \leq c\| \BbbD w\| 2L2 \leq C(M0,M1), t \geq 0,(4.29)

and hence also \int T

0

\| Aw\| 2L2 dt \leq C(M0,M1, T ).(4.30)

Finally, in light of (4.18), (4.21)--(4.24), and (4.30), we get\int T

0

\| \nabla w\| L\infty dt \leq C(M0,M1, T )(4.31)

for every T > 0. This completes the proof.

Proof of Theorem 4.1. First, according to (4.29), we have

\| A1/2v\| 2L2 \leq 2\| A1/2w\| 2L2 + 2\| A1/2Ng\| 2L2 \leq 2\| A1/2w\| 2L2 + 2c\| g\| 2L2(\Gamma )

\leq C(M0,M1), t \geq 0.

Furthermore, by (4.30),\int T

0

\| v\| 2H2 dt \leq 2

\int T

0

\| Aw\| 2L2 dt+ 2

\int T

0

\| Ng\| 2H2 dt

\leq 2

\int T

0

\| Aw\| 2L2 dt+ 2c

\int T

0

\| g\| 2H1/2(\Gamma ) dt

\leq C(M0,M1, T ).(4.32)
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To estimate
\int T

0
\| \nabla v\| L\infty dt, we apply (2.25) and (4.27) again and obtain\int T

0

\| \nabla (Ng)\| L\infty dt \leq c

\int T

0

\| Ng\| H2+\epsilon dt \leq c

\int T

0

\| g\| H1/2+\epsilon (\Gamma ) dt, \epsilon > 0.(4.33)

In light of (4.31) and (4.33), to simplify the notation, we still assume that

\| g\| Uad
\leq M1.

Then \int T

0

\| \nabla v\| L\infty dt \leq 
\int T

0

\| \nabla w\| L\infty dt+

\int T

0

\| \nabla Ng\| L\infty dt

\leq C(M0,M1, T )

for every T > 0. This completes the proof.

In addition, based on (3.7), (3.9), (4.3), and (4.30), it is clear that\int T

0

\| \partial v
\partial t

\| 2L2 dt \leq 2

\int T

0

\| \partial w
\partial t

\| 2L2 dt+ 2

\int T

0

\| \partial Ng
\partial t

\| 2L2 dt

\leq 2

\int T

0

(\nu \| Aw\| 2L2 + \| w \cdot \nabla (Ng)\| 2L2 + \| (Ng) \cdot \nabla w\| 2L2 + \| w \cdot \nabla w\| 2L2

+ \| (Ng) \cdot \nabla (Ng)\| 2L2) dt+ c

\int T

0

\| \.g\| 2L2(\Gamma ) dt,

where\int T

0

(\| w \cdot \nabla (Ng)\| 2L2 + \| (Ng) \cdot \nabla w\| 2L2 + \| w \cdot \nabla w\| 2L2 + \| (Ng) \cdot \nabla (Ng)\| 2L2) dt

\leq c

\int T

0

\| w\| 2L4\| \nabla (Ng)\| 2L4 dt+ c

\int T

0

\| Ng\| 2L4\| \nabla w\| 2L4 dt

+ c

\int T

0

\| w\| 2L4\| \nabla w\| 2L4 dt+ c

\int T

0

\| Ng\| 2L\infty \| \nabla (Ng)\| 2L2 dt

\leq c

\int T

0

\| w\| L2\| \nabla w\| L2\| \nabla (Ng)\| L2\| Ng\| H2 dt

+ c

\int T

0

\| Ng\| L2\| Ng\| H1\| \nabla w\| L2\| Aw\| L2 dt+ c

\int T

0

\| w\| L2\| \nabla w\| 2L2\| Aw\| L2 dt

+ c

\int T

0

\| Ng\| 2H1+\epsilon \| g\| 2L2(\Gamma ) dt

\leq c sup
t\in [0,T ]

(\| w\| L2\| \nabla w\| L2)

\Biggl( \int T

0

\| g\| 2L2(\Gamma ) dt

\Biggr) 1/2\Biggl( \int T

0

\| g\| 2H1/2(\Gamma ) dt

\Biggr) 1/2

+ c sup
t\in [0,T ]

(\| g\| 2L2\| \nabla w\| L2)

\int T

0

\| Aw\| L2 dt+ c sup
t\in [0,T ]

(\| w\| L2\| \nabla w\| 2L2)

\int T

0

\| Aw\| L2 dt

+ c sup
t\in [0,T ]

\| g\| 2L2(\Gamma )

\int T

0

\| g\| 2L2(\Gamma ) dt

\leq C(M0,M1, T ).
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Therefore, for v0 \in V 1
0 (\Omega ) and g \in H1(0, T ;L2(\Gamma )) \cap L2(0, T ;H1/2(\Gamma )),

\partial v

\partial t
\in L2(0, T ;V 0

n (\Omega )).(4.34)

4.2. Existence of an optimal solution: Passive scalar case. To prove the
existence of an optimal solution, we first construct a weakly convergent sequence of the
control inputs and then use the property of lower semicontinuity of the cost functional
to derive an optimal solution by taking the limit of this sequence. The weak solution
to the transport equation (1.1) is defined below.

Definition 4.3. For \theta 0 \in L\infty (\Omega ), \theta \in C([0, T ], (H1(\Omega ))\prime ) is said to be a weak
solution of (1.1) if \theta satisfies\biggl( 

\partial \theta 

\partial t
, \phi 

\biggr) 
 - (v\theta ,\nabla \phi ) = 0 \forall \phi \in H1(\Omega ),(4.35)

where v satisfies (1.2)--(1.3) and (1.7)--(1.8) with v0 \in V 0
n (\Omega ) and g \in L2(0, T ;V 0

n (\Gamma )).

Theorem 4.4. Consider the passive scalar field governed by (1.1)--(1.3) and
(1.7)--(1.8). For \theta 0 \in L\infty (\Omega ) and v0 \in V 0

n (\Omega ), there exists at least one optimal
solution g \in Uad to the problem (P).

Proof of Theorem 4.4. Since J is bounded from below, we can choose a minimiz-
ing sequence \{ gn\} \subset U\mathrm{a}\mathrm{d} such that

lim
n\rightarrow \infty 

J(gn) = inf
g\in U\mathrm{a}\mathrm{d}

J(g).

By the definition of J , the sequences \{ gm\} and \{ \partial gm
\partial t \} are uniformly bounded in U\mathrm{a}\mathrm{d},

and hence there exists a weakly convergent subsequence, still denoted by \{ gm\} , such
that

gm \rightarrow g\ast weakly in L2(0, T ;V 1/2+\epsilon 
n (\Gamma ))

and

\partial gm
\partial t

\rightarrow \partial g\ast 

\partial t
weakly in L2(0, T ;V 0

n (\Gamma )).

For v0 \in V 1
n (\Omega ), the corresponding \{ vm\} and v\ast are bounded in L2(0, T ;V 2

n (\Omega )) based
on (4.32). Thus,

vm \rightarrow v\ast weakly in L2(0, T ;V 2
n (\Omega )).(4.36)

Moreover, according to (4.34), \partial vm/\partial t is bounded in L2(0, T ;V 0
n (\Omega )), and hence there

exists a weakly convergent subsequence, still denoted by \{ vm\} , such that

\partial vm
\partial t

\rightarrow \partial v\ast 

\partial t
weakly in L2(0, T ;V 0

n (\Omega )).(4.37)

Combining (4.36) and (4.37) yields

vm \rightarrow v\ast strongly in L2(0, T ;V 2 - \epsilon 
n (\Omega )) \forall 0 < \epsilon \leq 2.(4.38)

Now, let sequence \{ \theta m\} be the solutions corresponding to \{ vm\} with \theta m(0) = \theta 0 \in 
L\infty (\Omega ). By (3.2), we have \| \theta m\| L\infty = \| \theta 0\| L\infty for any t \geq 0. Therefore, we may
extract a subsequence, still denoted by \{ \theta m\} , such that

\theta m \rightarrow \theta \ast weak* in L\infty (0, T ;L\infty (\Omega )).(4.39)
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Next, we verify that \theta \ast is the solution corresponding to v\ast based on Definition
4.3. Note that gm and \theta m satisfy\biggl( 

\partial \theta m
\partial t

, \phi 

\biggr) 
 - (vm\theta m,\nabla \phi ) = 0, \phi \in H1(\Omega ),(4.40)

\theta m = \theta 0.

Let \varphi be a continuously differentiable function on [0, T ] with \varphi (T ) = 0. For each
\phi \in H1(\Omega ), we multiply (4.40) by \varphi and integrate by parts. After integrating the first
term by parts, we get

 - 
\int T

0

(\theta m, \phi \.\varphi ) dt - 
\int T

0

(vm\theta m,\nabla \phi \varphi ) dt = (\theta 0, \phi \varphi (0)).(4.41)

Since \phi \.\psi \in L1(0, T ;L1(\Omega )), it is straightforward to pass to the limit in the first term
of the left-hand side of (4.41) with the help of (4.39). To estimate the second term,
we use the convergence results (4.38)--(4.39) and get\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

(vm\theta m) \cdot \nabla (\phi \varphi ) dx dt - 
\int T

0

\int 
\Omega 

(v\ast \theta \ast ) \cdot \nabla (\phi \varphi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

(vm\theta m) \cdot \nabla (\phi \varphi ) - (v\ast \theta m) \cdot \nabla (\phi \varphi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

(v\ast \theta m) \cdot \nabla (\phi \varphi ) - (v\ast \theta \ast ) \cdot \nabla (\phi \varphi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int T

0

\| vm  - v\ast \| L2\| \theta m\| L\infty \| \nabla \phi \| L2 | \varphi | dt+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

(\theta m  - \theta \ast )v\ast \cdot \nabla (\phi \varphi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| ,
where \int T

0

\| vm  - v\ast \| L2\| \theta m\| L\infty \| \nabla \phi \| L2 | \varphi | dt

\leq \| vm  - v\ast \| L2(0,T ;V 0
n (\Omega ))\| \theta 0\| L\infty \| \nabla \phi \| L2\| \varphi \| L2(0,T ) \rightarrow 0.(4.42)

Further note that v\ast \cdot \nabla (\phi \varphi ) \in L1(0, T ;L1(\Omega )), and therefore\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

(\theta m  - \theta \ast )v\ast \cdot \nabla (\phi \varphi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0.

As a result, we pass to the limit in (4.40) to derive that

 - 
\int T

0

(\theta \ast , \phi \.\varphi ) dt - 
\int T

0

(v\ast \theta \ast ,\nabla \phi \varphi ) dt = (\theta 0, \phi \varphi (0)), \phi \in H1(\Omega ).(4.43)

It remains to be shown that \theta \ast (0) = \theta 0. Consider\biggl( 
\partial \theta \ast 

\partial t
, \phi 

\biggr) 
 - (v\ast \theta \ast ,\nabla \phi ) = 0, \phi \in H1(\Omega ),(4.44)

\theta \ast (0) = \theta \ast 0 .
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Again multiplying (4.44) by a continuously differentiable function \psi with \psi (T ) = 0
and integrating by parts yields

 - 
\int T

0

(\theta \ast , \phi \.\varphi ) dt - 
\int T

0

(v\ast \theta \ast ,\nabla \phi \varphi ) dt = (\theta \ast 0 , \phi \varphi (0)), \phi \in H1(\Omega ).(4.45)

Comparing (4.45) with (4.43) gives

(\theta \ast 0  - \theta 0, \phi \varphi (0)) = 0, \phi \in H1(\Omega ).(4.46)

We can choose \psi with \psi (0) = 1. Then (4.46) becomes

(\theta \ast 0  - \theta 0, \phi ) = 0, \phi \in H1(\Omega ),

and thus \theta \ast 0 = \theta 0.
Finally, since the norm is lower semicontinuous, the cost functional J is lower

semicontinuous for all g \in U\mathrm{a}\mathrm{d}. Therefore,

J(g\ast ) \leq lim
m\rightarrow \infty 

inf J(gm).

This completes the proof.

4.3. Optimality conditions: Passive scalar case. In this section, we derive
the first-order necessary optimality conditions for problem (P) by using a variational
inequality [35]; that is, if g is an optimal solution of problem (P), then

J \prime (g) \cdot (f  - g) \geq 0, f \in Uad.

We still let z = \theta \prime (g) \cdot h denote the G\^ateaux derivative of \theta with respect to g in
every direction h in Uad. Then \theta satisfies (3.11)--(3.12), where y = v\prime (g) \cdot h is the
G\^ateaux derivative of v with respect to g in the direction h. The following lemma
states the properties of (y, z) and the adjoint problem.

Lemma 4.5. Assume (\theta 0, v0) \in (L\infty (\Omega ) \cap H1(\Omega )) \times V 1
n (\Omega ) and g \in Uad. Then

(y, z) is the solution of the linearized problem

\partial z

\partial t
+ y \cdot \nabla \theta + v \cdot \nabla z = 0 in \Omega (4.47)

\partial y

\partial t
 - \nu \Delta y + (y \cdot \nabla )v + (v \cdot \nabla )y +\nabla q = 0 in \Omega (4.48)

\nabla \cdot y = 0 in \Omega (4.49)

with the Navier slip boundary conditions

y \cdot n| \Gamma = 0 and 2\nu n \cdot \BbbD (y) \cdot \tau + \alpha y \cdot \tau )| \Gamma = h \cdot \tau (4.50)

and initial condition (z(0), y(0)) = (0, 0), where q = p\prime (g) \cdot h. Moreover,

(z, y) \in L\infty (0, T ;L2(\Omega ))\times 
\bigl( 
C([0, T ];V 1

n (\Omega )) \cap L2(0, T ;V 2
n (\Omega ))

\bigr) 
.

In addition, the adjoint state (\rho , \=y) associated with the cost functional J in (P) satisfies

 - \partial 

\partial t
\rho  - v \cdot \nabla \rho = 0 in \Omega (4.51)

 - \partial \=y

\partial t
 - \nu \Delta \=y + (\nabla v)T \=y  - (v \cdot \nabla )\=y +\nabla \=q = \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v) in \Omega (4.52)

\nabla \cdot \=y = 0 in \Omega (4.53)
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with the Navier slip boundary conditions

\=y \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (\=y) \cdot \tau + \alpha \=y \cdot \tau )| \Gamma =  - \zeta \nabla \times v(4.54)

and final condition

(\rho (T ), \=y(T ) = (\Lambda  - 2\theta (T ), 0).(4.55)

Moreover,

(\rho , \=y) \in L\infty (0, T ;H1(\Omega ))\times 
\bigl( 
C([0, T ];V 1

n (\Omega )) \cap L2(0, T ;V 2
n (\Omega ))

\bigr) 
.

For solving the adjoint system, the one-way coupling allows us to first solve \rho .
Note that \theta \in C([0, T ];H1(\Omega )), which gives \rho (T ) \in H3(\Omega ). Thanks to the regularity
of v obtained in Theorem 4.1, the existence of a unique solution \rho \in L\infty (0, T ;H1(\Omega ))
to (4.51) can be obtained by replacing t = T  - t. Therefore, \theta \nabla \rho \in L2(0, T ;L2(\Omega ))
for \theta \in L\infty (0, T ;L\infty (\Omega )). Further note that \nabla \bot (\nabla \times v) \in L2(0, T ;L2(\Omega )) and \nabla \times 
v| \Gamma \in L2(0, T ;V

1/2
n (\Gamma )). The existence of a unique solution \=y \in C([0, T ];V 1

n (\Omega )) \cap 
L2(0, T ;V 2

n (\Omega )) to (4.52)--(4.55) follows again by replacing t = T  - t.
Since the norm \| g\| Uad

involves the fractal derivative on the boundary, it com-
plicates the expression of the G\^ateaux derivative of J . In the rest of our work, we
restrict the control input function to be of the form

g(x, t) =

M\sum 
i=1

bi(x)ui(t),(4.56)

where M is a finite positive integer, bi \in V
1/2+\epsilon 
n (\Gamma ) are prescribed functions, and

the controls are now ui \in H1(0, T ). From the point of view of applications, a finite
number of control inputs is a more realistic assumption since it is not practical to
create arbitrarily distributed force fields for stirring. Mathematically, this will also
lead to a more transparent optimality system.

Let u(t) = [u1(t), u2(t), . . . , uM (t)]T and b(x) = [b1(x), b2(x), . . . , bM (x)]T . More-
over, if we let \eta = \| b\| 2L2 and \beta = \| b\| 2

H1/2+\epsilon , then the control problem (P) is now
equivalent to

J(u) =
1

2
(\Lambda  - 2\theta (T ), \theta (T ))+

\gamma 

2

\int T

0

(\beta uTu+ \eta \.uT \.u) dt - \zeta 
2

\int T

0

(\nabla \times v,\nabla \times v) dt, (P'),

for u \in (H1(0, T ))M . The existence of an optimal solution of the form (4.56) can be
obtained following the same approach as in the proof of Theorem 4.4 by replacing Uad

by (H1(0, T ))M for each M . Because of (3.4), we derive\int 
\Omega 

(\nabla \times v) \cdot (\nabla \times v) dx =  - 
\int 
\Omega 

\omega \partial 2v1 dx+

\int 
\Omega 

\omega \partial 1v2 dx

=  - 
\int 
\Gamma 

\omega n2v1 dx+

\int 
\Omega 

\partial 2\omega v1 dx+

\int 
\Gamma 

\omega n1v2 dx - 
\int 
\Omega 

\partial 1\omega v2 dx

=  - 
\int 
\Omega 

(\nabla \bot \omega ) \cdot v dx+

\int 
\Gamma 

\omega \tau 1v1 dx+

\int 
\Gamma 

\omega \tau 2v2 dx

=  - 
\int 
\Omega 

(\nabla \bot \omega ) \cdot v dx+

\int 
\Gamma 

\omega (v \cdot \tau ) dx

=  - 
\int 
\Omega 

(\nabla \bot (\nabla \times v)) \cdot v dx+

\int 
\Gamma 

(2\kappa  - \alpha )(v \cdot \tau )(v \cdot \tau ) dx+

\int 
\Gamma 

(g \cdot \tau )(v \cdot \tau ) dx.
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Therefore, if u is the optimal solution of problem (P'), then for h \in (H1(0, T ))M ,

J \prime (u) \cdot h = (\Lambda  - 2\theta (T ), (\theta \prime (u) \cdot h)(T )) + \gamma 

\int T

0

(\beta uTh+ \alpha \.uT \.h) dt

 - \zeta 

\int T

0

(\nabla \times v,\nabla \times (v\prime (u) \cdot h)) dt

= (\Lambda  - 2\theta (T ), (\theta \prime (u) \cdot h)(T )) + \gamma 

\int T

0

(\beta uTh+ \alpha \.uT \.h) dt

+ \zeta 

\int T

0

(\nabla \bot (\nabla \times v), v\prime (u) \cdot h) dt - \zeta (2\kappa  - \alpha )

\int T

0

\langle v \cdot \tau , (v\prime (u) \cdot h) \cdot \tau \rangle dt

 - \zeta 

\int T

0

\langle (bTu) \cdot \tau , (v\prime (u) \cdot h) \cdot \tau \rangle dt,(4.57)

where \nabla \bot \omega = ( - \partial 2, \partial 1)\omega , z = \theta \prime (u) \cdot h, and y = v\prime (u) \cdot h satisfy the linearized
equations (4.47)--(4.50).

The following theorem provides the first-order necessary conditions of optimality
for solving an optimal solution of problem (P) for the passive scalar case.

Theorem 4.6. Assume (\theta 0, v0) \in (L\infty (\Omega ) \cap H1(\Omega )) \times V 1
n (\Omega ) and g =

\sum M
i=1

bi(x)ui(t) with bi \in V
1/2+\epsilon 
n (\Gamma ) and ui \in H1(0, T ). Let (\theta , v) be the solution of

(1.1)--(1.3) and (1.7)--(1.8). Assume that uopt \in (H1(0, T ))M is an optimal controller
of problem (P'). If (\rho , \=y) is the solution of the adjoint system (4.51)--(4.55) associated
with (\theta , v), then

\gamma \eta \"uopt  - \gamma \beta uopt = [\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]T ,
\.uopt(0) = \.uopt(T ) = 0.

Proof of Theorem 4.6. To obtain the desired result, we first analyze the term in
the G\^ateaux derivative of J in (4.57). We first multiply (4.47) by \rho and get\int T

0

\biggl( 
\partial 

\partial t
z, \rho 

\biggr) 
dt+

\int T

0

(y \cdot \nabla \theta , \rho ) dt+
\int T

0

(v \cdot \nabla z, \rho ) dt = 0.

Integrating the first term with respect to t and the third term with respect to x yields

 - 
\int T

0

\biggl( 
\partial 

\partial t
\rho , z

\biggr) 
dt+ (\rho (T ), z(T )) +

\int T

0

(y \cdot \nabla \theta , \rho ) dt - 
\int T

0

(v \cdot \nabla \rho , z) dt = 0.

Due to the adjoint equation (4.51) and the final condition (4.55), we obtain

(\Lambda  - 2\theta (T ), z(T )) = (\rho (T ), z(T )) =  - 
\int T

0

(y \cdot \nabla \theta , \rho ) dt =
\int T

0

(y, \theta \nabla \rho ) dt.

Therefore, (4.57) becomes

J \prime (u) \cdot h =

\int T

0

(y, \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v)) dt+ \gamma 

\int T

0

(\beta uTh+ \eta \.uT \.h) dt

 - \zeta (2\kappa  - \alpha )

\int T

0

\langle v \cdot \tau , y \cdot \tau \rangle dt - \zeta 

\int T

0

\langle (bTu) \cdot \tau , y \cdot \tau \rangle dt

=

\int T

0

(y, \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v)) dt+\gamma \beta 

\int T

0

uTh dt+\gamma \eta \.uTh| T0  - \gamma \eta 

\int T

0

hT \"u dt

 - \zeta (2\kappa  - \alpha )

\int T

0

\langle v \cdot \tau , y \cdot \tau \rangle dt - \zeta 

\int T

0

\langle (bTu) \cdot \tau , y \cdot \tau \rangle dt.(4.58)
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Replacing h by bTh in (4.50) and using (2.12) and (4.52)--(4.53), we have\int T

0

(y, \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v)) dt =

\int T

0

\biggl( 
y, - \partial \=y

\partial t
 - \nu \Delta \=y + (\nabla v)T \=y  - (v \cdot \nabla )\=y +\nabla \=q

\biggr) 
dt

=  - [(y(T ), \=y(T )) - (y(0), \=y(0))] +

\int T

0

\biggl[ \biggl( 
dy

dt
, \=y

\biggr) 
+ 2\nu (\BbbD y,\BbbD \=y) + \langle \alpha y, \=y\rangle 

+ \langle y \cdot \tau , \zeta \nabla \times v\rangle + ((y \cdot \nabla )v + (v \cdot \nabla )y, \=y)

\biggr] 
dt

=

\int T

0

(
dy

dt
, \=y) dt+

\int T

0

[( - \nu \Delta y, \=y) + \langle bTh, \=y\rangle + \langle y \cdot \tau , \zeta ((2\kappa  - \alpha )v \cdot \tau + (bTu) \cdot \tau )\rangle 

+ ((y \cdot \nabla )v + (v \cdot \nabla )y, \=y) + (\nabla q, \=y)] dt

=

\int T

0

[\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]h dt+
\int T

0

\langle y \cdot \tau , \zeta ((2\kappa  - \alpha )v \cdot \tau + (bTu) \cdot \tau )\rangle dt.

(4.59)

Set \.u(0) = \.u(T ) = 0. Combining (4.58) with (4.59) yields\int T

0

([\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]T + \gamma \beta u - \gamma \eta \"u,h)) \geq 0, h \in (H1(0, T ))M ,

which implies

\gamma \eta \"uopt  - \gamma \beta uopt = [\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]T .

This also indicates that control uopt \in (H2(0, T ))M . The proof is complete.

5. Case II: Optimal mixing of an active scalar via Navier--Stokes flow.
To address the optimal control problem of the active scalar case described by Model
II, we first prove its global well-posedness for (\theta 0, v0) \in H1(\Omega )\times V 1

n (\Omega ).

5.1. Well-posedness of Model II in \bfitH \bfone (\Omega ) \times \bfitV \bfone 
\bfitn (\Omega ).

Definition 5.1. For (\theta 0, v0) \in L\infty (\Omega )\times V 1
n (\Omega ) and g \in L2(0, T ;V 0

n (\Gamma )), (\theta , v) \in 
C([0, T ], (H1(\Omega ))\prime )\times (C([0, T ];V 0

n (\Omega ))\cap L2(0, T ;V 1
n (\Omega ))) is said to be a weak solution

of (1.4)--(1.8) if (\theta , v) satisfies

\biggl( 
\partial \theta 

\partial t
, \phi 

\biggr) 
 - (v\theta ,\nabla \phi ) = 0 \forall \phi \in H1(\Omega )

(5.1)

\biggl( 
\partial v

\partial t
, \psi 

\biggr) 
+ 2(\BbbD (v),\BbbD (\psi )) + \alpha \langle v, \psi \rangle + (v \cdot \nabla v, \psi ) = \langle g, \psi \rangle + (\theta e2, \psi ) \forall \psi \in V 1

n (\Omega ).

(5.2)

The global well-posedness result for (\theta 0, v0) \in L\infty (\Omega )\times V 1
n (\Omega ) with homogeneous

Navier slip boundary conditions has been obtained in [27, Theorem 1.1]. However, to
have the differentiability of Model II, we establish the following result to address the
well-posedness and regularity issues for (\theta 0, v0) \in H1(\Omega )\times V 1

n (\Omega ).

Theorem 5.2. Assume that (\theta 0, v0) \in H1(\Omega )\times V 1
n (\Omega ) and g \in Uad with \| \theta 0\| H1 \leq 

\Theta 0, \| v0\| H1 \leq M0, and \| g\| Uad
\leq M1, where \Theta 0,M0,M1 > 0 are arbitrary. Then

there exists a unique global solution (\theta , v) such that \theta \in L\infty (0,\infty ;H1(\Omega )) and v \in 
L\infty (0,\infty ;H1(\Omega )) \cap L2

loc(0,\infty ;H2(\Omega )). Moreover, for every T > 0, we have
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\int T

0

\| \nabla v(t)\| L\infty dt \leq C(\Theta 0,M0,M1, T )

and

\| \theta (t)\| H1 \leq C(\Theta 0,M0,M1, T )

for t \in [0, T ].

Proof of Theorem 5.2. Slightly modifying the L2-estimate for the passive case and
recalling (3.1) that \| \theta (t)\| L2 = \| \theta 0\| L2 for all t \geq 0, we get

d\| v\| 2L2

dt
+ c\nu \| A1/2v\| 2L2 + 2\alpha \| v\| 2L2(\Gamma ) \leq c\lambda 

 - 1/2

1 \| g\| 2L2(\Gamma ) + c\| \theta 0\| 2L2

and

d\| v\| 2L2

dt
+ c\nu \lambda 1\| v\| 2L2 + 2\alpha \| v\| 2L2(\Gamma ) \leq c\lambda 

 - 1/2

1 \| g\| 2L2(\Gamma ) + c\| \theta 0\| 2L2 .

Similarly, we can adjust the initial datum \| v0\| H1 so that

sup
t\in [0,T ]

\| v\| L2 \leq M0 = c

\Biggl( 
\lambda 
 - 1/2
1 M2

1 +\Theta 2
0

\nu \lambda 1

\Biggr) 1/2

(5.3) \int t

0

\| v\| 2L2 d\tau \leq C(M0,M1) + \Theta 2
0t, t > 0,(5.4)

and \int t+1

t

\| A1/2v\| 2L2 d\tau \leq C(M0,M1,\Theta 0), t \geq 0.

Note that in the active scalar case,
\int t

0
\| v\| 2L2 dt may grow in time due to the constant

term \| \theta 0\| L2 .
Again making change of variable, we let w = v  - Ng; then

\partial t\theta + w \cdot \nabla \theta +Ng \cdot \nabla \theta = 0,

\partial w

\partial t
= \nu \Delta w  - w \cdot \nabla (Ng) - (Ng) \cdot \nabla w  - w \cdot \nabla w  - \nabla p

 - (Ng) \cdot \nabla (Ng) - \partial (Ng)

\partial t
+ \theta e2,(5.5)

\nabla \cdot w = 0,

where w also satisfies the homogeneous Navier slip boundary condition (4.5) and
(\theta (0), w(0)) = (\theta 0, v0  - Ng(0)). According to (5.3)--(5.4) and \| g\| Uad

\leq M1, it follows
that

sup
t\in [0,T ]

\| w\| L2 \leq sup
t\in [0,T ]

\| v\| L2 + sup
t\in [0,T ]

\| Ng\| L2 \leq C(M0,M1,\Theta 0),\int t

0

\| w\| 2L2 d\tau \leq 2

\int t

0

\| v\| 2L2 d\tau + 2

\int t

0

\| Ng\| 2L2 d\tau \leq C(M0,M1) + c\Theta 2
0t(5.6)

and \int t+1

t

\| A1/2w\| L2 d\tau \leq 
\int t+1

t

\| A1/2v\| L2 d\tau +

\int t+1

t

\| A1/2Ng\| L2 d\tau 

\leq C(M0,M1,\Theta 0).
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Next, taking the inner product of the velocity equation (5.5) with Aw yields

1

2

d

dt
(w,Aw) + \nu \| Aw\| 2L2 = - (\BbbP (w \cdot \nabla (Ng)), Aw) - (\BbbP ((Ng) \cdot \nabla w), Aw)

 - (\BbbP (w \cdot \nabla w), Aw) - (\BbbP ((Ng) \cdot \nabla (Ng)), Aw)

 - (\BbbP 
\partial (Ng)

\partial t
, Aw) + (\BbbP \theta e2, Aw).

Following the same approach as in the proof of Lemma 4.2, we find that (4.28)
becomes

d

dt
(\| \BbbD (w)\| 2L2 +

\alpha 

2\nu 
\| w\| 2L2(\Gamma )) + \nu \| Aw\| 2L2

\leq c
\bigl[ 
\| w\| 2L2\| g\| 4L2(\Gamma ) + \| g\| 2L2(\Gamma )(\| \BbbD w\| 

2
L2 +

\alpha 

2
\| w\| 2L2(\Gamma ))

+ \| w\| 2L2\| \BbbD w\| 2L2(\| \BbbD w\| 2L2 +
\alpha 

2
\| w\| 2L2(\Gamma )) + \| g\| 4L2(\Gamma ) + \| \.g\| 2L2(\Gamma ) + \| \theta 0\| L2

\bigr] 
.

(5.7)

Again employing uniform Gronwall inequality to (5.7), we obtain

\| A1/2w\| 2L2 \leq c\| \BbbD w\| 2L2 \leq C(M0,M1,\Theta 0), t \geq 0,

and \int t

0

\| Aw\| 2L2 d\tau \leq C(M0,M1,\Theta 0)t.(5.8)

By virtue of (4.18), (4.21)--(4.24), (5.6), and (5.8), we have\int t

0

\| \nabla w\| L\infty d\tau \leq c

\biggl( 
\| A1/2w0\| L2 +

\int t

0

\| A1/2\BbbP I\| L2 d\tau +

\int t

0

\| A1/2N \.g\| L2 d\tau 

+

\int t

0

\| A1/2\theta \| L2 d\tau 

\biggr) 
\leq c

\biggl( 
\| A1/2w0\| L2 + C(M0,M1,\Theta 0)(t+ t1/2) +

\int t

0

\| A1/2\theta \| L2 d\tau 

\biggr) 
.

If t \in (0, 1), then t+ t1/2 < 2, and hence\int t

0

\| \nabla w\| L\infty d\tau \leq c

\int t

0

\| \nabla \theta \| L2 d\tau + C(M0,M1,\Theta 0).(5.9)

Combining (3.13) with (4.33) and (5.9) yields

\| \nabla \theta \| L2 \leq \| \nabla \theta 0\| L2e
\int t
0
(\| \nabla w\| L\infty +\| \nabla (Ng)\| L\infty ) d\tau 

\leq C(M0,M1,\Theta 0)e
c
\int t
0
\| \nabla \theta \| L2 d\tau .(5.10)

Let X = c
\int t

0
\| \nabla \theta \| L2 d\tau . Then, by (5.10),

X \prime \leq C(M0,M1,\Theta 0)e
X .(5.11)

If t \in [1,\infty ), then t+ t1/2 \leq 2t, and hence we can derive the same inequality (5.11) by

setting X = c
\int t

0
(1 + \| \nabla \theta \| L2) d\tau . Solving (5.11), we derive that there exists a \~t > 0

such that
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X \leq ln

\biggl[ 
1

1 - C(M0,M1,\Theta 0)t

\biggr] 
<\infty , t \in [0, \~t].

Therefore, from (5.10), it follows that

\| \nabla \theta \| L2 \leq C(M0,M1,\Theta 0)

1 - C(M0,M1,\Theta 0)t
<\infty , t \in [0, \~t],

which shows that if (\theta 0, w0) \in H1(\Omega ) \times V 1
n (\Omega ), then there exists a \~t > 0 such that

(\theta , w) \in L\infty (0, \~t;H1(\Omega ))\times L1(0, \~t;W 1,\infty (\Omega )). Moreover, from (5.8),\int \~t

0

\| Aw\| 2L2 d\tau \leq C(M0,M1,\Theta 0)\~t.

Thus, there exists a t\ast \in [0, \~t] such that w(t\ast ) \in D(A). Finally, for (\theta (t\ast ), w(t\ast )) \in 
H1(\Omega ) \times D(A), slightly modifying the proof of Theorem 2.1 in [25] and estimating
\| A1+\epsilon /2w\| L2(t\ast ,\infty ;L2(\Omega )), \epsilon > 0, by utilizing the variation of parameters formula to-
gether with the properties of the analytic C0-semigroup generated by A, we can show
that there exists a unique global solution (\theta , w) such that

\theta \in L\infty (t\ast ,\infty ;H1(\Omega )) and w \in L\infty (t\ast ,\infty ;H2(\Omega )) \cap L2
loc(t

\ast ,\infty ;H2+\epsilon (\Omega )).

As a result,

\theta \in L\infty (0,\infty ;H1(\Omega )) and w \in L\infty (0,\infty ;H1(\Omega )) \cap L2
loc(0,\infty ;H2(\Omega ))

and, by (5.9), \int T

0

\| \nabla w\| L\infty dt \leq C(M0,M1,\Theta 0, T ).

Consequently,\int T

0

\| \nabla v\| L\infty dt \leq C(M0,M1,\Theta 0, T ) and \| \theta (t)\| H1 \leq C(M0,M1,\Theta 0, T ), t \in [0, T ].

This completes the proof.

5.2. Existence of an optimal solution: Active scalar case. Following the
same procedures as in Theorem 4.4, we obtain the existence of an optimal solution to
the active scalar case.

Theorem 5.3. Consider the active scalar field governed (1.4)--(1.8). For (\theta 0, v0) \in 
(L\infty (\Omega ) \cap H1(\Omega )) \times V 1

n (\Omega ), there exists at least one optimal solution g \in Uad to the
problem (P).

Proof. As shown in the proof of Theorem 4.4, there exists a sequence \{ gm\} \subset Uad

satisfying

gm \rightarrow g\ast weakly in L2(0, T ;V 1/2+\epsilon 
n (\Gamma ))

and

\partial gm
\partial t

\rightarrow \partial g\ast 

\partial t
weakly in L2(0, T ;V 0

n (\Gamma )).

For (\theta 0, v0) \in (L\infty (\Omega )\times H1(\Omega ))\times V 1
n (\Omega ), the corresponding sequences \{ \theta m\} and \{ vm\} 

satisfy

\theta m \rightarrow \theta \ast weak* in L\infty (0, T ;L\infty (\Omega ))(5.12)



2796 WEIWEI HU AND JIAHONG WU

and

vm \rightarrow v\ast strongly in L2(0, T ;V 2 - \epsilon 
n (\Omega )) \forall 0 < \epsilon \leq 2.(5.13)

Now we verify that (\theta \ast , v\ast ) is the weak solution based on Definition 5.1. Note
that gm and (\theta m, vm) satisfy\biggl( 

\partial \theta m
\partial t

, \phi 

\biggr) 
 - (vm\theta m,\nabla \phi ) = 0, \phi \in H1(\Omega ),(5.14) \biggl( 

\partial vm
\partial t

, \psi 

\biggr) 
+ 2\nu (\BbbD (vm),\BbbD (\psi )) + \nu \alpha \langle vm, \psi \rangle + (vm \cdot \nabla vm, \psi )

= \nu \langle g, \psi \rangle + (\theta me2, \psi ), \psi \in V 1
n (\Omega ),(5.15)

with (\theta m, vm) = (\theta 0, v0). Let (\varphi ,\Psi ) be a vector of continuously differentiable func-
tion on [0, T ] with (\varphi (T ),\Psi (T )) = (0, 0). For each (\phi , \psi ) \in H1(\Omega ) \times V 1

n (\Omega ), we
multiply (5.14) by \varphi and (5.15) by \Psi , respectively, and then integrate by parts. After
integrating the first term by parts for each equation, we get

 - 
\int T

0

(\theta m, \phi \.\varphi ) dt - 
\int T

0

(vm\theta m,\nabla \phi \varphi ) dt = (\theta 0, \phi \varphi (0)).

 - 
\int T

0

(vm, \psi \.\Psi ) dt+ 2\nu 

\int T

0

(\BbbD (vm),\BbbD (\psi )\Psi ) dt+ \nu \alpha 

\int T

0

\langle vm, \psi \Psi \rangle dt

+

\int T

0

(vm \cdot \nabla vm, \psi \Psi ) dt

= \nu 

\int T

0

\langle gm, \psi \Psi \rangle dt+
\int T

0

(\theta me2, \psi \Psi ) dt+ (v0, \psi \Psi (0)).

Based on the results we have established in the proof of Theorem 4.4, it suffices to
show that \int T

0

(vm \cdot \nabla vm, \psi \Psi ) dt\rightarrow 
\int T

0

(v\ast \cdot \nabla v\ast , \psi \Psi ) dt, \psi \in V 1
n (\Omega ).

We first write

(vm \cdot \nabla vm, \psi \Psi ) =

\int 
\Omega 

vim\partial i(vjm\psi j\Psi ) dx - 
\int 
\Omega 

vimvjm\partial i(\psi j\Psi ) dx

=  - 
\int 
\Omega 

vimvjm\partial i(\psi j\Psi ) dx.

Using the convergence results (5.12)--(5.13), we have\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

vimvjm\partial i(\psi j\Psi ) dx dt - 
\int T

0

\int 
\Omega 

v\ast i v
\ast 
j \partial i(\psi j\Psi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

(vim  - v\ast i )vjm\partial i(\psi j\Psi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

v\ast i (vjm  - v\ast j )\partial i(\psi j\Psi ) dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int T

0

\| vm - v\ast \| L\infty \| vm\| L2\| \nabla \psi \| L2 | \Psi | dt+
\int T

0

\| v\ast \| L2\| vm - v\ast \| L\infty \| \nabla \psi \| L2 | \Psi | dt

\leq \| vm  - v\ast \| L2(0,T ;V 2 - \epsilon 
n (\Omega ))\| vm\| L2(0,T ;L2(\Omega ))\| \nabla \psi \| L2\| \Psi \| L\infty (0,T )

+ \| v\ast \| L2(0,T ;L2(\Omega ))\| vm  - v\ast \| L2(0,T ;V 2 - \epsilon 
n (\Omega ))\| \nabla \psi \| L2\| \Psi \| L\infty (0,T ) \rightarrow 0

for 0<\epsilon <1. The rest of the proof follows the same procedures as in Theorem 4.4.
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5.3. Optimality conditions: Active scalar case. In this section, we derive
the first-order optimality conditions for the active scalar case with a finite number of
control inputs.

Lemma 5.4. Consider the active scalar field governed (1.4)--(1.8). Assume
(\theta 0, v0) \in (L\infty (\Omega )\cap H1(\Omega ))\times V 1

n (\Omega ) and g \in Uad. Let y = (v\prime (g) \cdot h) and z = \theta \prime (g) \cdot h
be the G\^ateaux derivatives of v and \theta with respect to g in every direction h in Uad,
respectively. Then (y, z) is the solution of the linearized problem

\partial z

\partial t
+ y \cdot \nabla \theta + v \cdot \nabla z = 0 in \Omega (5.16)

\partial y

\partial t
 - \nu \Delta y + (y \cdot \nabla )v + (v \cdot \nabla )y +\nabla q = ze2 in \Omega (5.17)

\nabla \cdot y = 0 in \Omega (5.18)

with the Navier slip boundary conditions

y \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (y) \cdot \tau + \alpha y \cdot \tau )| \Gamma = h \cdot \tau 

and initial condition (z(0), y(0)) = (0, 0), where q = p(g)\prime \cdot h. The adjoint state (\rho , \=y, \=q)
associated with the cost functional J in (P) satisfies

 - \partial \rho 

\partial t
 - v \cdot \nabla \rho  - \=y \cdot e2 = 0 in \Omega (5.19)

 - \partial \=y

\partial t
 - \nu \Delta \=y + (\nabla v)T \=y  - (v \cdot \nabla )\=y +\nabla \=q = \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v) in \Omega (5.20)

\nabla \cdot \=y = 0 in \Omega (5.21)

with the Navier slip boundary conditions

\=y \cdot n| \Gamma = 0 and (2\nu n \cdot \BbbD (\=y) \cdot \tau + \alpha \=y \cdot \tau )| \Gamma =  - \zeta \nabla \times v(5.22)

and final condition

(\rho (T ), \=y(T )) = (\Lambda  - 2\theta (T ), 0).(5.23)

Moreover,

(\rho , \=y) \in L\infty (0, T ;H1(\Omega ))\times 
\bigl( 
C([0, T ];V 1

n (\Omega )) \cap L2(0, T ;V 2
n (\Omega ))

\bigr) 
.

Theorem 5.5. Assume (\theta 0, v0) \in (L\infty (\Omega ) \cap H1(\Omega )) \times V 1
n (\Omega ) and g =

\sum M
i=1

bi(x)ui(t) with bi \in V
1/2+\epsilon 
n (\Gamma ) and ui \in H1(0, T ). Let (\theta , v) be the solution of (1.4)--

(1.8). Assume that uopt \in (H1(0, T ))M is an optimal controller of problem (P'). If
(\rho , \=y) is the solution of the adjoint system (5.19)--(5.23) associated with (\theta , v), then

\gamma \eta \"uopt  - \gamma \beta uopt = [\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]T ,
\.uopt(0) = \.uopt(T ) = 0.

Proof of Theorem 5.5. Following the same approach as in the proof of Theorem
4.6, we multiply (5.16) by \rho and integrate the first term with respect to t. This gives

 - 
\int T

0

\biggl( 
\partial 

\partial t
\rho , z

\biggr) 
dt+ (\rho (T ), z(T )) +

\int T

0

(y \cdot \nabla \theta , \rho ) dt - 
\int T

0

(v \cdot \nabla \rho , z) dt = 0.
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Due to the adjoint equation (5.19) and the final condition (5.23), we have

(\Lambda  - 2\theta (T ), z(T )) = (\rho (T ), z(T )) =  - 
\int T

0

(\=y \cdot e2, z) dt - 
\int T

0

(y \cdot \nabla \theta , \rho ) dt

=  - 
\int T

0

(ze2, \=y) dt+

\int T

0

(y, \theta \nabla \rho ) dt.(5.24)

Thus, (4.57) becomes

J \prime (u) \cdot h = - 
\int T

0

(ze2, \=y) dt+

\int T

0

(y, \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v)) dt+ \gamma \beta 

\int T

0

uTh dt

+ \gamma \eta \.uTh| T0  - \gamma \eta 

\int T

0

hT \"u dt - \zeta (2\kappa  - \alpha )

\int T

0

\langle v \cdot \tau , y \cdot \tau \rangle dt

 - \zeta 

\int T

0

\langle (bTu) \cdot \tau , y \cdot \tau \rangle dt,(5.25)

where the difference compared to (4.58) is by the term
\int T

0
(ze2, \=y) dt. By virtue of

(4.59) and (5.17), we get\int T

0

(y, \theta \nabla \rho + \zeta \nabla \bot (\nabla \times v)) dt

=

\int T

0

\biggl( 
dy

dt
, \=y

\biggr) 
dt+

\int T

0

[( - \nu \Delta y, \=y) + \langle bTh, \=y\rangle + \langle y \cdot \tau , \zeta ((2\kappa  - \alpha )v \cdot \tau + (bTu) \cdot \tau )\rangle 

+ ((y \cdot \nabla )v + (v \cdot \nabla )y, \=y) + (\nabla q, \=y)] dt

=

\int T

0

(ze2, \=y) dt+

\int T

0

[\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]h dt

+

\int T

0

\langle y \cdot \tau , \zeta ((2\kappa  - \alpha )v \cdot \tau + (bTu) \cdot \tau )\rangle dt.

(5.26)

Therefore, combining (5.25) with (5.26) gives

J \prime (u) \cdot h =

\int T

0

[\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]h dt+ \gamma \beta 

\int T

0

uTh dt

+ \gamma \eta \.uTh| T0  - \gamma \eta 

\int T

0

hT \"u dt.(5.27)

Again, set \.u(0) = \.u(T ) = 0. Then

J \prime (u) \cdot h =

\int T

0

([\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]T + \gamma \beta u - \gamma \eta \"u,h) \geq 0, h \in (H1(0, T ))M ,

(5.28)

which implies that

\gamma \eta \"uopt  - \gamma \beta uopt = [\langle b1, \=y\rangle , . . . , \langle bM , \=y\rangle ]T .(5.29)

This completes the proof.

Remark 5.6. Thanks to Proposition 2.4, compatibility conditions will not be re-
quired for v0 \in V 1

n (\Omega ) in both passive and active scalar cases; thus, the controls can
be localized on a portion of the boundary \Gamma c \subset \Gamma .
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6. Conclusion. In this paper, we presented a rigorous mathematical framework
for optimizing mixing of nondissipative scalars via an active control of incompressible
Navier--Stokes flows through Navier slip boundary conditions. The first-order neces-
sary optimality conditions are derived by using a variational inequality. The main
challenge arises in the analysis of differentiability of the semidissipative systems. Es-
tablishing the G\^ateaux differentiability of the scalar field with respect to the control
input requires that the gradient of the scalar field is well-defined, which results in
demanding high regularity on the velocity field due to vanishing diffusivity together
with the nonlinear coupling. As a consequence, the time regularity on the bound-
ary data of the velocity field is needed. However, the optimality conditions can be
implemented via the gradient-based iterative schemes to obtain the optimal solution
explicitly. The optimal control synthesis established in this paper will also enable
the study of optimal transport via fluid flows, tracking the moving fluid interfaces, or
steering the scalar field to a desired distribution by formulating appropriate cost func-
tionals. It is hoped that the results of this paper will stimulate further investigation in
nonlinear control and optimization and lead to practical applications. Moreover, there
are several interesting directions that merit further investigation in our future work,
such as establishing the relation between the mixing scale \| \theta \| (H1(\Omega ))\prime and the optimal
control actuation in terms of different boundary input profiles bi and establishing the
sensitivity analysis of mixing rate with respect to vorticity.

Acknowledgments. W. Hu would like to thank Irena Lasiecka and Igor Kukav-
ica for their valuable discussions to improve the paper.
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