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1. Introduction horizontal dissipation in the vertical velocity equation

Ot +u - Vuy = —91p + v dpptly,
Oy +u - Viy = —dpp + v oy + 0,
00 +u-Vo =0,

V.-u=0.

The Boussinesq equations model geophysical flows such as
atmospheric fronts and oceanic circulation (see, e.g., [1-3]). In
addition, they play an important role in the study of Rayleigh-

(1.2)

Benard convection (see, e.g., [4,5]). This paper is concerned with
two systems of partially dissipated 2D Boussinesq equations: the
Boussinesq system with only kinematic dissipation (without ther-
mal diffusion)

ou+u-Vu=—-Vp+vAu+fe,,
00 +u-Vo =0, (1.1)
V.-u=0

and its counterpart with only partial kinematic dissipation. Instead
of the full Laplacian dissipation, this partially dissipative system
has only vertical dissipation in the horizontal velocity equation and
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In these equations u = u(x, t) represents the 2D velocity with its
horizontal and vertical components given by u; and u,, respec-
tively, p = p(x, t) the pressure, 6 = 6(x, t) the temperature, e,
the unit vector in the vertical direction, and v > 0 represents the
kinematic viscosity.

Our attention will be mainly focused on spatial domains 2 C
R? that are bounded, connected and have smooth boundary, al-
though the results presented here are also valid for 2 = R?
and periodic domains, as explained later. We assume the velocity
field u obeys the Navier boundary conditions. The Navier boundary
conditions allow the fluid to slip along the boundary and require
that the tangential component of the stress vector at the boundary
be proportional to the tangential velocity. In the case of (1.1), the
corresponding stress tensor T = (Tj;) is given by

1
Tyj = —4;p + 2vDyi(u), Dy = E(Bjui + du;) or

D(u) = % (Vu+ (Va))
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and, if n and « are unit normal and tangent vectors to the boundary
052, respectively, the proportionality is then represented by

Z ‘L','Tjjl’lj:()‘ Zukrk on 942

i,j=1,2 k=1,2

for a constant o. Due to the orthogonality of n and ,

Z Ti (Sijp n = 0.

ij=1.2

The Navier boundary conditions for (1.1) then become

u-n=0, 2n-D(u)-t+au-tr=0 on 952, (1.3)

where o > 0 is a constant. For the system in (1.2), the kinematic
dissipation is only partial. We follow the same principle to propose
the corresponding Navier boundary condition. The corresponding
stress tensor T associated with (1.2) is given by

T = —pl + 2vE(u)

. _ 1 0 8211] + 81112
with E(u) = 5 <32u1 + 9uy 0

and consequently, the Navier boundary conditions for (1.2) are

u-n=0, 2n-E(u)-t4+au-t=0 on 9. (1.4)

As documented in many papers, the Navier boundary conditions
are important in modeling many flows in the real world (see,
e.g. [6-8]). Since the temperature is transported by the velocity
field u, no boundary condition should be imposed on 6.

Avery important special case of the Navier boundary conditions
in (1.3) or (1.4) is the stress-free boundary condition for which the
vorticity @ = V x u vanishes on 92,

u-n=0, w=0duy; —du; =0 on 052. (1.5)

In addition, (1.1) and (1.2) will be supplemented with the initial
data

0(x, 0) = p(x),

The goal of this paper is three fold: first, to establish the global
existence and uniqueness of solutions to (1.1) and (1.2) with their
corresponding Navier boundary conditions, second, to obtain the
uniqueness of solutions with minimal regularity assumption on
the initial data (ug, 6p), and third, to employ a direct approach
from which one can clearly see the impacts of the Navier boundary
conditions as opposed to those of the periodic boundary conditions
and of the whole space case. Our main results are stated in the
following two theorems.

u(x, 0) = up(x), X e . (1.6)

Theorem 1.1. Let 2 C R? be a bounded and connected domain
with sufficient smooth boundary, say 32 € C> (Lipschitz continuous
second derivatives). Let v > 0. Consider the initial and boundary
value problem (IBVP) in (1.1), (1.3) and (1.6) with « > 0 being a

constant and
u € H'(2), V-uy=0

and
Oy € [2(2)NL®(2), / Og(x)dx = 0.
2

Then the IBVP (1.1), (1.3) and (1.6) has a unique global (in time)
strong solution (u, ) satisfying, forany T > 0,
)

u e [®0,T; H(2))NL*0, T; H3(2)),

0 € L%(0, oo; [*(2) N L®(£2)),

/ 0(x,t)dx =0 foranyt € [0, c0). (1.7)
2

When £2 is bounded, § € L°°(§2) automatically implies 6 €
[2(£2). We have kept 8 € [*(£2) in the statement of Theorem 1.1
for the convenience of extension to the whole plane case below.

(1.2) involves only partial kinematic dissipation. The global
well-posedness result obtained for this system is for the stress-free
boundary condition
u-n=0, diup = dhu; =0 on 0S52. (1.8)
Theorem 1.2. Let 2 C R? be a bounded and connected domain
with sufficient smooth boundary, say 352 € C*>'. Let v > 0. Consider
the initial and boundary value problem (IBVP)in (1.2),(1.6)and (1.8)
with a > 0 being a constant and

w e H(2), V-uy=0

and
Oy € [2(2)NL®(R2), / Bo(x)dx = 0.
2

Then the IBVP (1.1), (1.6) and (1.8) has a unique global (in time)
strong solution (u, 6) satisfying, forany T > 0,
)

u e [®0,T; H'(2)) N0, T; H*(2)),

0 € L0, oo; L2(£2) N L®(£2)),

/ O(x,t)dx =0 fort € [0, 00). (1.9)
2

In contrast to the periodic boundary condition case or the
whole space (with sufficient decay at oo) case, the Navier type
boundary conditions generate boundary terms and require com-
patibility conditions. In fact, the mean-zero assumption on 6, in
Theorems 1.1 and 1.2, namely

/ Go(x)dx =0
2

is imposed to fulfill the compatibility condition in the proof of the
uniqueness of the solutions. It is not difficult to understand that the
results of Theorems 1.1 and 1.2 without (1.10) in the whole space
or periodic domain case remain valid. More precisely, the following
corollary (as consequences of the proofs of Theorems 1.1 and 1.2)
holds.

(1.10)

Corollary 1.3. Assume 2 = R? or 2 = [0, 27 ]? (periodic box).
Assume (ug, 6y) satisfies

W e H(R2), V-u=0, 6yel’(2)NL®(R).

Then the initial value problem (IVP) (1.1) and (1.6) or IVP (1.2) and
(1.6) has a unique global strong solution (u, 0) satisfying, for any
T >0,

u e [0, T; H(2)) N0, T; H3(2)),
0 € L0, oo; [2(£2) N L®(£2)).

The Navier-Stokes equations with Navier type boundary condi-
tions have been studied extensively and there are many excellent
references (see, e.g., [9-11]). The 2D Boussinesq equations with
partial dissipation have recently attracted enormous attention, but
most of the studies focus on the whole space or the periodic bound-
ary. This paper is devoted to the partially dissipated Boussinesq
equations with the Navier type boundary conditions. The theorems
of this paper fill this gap. In addition, we strive to establish the
uniqueness under minimal regularity assumptions on the initial
data. [12] and [13] examined global solutions of (1.1) in the whole
space R? for (up, 6p) € H*(R?) with s > 2. [14] obtained the
global existence and regularity of (1.2) in the whole space R? for
(ug, 6p) € H3(R?). Larios, Lunasin and Titi [15] and Hu, Kukavica
and Ziane [16] have made serious efforts to reduce the regularity
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assumption on the initial data. Their attention was focused on the
periodic domain or whole space and established the uniqueness of
solutions to (1.1) under reduced regularity condition on (ug, 6p).
We also mention the results of [17-19] on (1.1) with Dirichlet
boundary conditions, of [ 15,20] on the Boussinesq equations with
horizontal dissipation and of [14,21-23] on the Boussinesq equa-
tions with vertical dissipation in the whole space. We apologize for
not being able to list all the relevant references.

We remark that the Navier type conditions are more delicate to
handle. They generate boundary terms in the process of integration
by parts and make the pressure term p hard to deal with due to
the lack of boundary condition on p. In spite of these difficulties,
we strive to provide a direct and transparent approach to the
desired global bounds. To obtain a global bound for the H'-norm
of u to (1.1), we resort to the existence and regularity result of
Beirao da Veiga on the associated Stokes problem with the Navier
type boundary conditions (see [24] as well as Lemma 2.1 in Sec-
tion 2). The global H! bound on wu of (1.2) relies on the vorticity
formulation. Due to the lack of the global bound for ||Vu||;~, the
uniqueness relies on the Yudovich technique and the introduction
of a lower regularity counterpart of 6.

The rest of this paper is divided into three sections. Section 2
makes several preparations including the result of Beirao da Veiga
on the Stokes problem with the Navier type boundary conditions,
the Calderon-Zygmund inequality for bounded domains with slip
boundary conditions and several useful identities involving the
Navier type boundary conditions. Section 3 proves Theorem 1.1
while Section 4 provides the proof of Theorem 1.2. For the sake of
clarity, Sections 3 and 4 are further divided into subsections.

2. Preparations

This section makes several preparations for the proofs of The-
orems 1.1 and 1.2. The first one states the existence and regu-
larity result of Beirao da Veiga on the Stokes problem with the
Navier type boundary conditions. The second one provides the
Calderon-Zygmund type inequality for functions obeying no slip
boundary conditions. The third preparation involves two lemmas
presenting several identities on quantities that obey the Navier
boundary conditions. In particular, these identities would facilitate
the integration by parts process involving the dissipative term. We
also provide an Osgood type inequality and its proof. Finally we
define a weak formulation and a lemma stating the existence of
solutions to this weak formulation.

As we know, regularity estimates for solutions of the Navier-
Stokes equations with the classical no-slip boundary condition rely
on the Stokes operator associated with the no slip boundary condi-
tion. For the Stokes problem with Navier type boundary conditions,
H. Beirao da Veiga in [24] established a general existence and
regularity theory. A special consequence of his theory is provided
in the following lemma.

Lemma 2.1. Let 2 C R? be a bounded and connected domain with
sufficient smooth boundary, say 32 € C*>1. Let > 0 be a constant
and let f e L?(£2). Consider the following Stokes problem with the
Navier type boundary condition,

—vAu+Vp=f in £,
V.-u=0 in £,
u-n=0, 2n-Du)-t+au-t=0 on 952.

(2.1)

Then (2.1) has a unique strong solution (u, p) € H?*(2) x H(2)
(p is unique up to an additive constant). Moreover, for a constant
C =C(£2,v),

lullyzio) + IPlni2) < Clfll2g)- (2.2)

For notational convenience, we write

1

Au= —Au+ —Vp. (2.3)
Vv

(2.2) implies

lully2(e) + IPl1e) = CllAUl2g). (24)

The next lemma asserts the Calderon-Zygmund type inequality
for divergence-free velocity fields that obey the slip boundary
conditions (see, e.g., [11]).

Lemma 2.2. Let 2 C R? be a bounded and connected domain with
sufficient smooth boundary, say 32 € C>'. Let n denote the unit
outnormal vector along 3£2. Assume u € [*(£2) satisfies

V-u=0 in £, u-n=0 on 0952.

Let g € [2,00)and w = V x u € L9(£2). Then
Vullige) = Ci(2) qllolle) + C(£2) lull2(q)-
In the special case when §2 is simply connected,
IVulla2) = Ci(£2) gllwlle)-

Due to the Navier boundary conditions, the integration by parts
process in general generates boundary terms. The following two
lemmas facilitate the integration by parts process. They are espe-
cially useful when we handle the dissipative term.

Lemma 2.3. Let 2 C R? be a bounded and connected domain with
sufficient smooth boundary, say 32 € C2. Let «k denote the curvature
of 082. As before, T and n denote the unit tangential and outnormal
vector along 3£2. Assume u € C'(£2).

(1) Assumeu-n = 0on dS2. Writing T - Vu - n = 1.0klt; nj with
Einstein’s summation convention, we have

T-Vu-n+ku-7=0 onas2. (2.5)

(2) Assumeu e C'(£2) satisfies the Navier boundary conditions

u-n=0, 2n-D(u)-t+aou-t=00n02. (2.6)
Then,
n-vVu-t+(e—«)u-t=00n0d8 (2.7)
and
n-Vu~r+%(u-r)=%on39. (2.8)

Especially, » = 0 on 92 ifand only if « = 3.

As we shall see in the subsequent sections, n - Vu - 7 plays a
crucial role in the handling of the dissipation and the identities
stated here will be very handy. We alert that 7 - Vu - n differs from
n- Vu- tin general.

Lemma 2.4. Assume $2 obeys the same conditions as in Lemma 2.3,
Assume that u, v € C%(£2) N C'(£2) and they both satisfy the Navier
boundary conditions, namely (2.6). Then

/Au-vdx: —2/ D(u)-D(v)dx—/ a(a-t)(v-1)dS(x)
2 2 EYe)
(2.9)

= —/ Vu-Vvdx—i—/ (k —a)(u-t)Vv-1)dS(x).
2 a2
(2.10)
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In particular, when u = v, we have

/ Au-udx = —2/ |D(u)|? dx—/ a(u - )% dS(x)
2 2 a2
= —/ |Vu|2dx+f (k — a)(u - 7)% dS(x).
2 982

For the convenience of the readers, we provide the proofs of
Lemmas 2.3 and 2.4. Some components can be found in [10,11].

Proof of Lemma 2.3. Since u - n = 0 on 952, the directional
derivative of u - n along 952 should also be zero, namely
d
— (u-n)=0 on 052.
dr
The product rule then yields

d ul-n+u d n|=0 or

dr dr -
t-Vu-n+u-(r-Vn)=0 on 0d52.
Duetou-n=00nads2,
u=(u-nn+(u-t)tr =(u-t)r on J52.
Therefore, duetox =7 -Vn- 1,
t-Vu-n+(t-Vn-7)(u-7)=0 or
T-Vu-n+xku-7=0 on 095£2.

To prove (2.7), we recall 2D(u) = Vu+(Vu)”

(2.6)

n-Vu-t =2n-Du)- 7 —n-(Vu) -7
—a(u-t)—7-Vu-n

(k —a)(u-1).

,and invoke (2.5) and

To prove (2.8), we write

Vu = D(u) + % (Vu—(vu)') =

D(u) + % (g —Ow) )

10 —-w
n-Vu~r:n-D(u)-t+n-5<w 0>-r

= S+ (-

o w
= ——(u-71 + —
2( ) 2
due to —tiny + Ny, = v + 7 = 1. This completes the proof of
Lemma 2.3. O

Thus

TNy 4+ N172)

Proofs of Lemma 2.4. Adopting Einstein’s summation convention,
we write

/Au-vdx: /(akakuj)vjdx
2 2
= /(ak(aku]'vj)—3kUj3I<Uj)dX
2

=/ nkakujvjdx—/ Vu
002 2

:/ n-Vu~vdS(x)—/ Vu - Vvdx.
082 2

Duetov-n = 0 on d£2, we write v = (v - t)r and obtain, by
Lemma 2.3,

[n-Vu-vdS(x):/ n-Vu-t(v-t)dS(x)
EYe) EXe

- Vvdx

=/ (¢ —a)(u-T)(v-7)dS(x)
a2

Therefore, we have obtained (2.10),
/ Au-vdx:—f Vu-Vvdx + (k —a)(ua-T)v-1)dS(x).
2 2 AR

To prove (2.9), we write out the terms in D(u) - D(v),
2/ D(u) - D(v)dx = [ (Va- Vv + Vu - (Vv)') dx
2 o)
= f Vu- Vvdx + / Ojuk Oy vj dx
Q Q
= / Vu - Vvdx + f O(djugvj) dx
2 Q

:/Vu-Vvdx—i—/ N djukv; dS(x)
2 982

:/Vu
2

Writing v = (v - )7 and applying Lemma 2.3, we have

2/ D(u)-D(v)dx:/ Vu-Vvdx—K/ (u-T)(v-T)dS(x).
7 7 082
(2.11)

Combining (2.10) and (2.11) yields (2.9). This completes the proof
of Lemma2.4. O

~Vvdx+/ v- Vu - ndS(x).
EXe

The following Osgood type inequality will also be used.

Lemma 2.5. et T > OandI = [0, T). Let f > 0 be a measurable
functiononl.Let A> 0andB > 0,andA,B € L'(I). Let M > O be a
fixed constant. Assume f satisfies, for t € I,

% < Af +Bf(InM — Inf).

Then, for t €1,

- JE By M- JE B(ryr e-fOr Als)els Bz g

f(e) < f(oy
Especially, f(0) = O implies f(t) =0 for t € L.
Proof. A quick proofis provided here for reader’s convenience. We

consider the case when f # 0. Dividing by f yields

dIn
Tf <A+ B(nM —Inf)

d(InM —1
_lijTEQSA+MMM—mn
_ % (e.for B(r)dr(]nM - lnf)) < efot B(r)de 4
t
efo Bt 1 = M > In M / 1o BT A\
f =50 Jo

M 5 e fomee g M

f(0)
t
- / elt BT A(5)ds

0

M M
— > | —
f _<f(0)>

f = foy B e

t [ B(r)de
x elo As)e’s BT gg.

e /é B(t)dt

,f eJE B 4T p(5)d

- JE By

This completes the proof of Lemma 2.5. O

Finally we provide the local well-posedness theory for the IBVP
(1.1),(1.3) and (1.6). To do so, we first define the functional setting



W. Hu et al. / Physica D 376-377 (2018) 39-48 43

and the weak formulation of this IBVP. We set
H={vel*2): V-.v=0in2, v.n=0o0n 3R},
V={veH'(2): V.v=0in 2, v.n=0o0n30}.

Definition 2.6. Let T > 0. Assume ug € H and 6y € [> NL*®. (u, §)
withu € [*(0, T; H)N %0, T; V)and 6 € L®(0, T; L[> NL®)isa
weak solution of the IBVP (1.1), (1.3) and (1.6) if, for t € [0, T],

/ vdx—[ fu Vu- vdxds+v[ / Vu - Vvdxds
—v/ / (K—a)(u-r)(v~r)d5(x)ds=/uo-vdx

0o Jog 7}

t
+/ /0e2~vdxds

0 Jo

forallv e V,and

/G(t)wdx—/[/u-vwedxds:/901//dx
o) 0 Je o)

forally € H'.

We have incorporated the result of Lemma 2.4 into this weak
formulation. The global existence of solutions corresponding to the
weak formulation defined in Definition 2.6 can be stated as follows.

Lemma 2.7. Assume 2 obeys the same conditions as in Lemma 2.3.
Let v > 0.Assumeugy € Hand 6y € [>NL>. Then the IBVP (1.1),(1.3)
and (1.6) has a global solution (u, ) in the sense of Definition 2.6
satisfying, forany T > 0,

ueC([0,T; H)NI*(0,T; V), 6 € Cy(0,T;L?)NL>®(0,T;L>)

and

do 5 R
i e L*(0,T; H ).

Lemma 2.7 can be established following the Galerkin approx-
imation approach as in [10,11,25] and [26]. As in the case of the
Navier-Stokes equations in a bounded domain with the Navier
type boundary conditions (see [10]), the boundedness and con-
vergence of the approximation sequence for u can be similarly
proven. The convergence of the approximation sequence for 6 is
in L°(0, T; H~1). We omit further details.

du
— eI*0,T: V),
i ( )

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. The proof is
divided into two major parts. The first part establishes the global
H'bound while the second shows the uniqueness. The proof for the
global L?-bound makes use of Lemmas 2.3 and 2.4. Due to the lack
of the boundary condition for the pressure p, the global H! bound
relies on the existence and regularity result on the Stokes system
stated in Lemma 2.1. Since we do not know if ||Vul|;~ is globally
bounded, the uniqueness proof resorts to the Yudovich technique
and the introduction of a lower regularity counterpart of 6. The rest
is divided into three subsections.

3.1. Global L? bound

This subsection proves the a priori bounds stated in the follow-
ing proposition.

Proposition 3.1. Let 2 C R? be a bounded and connected domain
with sufficient smooth boundary, say 32 € C2. Assume the initial
data (uy, 6p) satisfies the conditions stated in Theorem 1.1. Let (u, 6)

be the corresponding solution of the IBVP (1.1),(1.3) and (1.6
(u, ) obeys the global bounds, for any t > 0,

). Then

10()la < 6ol forany 2 <q < oo,
lu(t)llz < lluoll2 + 6ol 2,

t
/ / |Vul? dxdr < (|luoll2 + tl|6oll2)*-
0 2

Proof of Proposition 3.1. For any 2 < q < oo, we obtain by
multiplying the equation of 8 in (1.1) by 6|6 |92,

1d

= 6161 %u - VO dx.
~ 16 = fgu x

Due to V - u = 0, the divergence theorem and (1.3),

1
f 01019 %u - Vo dx = f/ 1619 - ndS(x) =
Q a Jas

As a consequence, for any t > 0,

16l < l6ollze and  ||6(t)]lie < 160l

Taking the inner product of u with the equation of win (1.1) yields

1d
3dr — Jlu|? i _v/ u-Audx+/99u2dx, (3.1)

where we have invoked the facts, duetou-n = 0on 952,

/(u-V)u ~udx = 1/ (u-n)lul?ds(x) = 0,
2 2 Joe

/u-Vpdx:O.
2

According to Lemma 2.4,

/u-Audx:—Zf |D(u)|2dx—/ o (u- )2 dS(x).
2 2 082

Therefore,

d
allullf2 +4v/ |D(u)|2dx+2v/
2

982

o (u- 1) dS(x)
=2[0ll2lull2,

which, in particular, implies

lu(t)llz < lluoli2 + tl16oll 2

Furthermore, for any t > 0,

t
v / / |D(u)|? dxds,

// (- ) dS(x)ds < (lugllz + ol
a2
By Lemma 2.4,

t
//|vu|2dXdT§(||u0”L2+t”90”L2)2-
0 J

This completes the proof of Proposition 3.1. O

3.2. Global H! bound

This subsection establishes the global H'-bound for u.

Proposition 3.2. Let 2 C R? be a bounded and connected domain
with sufficient smooth boundary, say 32 € C>. Assume the initial
data (ug, 6p) satisfies the conditions stated in Theorem 1.1. Let (u, 0)
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be the corresponding solution of the IBVP (1.1),(1.3) and (1.6
(u, 0) obeys the global H' bounds, for any t > 0,

t
IVu()llz, /0 )2, de

t
2
/(; ”p”Hl(Q)dt S

Proof. Recall the definition of the operator A defined in (2.3).
Dotting the velocity equation in (1.1) by Au yields

vl|Aulf?, = —/ Btu-Audx—/(u-V)u-Audx
2 2

). Then

C(t, o1, 1Boll 2rgo0)-

+ / fe, - Audx.
[?;
By the definition of A in (2.3),

1
—/ atu-Audx:/ atu-Audx—f/ oru - Vpdx.
2 2 vVi/)e

Writing the dot product in terms of the components and adopting
Einstein’s summation convention, we have
/ |Vul|? dx

[atu-Audx: f Bk(atu] o) d
Q 2

||Vu|| / 1 Ok O u; dS(X).
EYe)

S 2dt
Sinceu - n = 0 on 952, we can write

u=(u-7)r on Js2.

By Lemmas 2.3 and 2.4,

/ ocu - Audx
o)

1d
Sy ||Vu|| /mmVu'rat(uw)dS(x)

1d
—lIVullf
2dt

+(k — a)/ (w-7)0(u-t)dS(x)
82

1d
o (IVul, + (@

S Ol 7l )
1d

—5 = (21D +alu- 7l ).

ByV-u=0inf2andu-n=00nas2,

/Btu-Vpdx:/V-(patu)dx:/ pn-dudS(x) =0.
I?; Q

a2

By Holder’s inequality,

/ fe, - Audx
2

By Hélder’s inequality, Ladyzhenskaya’s inequality and (2.4),

v
< 101z lAullz < 5 IAul?; +C 160117

/Q (u- V)u-Audx| < ||Aull [[ull« [ Vull s
<cC IIAUIle IIUII (Va2 IIV(Vu)II
< CllAul} ull 1 Vul 2
< ZnAuan +Cllul% [ Vul,

By Lemma 2.4,

IVall?, = 2Dl +x u- 7l

IA

(1+"") (DI + o - 7l (3.3)

Inserting the estimates above in (3.2) and writing

Y(£) = 21D + o flu- 7%, .

we obtain, after integrating in time,

t
Y(t) + v / lAu(x)|1%, dr < Cl6oll% ¢
0

t
+C/ )% Vul? Y(z)de
0

Gronwall’s inequality and the global bound in Proposition 3.1
imply, for any t > 0,

D), fu- )

12(882)°
t 5 (3.4)
/ lAu(z)ll;> dT < C(¢, laollyt, 6ol 2nre0)-
0

Then, (2.4) and (3.3) lead to the desired global bound in Proposi-
tion3.2. O

3.3. Uniqueness

This subsection proves the uniqueness part of Theorem 1.1.
More precisely, we establish the following proposition. We follow
the idea of Larios, Lunasin, and Titi [15], who write 6 = Ah for a
function h.

Proposition 3.3. Let 2 C R? be a bounded and connected domain
with sufficient smooth boundary, say 32 € C%'. Assume the initial
and boundary conditions as stated in Theorem 1.1. Let (uV, (V) and
(u®, @) be two solutions of the IBVP (1.1),(1.3) and (1.6) satisfying
(1.7). Then (uV), M) = (u?, 6)),

We need the following existence and regularity result on solu-
tions of the Poisson equation with a Neumann boundary condition.
This result can be found in [25] or [27].

Lemma 3.4. Let 2 C R? be a bounded and connected domain with
sufficient smooth boundary, say 92 € C2. Let 1 < p < oo. Assume
f € [P(£2) satisfies

/Q Fox)dx =

Then the Poisson equation with a pure Neumann boundary condition

dg

Ag=f ing2, — =0 onas2
dn

has a unique solution g (up to an additive constant) satisfying

lgllw2rey < C(2, P)If (o)
We now prove Proposition 3.3.
Proof of Proposition 3.3. Let (uV, (") and (u'®, 9) be two

solutions of the IBVP (1.1), (1.3) and (1.6) satisfying (1.7). Define
hY and h® by

, dh™

ARD = 00 in . = 0 onds, (3.5)
dh®

AR? = 0@ in 0. —— =0 oni2. (3.6)

According to Lemma 3.4, h'") and h? exist and are unique (up to ad-
ditive constants). Denote by p'" and p® the associated pressures.
Then the differences

—uV — u(Z)’
— KD h(Z)’

5=p0—p? §=p0_g?
0

u
h = Ah,
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satisfy
3+ (uV Va4 vu® = —Vp + vAada + Ahe,,
V.ia=0,

de AR +u - V(AR) +11- VP =0, (3.7)

(x, 0) = Up(x) =0, O(x,0) = fo(x) =
Dotting the first equation of (3.7) with u yields

1d - . - - O
2dt||u||L2_v/ Au-udx—f u~Vu(2)'udx+/ ii, Ahdx,
Q @
(38)

where, we have invoked the facts, due tou” .n = 0and @ -n = 0,

— / Vp-udx =0.
2
According to Lemma 2.4,

/Aﬁ-ﬁdx:—zf |D(ﬁ)|2dx—/ ol - 1) dS(x).
2 2 082

By Holder’s inequality and Sobolev’s inequality,

/ a-vu®? - adx
2
By Young’s inequality and (3.3)

/ i vu® - @dx
2

51 <2v/ |D(ﬁ)|2dx+v/ a(fl~‘c)2d5(x)>
4 2 a2

2))12 12
+ CIIVu®3 )y

/ uV . via-didx =0,
2

2 ~02
< IVu®|2 1@,

< CIVu@ |z 1]z [ Val .

By the divergence theorem and the definitions of hy in (3.5) and h,

in (3.6),
L e dh _ .
Uy Ahdx = — Uy dS(x) — Vh - Vi, dx
2 a0 dn 2
=—/ Vh - Vii, dx.
2
By Holder’s inequality and (3.3),
[ 2 afs] < 9l 19
2
1 - ~
< - <2v/ |D(w)? dx+v/ afi- ) dS(x))
4 I?) EYe)
+ C|IVhIA

Combining the estimates above with (3.8), we obtain

d -
—||u||L2+2u/ |D(@)|? dx+va/ (@ - 1) dS(x)
a2
< CIvu®@ Ll + C VA% (3.9)

Multiplying the equation of hin (3.7) by h and integrating over £2,
we obtain

1d, _- . -

— —||Vh|3 :/ T (Ah)hdx—i—/ it - VOPhdx.
2 dt L o o

By integration by parts and Holder’s inequality,

/ i VoDhdy = / 605 . Vhdx
2 2

= 16@ = (18I + 1VRI )

(3.10)

The first term on the right of (3.10) is more difficult to handle. By
integrating by parts and invoking the boundary conditions for uV
and h, we have

/u“)-V(AE)de
2
=—/ Aﬁu<”.vﬁdx+/ n-u'Y Ahhds(x)
2 a2
:/ adchu? - Vhdx
2
= _/ ah(ou" - i+ uV . vah)dx
2

+/ dﬁu
a0 dn

=— / 3hdu - Vhdx
2

- Vhds(x)

—/ Vh-vu) . Vhdx, (3.11)
2

where we have invoked the fact that % = 0on 952 due to (3.5)
and (3.6). We employ Yudovich’s method to estimate the term on
(3.11). For notational convenience, we denote it by I

I= / Vh.-vuV . Vhdx.
2

The Yudovich approach applies to the situation when the bound
IV < 00

is unknown, but any L9 bound of Vu‘" does not grow faster than

0(q), namely
v“(1)
up WM (3.12)
q>2 q

Recall that u( satisfies the conditions of (1.7), namely, for any
T >0,

u € 1°(0, T; H'(£2)) N [*(0, T; H*(2)),
which allows us to verify (3.12). In fact, by Sobolev’s embedding
inequality, forany 2 < q < oo,
IVuPllgy < C(2)qIVuPllzig) + C(2)q VYU (g
< C(2)q[VuVll20) + C(2) g I1uV 2 ).

That is,

[ Vull| g
sup ——

1
< Cul )“HZ(Q)'
q=2

(3.13)

For any 2 < q < oo, by Holder’s inequality,

Il < [IVAl VeV | VA] &
) 2 2
< [IVAll2 IVl IIVhII VAl o
Since ") and 6
any 2 < r < 09,

) are in the class (1.7), Lemma 3.4 states that, for

M = |[Vh| < C[[VVhI|r < ClI6]ir < oc.
Therefore, by (3.13), forany 2 < q < o0,

I

IA

2 - 20-1)
CMa |Vhll, " IVug

2 - 2-2
(1) 7 q
Callu g2y M3 VAl ,

IA

- FRp—1
C a2y IVAI% (qu ||Vh||L;’) :



46 W. Hu et al. / Physica D 376-377 (2018) 39-48

By taking q = 21n(M/||Vl~1||Lz). we obtain the minimizer of
2

qM% ||Vi~1||;za, namely
_2
q

I -
min q]\/16||v11||LZ =2e <1nM —1In ||Vh||,_2).
2<gq<o0

Consequently,
) < C a2 IVRIZ (INM — In || Vi 2).
Inserting these bounds in (3.10) leads to
d -
7 1V
= 16 (1803 + 1VRIZ)
+ C M|z VAL (InM = In | VA]2),
which, together with (3.9), yields
d 5 ~
— (||u||f2 + ||Vh||f2> +2v / [D(w)|? dx + v a / (u-7)?dS(x)
dt 7] FYe)
< CIVu? |4 [l + CIVAIZ, + (169 (||ﬁ||fz + ||Vh||fz)
+ CuV g2 IVAIZ (InM — In | Vi 2).

Especially, Y(t) = 8+ [|% + [ VA% with any small § > 0 satisfies

d
¥ = CO+IVu@E + 0@ )Y
+ CuMly2(e) Y (InM — InY)

where we have used the fact z — z(InM — Inz) is an increasing
function for 0 < z < M/e. Applying the Osgood inequality in
Lemma 2.5 and letting § — 0 yield the desired uniqueness

Ial% + V| = o.
This completes the proof of Proposition 3.3. O

4. Proof of Theorem 1.2

This section proves Theorem 1.2. As we explained in Section 3,
it suffices to prove the global a priori bounds and the uniqueness in
the functional setting in (1.9). Naturally we divide the rest of this
section into two parts with the first part devoted to the global a
priori bounds and the second to the uniqueness.

4.1. Global a priori bounds
The global L?-bound for 6 is obtained as in the proof of Propo-
sition 3.1. To prove the global L? bound for u, we take the inner
product of u with the equation of uin (1.2) to obtain
s lullz =v / (uq102u1 + uzanuz)dx-i-/ 6 uy dx, (4.1)
7 2
where we have invoked the facts, duetou-n = 0on 952,

/(u-V)u-udx:O, /u~Vpdx=0.
2 2
Integrating by parts and applying the divergence theorem lead to
v / (ug0u1 + upd1qup) dx = —v / ((0au1 > 4 (31u2)*) dx
2 2
+ Uf (n2u182u1 + n1U281U2)d5(X). (42)
a2

Clearly, for = 91u; — d,uy,

0y = 2 [ (Gaun}? + @ruaf) e
2

By Lemma 2.2, for a constant C > 0,

Vull 2oy = Cllull2g) + Clloll2e)

and thus

IVuly ) = € lullfg, +C fg ((Bur)” + (Bruz)?) .

In the form of matrices, the second term in (4.2) can be written as

v (1121113211] +1’l1U231UZ)dS(X)
002

0 82u1
= . . dS
v/;Qn (aluz 0 ) udsS(x)

=v / n-E(u)-t(u-t)dS(x)
92

+%U /a-qn.(g _Oa))T(ur)dS(x)

=2 (- oPdsw
2 082
1
— =V (—nzf] +n112)a)(u~r)d5(x)
2 Jie
=2 (o dsx)
2 a2

where we have invoked the boundary condition in (1.4). Inserting
the estimates for the terms of (4.2) in (4.1), we have, for C; > 0,

1d v
5 gl g + CovIVulh g + - /m(u TR dS(x)
< CulZ o) + 16olli22) Wl 2(0)-

Gronwall’s inequality then yields the desired global bound, for any
t >0,

t
IO gy + v [ IVUENE g o
0

=< C(t, llaoll 2y, 1160l 2(29)- (4.3)

We now turn to the global H' bound. We resort to the vorticity
equation

0w +u- Vo = v(0111uz — dx2U1) + 016. (4.4)

Taking the inner product of w with (4.4) yields

= / w 010 dX+V/(8111U2 — Oply)wdx. (4.5)
2 2
Invoking the stress free boundary condition in (1.8), we have

/ 9,0 dx = _f 0 1w dx < B||a1w||f2 + C [16oll?. (4.6)
2 2 4

Again, due to the boundary condition in (1.8),
/ (911U — Op2lq) w dX
2
= —/ 811u281wdx +/ 3221.[13260(1){
2 2

=—/(311U2)2 dX-l—/ 011Uz d12ly dX—/(322U1)2dX
2 2 2

+ / 8221,[] 812”2 dx.
2
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By V - u = 0 and the divergence theorem,

/811112812111(1)(

7]

=[ 02(011uz 0quq)d
o)

2/ 02(011uz 0q1uq)d
o)

+ / 812112 311111 dx
2

= —/(311111)2 dx+/ 1y 0111 d1u; dS(X)
el

a2

/ 8112112 a]ll] dx
2

81 312112 31”1 dX

b\

— / nq 812112 81u1 dS(X)
082

Similarly,

/ 82211] 812112 dx
2

= —/(322112)2 dX-l-/ 01(022u7 dpup) dx
f7) 17
- / 02(012u7 Oy ) dx
7]
=- / (d22u)* dx +/ 1y 02214 02Uz dS(x)
o) PYe)
— / ny 812111 82112 dS(X)
a2

Therefore, thanks to t = nt or (11, ©o) = (—n, n1),

/ (0111U2 — da2lq) w dX
2

=—/(311U1)2 dX—/(azzul)de—/(anuz)z dx
2 2 2

- / (2212 )* dx
2

— / 1 811112 81U1 dS(X) — / T 8]2112 81111 dS(X) (47)
082 982

+ / (7] 82211] 32112 dS(X) + / Tl 812“] azuz dS(X) (48)
982 ked

The termsin(4.7)and (4.8) can be written as directional derivatives
along 7. In fact,

- / Ty dqqlip 01Uy dS(X) — / Ty d12l 01Uy dS(X)
a2 a2
d
= —/ 31”1 —81u2 dS(X),
a2 dt
/ Ty Oy 0allp dS(X) + / T1 0121 02Uy dS(x)
082 982
d
2/ 82112 32”1 dS(X)
22 dt

According to the boundary condition in (1.8), d;u; = d,u; = 0 on
082, their directional derivatives along t should also be zero,

dau —dau =0 on 982
g M = et = .

As a consequence,

f(3111U2 — Oply) wdx
o)

=—/(anul)de—/(322U1)2d?<—/(311u2)2dx
I?; 2 I?;

- / (9p22)? dx. (4.9)

2

Inserting (4.6) and (4.9) in (4.5) yields
d

||60||,_z(52 +2v/ ((911u1)? + (d22u1)?

Q

+ (d11u2) +(322U2)2) dx
2, +Cll6ol%

= Zv ” ”

— |01
1

Clearly,

lo1ll?, < 2/ ((01112)* 4 (92u2)%) dx,
2

loawll?, < 2/ ((311u1)* + (322u1)%) dx.
o)
Therefore,
t
||w||§2(m+v/ / Vol dxdr < logl% + C t6ol%,
0 Je
which yields the desired global H' bound.

4.2. Uniqueness

This subsection proves the uniqueness part of Theorem 1.2.
Assume (uV, M) and (u®, @) are two solutions of the IBVP
(1.2),(1.6) and (1.8) satisfying (1.9). Define h'") and h® by

] dh

ARD = g ip 2, el 0 ondsg, (4.10)
n
dh®

AR® = 9@ ip 0, - = 0 onadf2. (4.11)

According to Lemma 3.4, h'" and h® exist and are unique (up to ad-
ditive constants). Denote by p(* and p® the associated pressures.
Then the differences

fmuV—u® Hoph_p@ o _ @)
h=h"—h? 6= Ah
satisfy
Bty + (u - V)il + 1 - VUl = —0,p + vanaily,
deily + (uV - V)i @ - Vu(zz) = —&p + vdnily + Ah,
V.i=0, (4.12)
¥ AR +uV . V(AR) +1a- VoD =0,

i(x, 0) =lip(x) =0, B(x,0) = Gy(x) = 0.

Taking the inner product of (4.12) with (i1, iy, h) and invoking the
boundary conditions for @ and h, we have

S (||u||Lz+||Vh|| )
= U/(ﬂ1822ﬂ1+ﬁ2811ﬁ2)dx—/ ﬁ~Vu(2)~ﬁdx
2 2
+/ﬁ2AEdX
2

+/u(1).v(Aﬁ)de+/ - Vo@hdx. (4.13)
Q 2
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The term associated with dissipation can be handled as in Sec-
tion 4.1 and we have, for constants C; > 0 and C > 0,

- V/(fllazth + 11p9191l2) dx
2

~ ~ Vo -
= Gov IVE(O gy — G + 55 [ (@ e asto
082

The other four terms on the right of (4.13) can be handled as in the
proof of Proposition 3.3. Invoking those bounds yields

d . ~ -
= (181 + 19RI% ) + Cov V(I
+ﬁ/ (it - 7) dS(x)
2 Jie
< CIva® % @)% + C(1+ [10P10) (||ﬁ||iz + ||Vh||§2)

+C uVl2(0y IVAIZ (INM — In || VA 2).

Osgood’s inequality in Lemma 2.5 then yields the desired unique-
ness.
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