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Abstract. The global existence and regularity problem on the magnetohydrodynamic (MHD) equations with fractional
dissipation is not well understood for many ranges of fractional powers. This paper examines this open problem from
a different perspective. We construct a class of large solutions to the d-dimensional (d = 2, 3) MHD equations with any
fractional power. The process presented here actually assesses that an initial data near any function whose Fourier transform
lives in a compact set away from the origin always leads to a unique and global solution.
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1. Introduction

The magnetohydrodynamic (MHD) equations govern the motion of electrically conducting fluids such
as plasmas, liquid metals and electrolytes (see, e.g., [9,23]). They are the centerpiece of the magneto-
hydrodynamics initiated by Alfvén [2]. The MHD equations consist of the Navier–Stokes equations of
fluid dynamics and Maxwell’s equations of electromagnetism. Due to the nonlinear interaction between
the fluid velocity and the magnetic field, the MHD equations can accommodate much richer phenomena
than the Navier–Stokes equations alone. One significant example is that the magnetic field can actually
stabilize the fluid motion [24].

The MHD equations have always been of great interest in mathematics. Mathematically rigorous
foundational work has been laid by Duvaut and Lions [12] and Sermange and Temam [30]. Recently
the MHD equations have gained renewed interests and there have been substantial developments on the
well-posedness problem, especially when the MHD equations involve only partial or fractional dissipation.
A summary on some of the recent results can be found in a review paper [36]. This paper focuses on the
2D and the 3D incompressible MHD equations with fractional dissipation,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + u · ∇u + ν(−Δ)αu = −∇P + b · ∇b, x ∈ R
d, t > 0,

∂tb + u · ∇b + η(−Δ)βb = b · ∇u, x ∈ R
d, t > 0,

∇ · u = ∇ · b = 0, x ∈ R
d, t > 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

(1.1)

where d = 2 or 3, u, P and b represent the velocity, the pressure and the magnetic field, respectively, and
ν > 0, η > 0, α ≥ 0 and β ≥ 0 are real parameters. The fractional Laplacian operator (−Δ)α is defined
via the Fourier transform,

̂(−Δ)αf(ξ) = |ξ|2α f̂(ξ),
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where

f̂(ξ) =
1

(2π)d/2

∫

Rd

e−ix·ξ f(x) dx.

The MHD equations with fractional dissipation given by (1.1) have recently attracted considerable in-
terests, due to their mathematical importance and physical applications. Mathematically (1.1) represents
a two-parameter family of systems and contains the MHD systems with standard Laplacian dissipation
as special cases. (1.1) allows us to simultaneously examine a whole family of equations and potentially
reveals how the solution properties are related to the sizes of α and β. Physically the fractional diffusion
operators can model the anomalous diffusion and have now been widely used in turbulence modeling to
control the effective range of the non-local dissipation (see, e.g., [1,16,17]).

A range of global well-posedness results on (1.1) have been obtained. [34] has shown that (1.1) is
globally well posed if α and β satisfy

α ≥ 1
2

+
d

4
, β > 0, α + β ≥ 1 +

d

2
. (1.2)

Wu [35] was able to sharpen this result by replacing the fractional Laplacian operators by general Fourier
multiplier operators. In particular, (1.1) with a (−Δ)α

log(I−Δ)u and (−Δ)β

log(I−Δ)b for α and β satisfying (1.2) is
also globally well posed. Yamazaki obtained the global regularity for the case when α = 2 and β = 0 and
for a logarithmically reduced fractional dissipation [40]. A further logarithmic refinement was recently
worked out by Yamazaki [41].

More global regularity results beyond those stated above are available for the 2D case. When d = 2,
(1.1) with ν = 0 and β > 1 was shown to always possess global classical solutions by [5] via the Besov
space approach and later by [20] via the parabolic regularity estimates. The global regularity for the
case when α > 0 and β = 1 has also been resolved [13]. A significant improvement of [13] is the global
regularity of (1.1) with β = 1 and (−Δ)αu replaced by log(I − Δ)u [44]. Discovering and exploring a
special structure in the nonlinear terms in the equation of the magnetic field, Dong et al. [10] and [11]
were able to sharpen the results of [5,20] and [13] by removing half of the magnetic diffusion. The critical
case ν = 0 and β = 1 has so far resisted a complete resolution. A very recent work establishes the
global well posedness with only directional hyperviscosity [42]. Many more exciting results on the global
regularity problem are available for the 2D case (see, e.g., [3–5,10,11,13,19,20,32,33,37–40,44]). There
is also important progress on the uniqueness of weak local solutions to the MHD equations with partial
or fractional dissipation (see, e.g., [6,8,14,15,18,26]).

The issue of whether smooth solutions of the MHD equations (1.1) with large initial data can develop
singularity in finite time is still a challenging open problem when α and β are not in the ranges mentioned
above. The perspective of this paper is different. Our goal here is to offer an effective approach of
constructing large solutions of (1.1). A special consequence of our construction assesses that any initial
data close to a function whose Fourier transform supported in a suitable domain away from the origin
always leads to a unique global solution of (1.1). We now describe the construction in some detail. There
are some differences between the 2D and the 3D cases, so we split our consideration into two cases, one
for the 3D case and one for the 2D case, for the sake of clarity. We begin with the 3D case.

To construct large solutions for the 3D MHD equations, we define two suitable vector fields φ0 ∈
C∞

0 (R3) and ψ0 ∈ C∞
0 (R3) with their Fourier transforms satisfying

φ̂0(ξ) = ψ̂0(ξ) =
(

ε−1 log
1
ε

)

χ(ξ), ξ ∈ R
3, (1.3)

where 0 < ε ≤ 1 is a small parameter depending on ν and η and will be specified later. Here, χ is a
smooth cutoff function,

suppχ ⊂ C and χ = 1 on C1,
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where C and C1 denote the annuli,

C :=
{

ξ ∈ R
3 | |ξi − ξj | ≤ ε, i, j = 1, 2, 3, 1 ≤ |ξ|2 ≤ 2

}
,

C1 :=
{

ξ ∈ R
3 | |ξi − ξj | ≤ ε, i, j = 1, 2, 3,

5
4

≤ |ξ|2 ≤ 7
4

}
.

We remark that the set |ξi − ξj | ≤ ε can be realized by restricting ξ ∈ R
3 to the cylinder of radius ε√

3

centered on the line x1 = x2 = x3. Suppose ξ ∈ R
3 satisfies, for any r ∈ R,

x1 = x2 = x3 =
r

3
, ξ1 + ξ2 + ξ3 = r, (1.4)

(ξ1 − x1)2 + (ξ2 − x2)2 + (ξ3 − x3)2 ≤ 1
3
ε2. (1.5)

Then, it is not difficult to see that |ξi − ξj | ≤ ε, i, j = 1, 2, 3. In fact, we have from (1.4) and (1.5)

(ξ1 − x1)2 + (ξ2 − x2)2 + (ξ3 − x3)2

= ξ2
1 + ξ2

2 + ξ2
3 − 2x1(ξ1 + ξ2 + ξ3) + 3x2

1

= ξ2
1 + ξ2

2 + ξ2
3 − 2

r

3
r +

r2

3

= ξ2
1 + ξ2

2 + ξ2
3 − r2

3
≤ 1

3
ε2.

Then,

(ξ1 − ξ2)2 + (ξ1 − ξ3)2 + (ξ2 − ξ3)2

= 2(ξ2
1 + ξ2

2 + ξ2
3) − 2(ξ1ξ2 + ξ1ξ3 + ξ2ξ3)

= 2(ξ2
1 + ξ2

2 + ξ2
3) + (ξ2

1 + ξ2
2 + ξ2

3 − r2)

≤ ε2,

which implies |ξi − ξj | ≤ ε, i, j = 1, 2, 3. Our global existence and regularity result for the 3D MHD
equations can be stated as follows.

Theorem 1.1. Assume φ0 and ψ0 are given by (1.3). Define U0 and B0 by

U0 = ∇ × φ0, B0 = ∇ × ψ0. (1.6)

Let ν > 0, η > 0 and α ≥ 0 and β ≥ 0. Let s > max
{

5
2 − α, 5

2 − β, 1
}
. Consider the 3D MHD equations

in (1.1) with the initial data

u0 = U0 + v0 and b0 = B0 + h0.

If ε, v0 ∈ Hs(R3) and h0 ∈ Hs(R3) satisfy

ε = C1 (min{ν, η})
10
9 and ‖v0‖Hs + ‖h0‖Hs ≤ C2 min{ν, η}

for suitable constants C1 > 0 and C2 > 0, then (1.1) has a unique global solution (u, b) satisfying

u, b ∈ C([0,∞);Hs(R3)), Λαu, Λβb ∈ L2(0,∞;L2(R3)).

The initial data (u0, b0) in Theorem 1.1 is not small. In fact,

‖u0‖L2 ≥ ‖U0‖L2 − ‖v0‖L2

≥
⎡

⎣

∫

R3

|ξ|2|φ̂0(ξ)|2 dξ

⎤

⎦

1
2

− ‖v0‖Hs
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≥
⎡

⎣

∫

C1

|ξ|2|φ̂0(ξ)|2 dξ

⎤

⎦

1
2

− ‖v0‖Hs

≥ C

(

ε−1 log
1
ε

)

ε − ‖v0‖Hs

≥ C log
1
ε

− C2 max{ν, η}, (1.7)

which can be really large when ε is take to be small. Similarly, any homogeneous Ḣs norm is not small
and ‖b0‖Hs is also large. In addition, as we shall see from the proof, Theorem 1.1 remains valid when the
annulus in the definition of C is replaced by any compact set supported away from the origin.

A similar result also holds for the 2D MHD equations in (1.1). There are some minor differences in
the construction process. We define two scalar functions φ̃ ∈ C∞

0 (R2) and ψ̃ ∈ C∞
0 (R2) satisfying

̂̃
φ(ξ) = ̂̃

ψ(ξ) =
(

ε− 1
2 log

1
ε

)

χ1(ξ), ξ ∈ R
2, (1.8)

where χ1 is a smooth cutoff function,

suppχ1 ⊂ D and χ1 = 1 on D1.

Here, D and D1 denote the annuli,

D :=
{

ξ ∈ R
2 | |ξi − ξj | ≤ ε, i, j = 1, 2, 1 ≤ |ξ|2 ≤ 2

}
,

D1 :=
{

ξ ∈ R
2 | |ξi − ξj | ≤ ε, i, j = 1, 2,

5
4

≤ |ξ|2 ≤ 7
4

}
.

We remark that it is not necessary for φ̃ and ψ̃ to be the same. They are taken to be the same here for
the sake of brevity. The global existence and regularity result for the 2D MHD equations can be stated
as follows.

Theorem 1.2. Assume φ̃ and ψ̃ are given by (1.8). Define Ũ and B̃ by

Ũ = ∇⊥φ̃ := (∂2φ̃,−∂1φ̃), B̃ = ∇⊥ψ̃. (1.9)

Let ν > 0, η > 0 and α ≥ 0 and β ≥ 0. Let s > 2. Consider the 2D MHD equations in (1.1) with the
initial data

u0 = Ũ + v0 and b0 = B̃ + h0.

If ε, v0 ∈ Hs(R2) and h0 ∈ Hs(R2) satisfy

ε = C3 (min{ν, η})
5
2 and ‖v0‖Hs + ‖h0‖Hs ≤ C4 min{ν, η}

for suitable constant C3 > 0 and C4 > 0, then (1.1) has a unique global solution (u, b) satisfying

u, b ∈ C([0,∞);Hs(R2)), Λαu, Λβb ∈ L2(0,∞;L2(R2)).

Again the initial data (u0, b0) is not small in Hs(R2). As in (1.7),

‖u0‖L2 , ‖b0‖L2 ≥ C log
1
ε

− C4 max{ν, η}.

Theorem 1.2 remains true if the annulus in the definition of D is changed to any compact set supported
away from the origin.

We mention some related results. Lei et al. [25] constructed smooth large solutions to the 3D Navier–
Stokes equations with the initial data close to a Beltrami flow. More information on the Beltrami flow
can be found in [7,29]. Zhou–Zhu [45] obtained a class of large solutions to the 3D damped Euler near the
Beltrami flow. Family of large solutions have also been obtained for the damped MHD equations and the
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Hall-MHD equations (see [27,28,43]). Our construction presented here is somewhat different and does
not involve Beltrami flow.

To prove Theorem 1.1, we seek a solution of the form

u = U + v, b = B + h,

where U and B are the solutions of the corresponding linearized equations
⎧
⎪⎨

⎪⎩

∂tU + ν(−Δ)αU = 0,

∂tB + η(−Δ)βB = 0,

U(x, 0) = U0(x), B(x, 0) = B0(x).
(1.10)

By the definition of U0 and B0 in Theorem 1.1, U and B can be written as

U(t) = e−ν(−Δ)αtU0 = e−ν(−Δ)αt∇ × φ0, B(t) = e−η(−Δ)βt∇ × ψ0. (1.11)

The equations of (v, h) are given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + u · ∇v + v · ∇U + ν(−Δ)αv = −∇P + b · ∇h + h · ∇B + f,

∂th + u · ∇h + v · ∇B + η(−Δ)βh = b · ∇v + h · ∇U + g,

∇ · v = ∇ · h = 0,

v(x, 0) = v0(x), h(x, 0) = h0(x),

(1.12)

where

f = −U · ∇U + B · ∇B and g = −U · ∇B + B · ∇U. (1.13)

Then, it suffices to show that (1.12) has a unique global solution. Since the local well posedness follows
from as standard procedure, we focus on the global bound via the bootstrap argument. Details on how to
obtain suitable energy inequalities and how the bootstrap argument is applied are given in Sect. 2. The
proof of Theorem 1.2 is similar and is sketched in Sect. 3.

The rest of this paper is divided into two sections. Section 2 proves Theorem 1.1, while Sect. 3 provides
the proof for Theorem 1.2.

2. Proof for Theorem 1.1

This section proves Theorem 1.1. As we described in “Introduction”, it suffices to establish that solutions
of (1.12) remain bounded in Hs for all time. This is verified by deriving suitable energy inequalities and
applying the bootstrap argument. As a preparation, we first present some bounds on U(t) and B(t) given
by (1.11) and f and g defined in (1.13).

Lemma 2.1. Let φ0 and ψ0 be given by (1.3), U0 and B0 by (1.6), U(t) and B(t) by (1.11), and f and g
by (1.13). Then, the following estimates hold.
(1) For any σ ≥ 0 and 2 ≤ q ≤ ∞,

‖Λσφ0‖Lq(R3), ‖Λσψ0‖Lq(R3) ≤ C ε1− 2
q log

1
ε
,

‖ΛσU(t)‖Lq(R3), ‖ΛσB(t)‖Lq(R3) ≤ C ε1− 2
q log

1
ε

e−C0t,

where C0 > 0 is a constant.
(2) For any s > 3

2 ,

‖f‖Hs + ‖g‖Hs ≤ Cε e−2C0t
(‖φ0‖2

Hs+2 + ‖ψ0‖2
Hs+2

)
. (2.1)
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Proof of Lemma 2.1. By Hausdorff–Young inequality,

‖Λσφ0‖Lq(R3) ≤ C‖Λ̂σφ0‖Lq̃(R3) ≤ C

(

ε−1 log
1
ε

)

ε
2
q̃ = C ε1− 2

q log
1
ε
.

Similarly,

‖ΛσU(t)‖Lq(R3) ≤ C ‖Λ̂σU(t)‖Lq̃(R3)

≤ C

(

ε−1 log
1
ε

)

ε
2
q̃ e−C0t = C ε1− 2

q log
1
ε

e−C0t,

where 1
q + 1

q̃ = 1. ‖ΛσB(t)‖Lq(R3) obeys the same bound. To prove (2.1), we rewrite the terms in f and
g so that each term contains a difference ∂i − ∂j with i, j = 1, 2, 3. Clearly, for φ = e−ν(−Δ)αtφ0 and
ψ = e−η(−Δ)βtψ0,

U = ∇ × φ = (∂2φ3 − ∂3φ2, ∂3φ1 − ∂1φ3, ∂1φ2 − ∂2φ1)

and

B = ∇ × ψ = (∂2ψ3 − ∂3ψ2, ∂3ψ1 − ∂1ψ3, ∂1ψ2 − ∂2ψ1).

Then, direct calculations show that the first component of −U · ∇U becomes

− U · ∇U1

= −∂2φ3∂1∂2φ3 + ∂1φ3∂2∂2φ3 + ∂2φ3∂1∂3φ2 − ∂1φ3∂2∂3φ2

+ ∂3φ2∂1∂2φ3 − ∂1φ2∂3∂2φ3 − ∂3φ2∂1∂3φ2 + ∂1φ2∂3∂3φ2

− ∂3φ1∂2∂2φ3 + ∂2φ1∂3∂2φ3 + ∂3φ1∂2∂3φ2 − ∂2φ1∂3∂3φ2

= [(∂1 − ∂2)φ3∂1∂2φ3 + ∂1φ3∂2(∂2 − ∂1)φ3]

+ [(∂2 − ∂1)φ3∂1∂3φ2 + ∂1φ3∂3(∂1 − ∂2)φ2]

+ [(∂3 − ∂1)φ2∂1∂2φ3 + ∂1φ2∂2(∂1 − ∂3)φ3]

+ [(∂1 − ∂3)φ2∂1∂3φ2 + ∂1φ2∂3(∂3 − ∂1)φ2]

+ [(∂2 − ∂3)φ1∂2∂2φ3 + ∂2φ1∂2(∂3 − ∂2)φ3]

+ [(∂3 − ∂2)φ1∂2∂3φ2 + ∂2φ1∂3(∂2 − ∂3)φ2].

Taking the Hs-norm yields,

‖ − U · ∇U1‖Hs ≤ C
(‖(∂1 − ∂2)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂2 − ∂1)φ‖Hs+1

+ ‖(∂2 − ∂1)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂1 − ∂2)φ‖Hs+1

+ ‖(∂3 − ∂1)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂1 − ∂3)φ‖Hs+1

+ ‖(∂1 − ∂3)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂3 − ∂1)φ‖Hs+1

+ ‖(∂2 − ∂3)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂3 − ∂2)φ‖Hs+1

+ ‖(∂3 − ∂2)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂2 − ∂3)φ‖Hs+1

)

≤ C
(‖(∂i − ∂j)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂i − ∂j)φ‖Hs+1

)
,

where i, j in the last line are summed over i, j = 1, 2, 3. Similarly,

‖f‖Hs ≤ C
(‖(∂i − ∂j)φ‖Hs‖φ‖Hs+2 + ‖φ‖Hs+1‖(∂i − ∂j)φ‖Hs+1

+ ‖(∂i − ∂j)ψ‖Hs‖ψ‖Hs+2 + ‖ψ‖Hs+1‖(∂i − ∂j)ψ‖Hs+1

)

≤ Ce−2C0t
(‖(∂i − ∂j)φ0‖Hs‖φ0‖Hs+2 + ‖φ0‖Hs+1‖(∂i − ∂j)φ0‖Hs+1

)

+Ce−2C0t
(‖(∂i − ∂j)ψ0‖Hs‖ψ0‖Hs+2 + ‖ψ0‖Hs+1‖(∂i − ∂j)ψ0‖Hs+1

)
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≤ Cεe−2C0t
(‖φ0‖Hs‖φ0‖Hs+2 + ‖φ0‖Hs+1‖φ0‖Hs+1

)

+Cεe−2C0t
(‖ψ0‖Hs‖ψ0‖Hs+2 + ‖ψ0‖Hs+1‖ψ0‖Hs+1

)

≤ Cεe−2C0t
(‖φ0‖2

Hs+2 + ‖ψ0‖2
Hs+2

)
.

The bound for ‖g‖Hs can be similarly obtained. This proves (2.1). �

In addition, the following commutator and bilinear estimates involving fractional derivatives will be
used (see, e.g., [21,22]).

Lemma 2.2. Let s > 0. Let p, p1, p3 ∈ (1,∞) and p2, p4 ∈ [1,∞] satisfy

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4

.

Then, there exist constants C’s such that

‖[Js, F ]G‖Lp ≤ C
(‖JsF‖Lp1 ‖G‖Lp2 + ‖Js−1G‖Lp3 ‖∇f‖Lp4

)
,

‖Js(F G)‖Lp ≤ C (‖JsF‖Lp1 ‖G‖Lp2 + ‖JsG‖Lp3 ‖F‖Lp4 ) ,

where J = (I − Δ)
1
2 .

Proof of Theorem 1.1. Applying Js to (1.12) and dotting with (Jsv, Jsh) yield

1
2

d

dt

(‖v‖2
Hs + ‖h‖2

Hs

)
+ ν‖v‖2

Hs+α + η‖h‖2
Hs+β ≤

7∑

m=1

Im, (2.2)

where, due to ∇ · v = 0, ∇ · U = 0, ∇ · h = 0 and ∇ · B = 0,

I1 := −
∫

[Js, v · ∇]v · Jsv dx −
∫

[Js, v · ∇]h · Jsh dx,

I2 := −
∫

[Js, U · ∇]v · Jsv dx −
∫

[Js, U · ∇]h · Jsh dx,

I3 :=
∫

[Js, h · ∇]h · Jsv dx +
∫

[Js, h · ∇]v · Jsh dx,

I4 :=
∫

[Js, B · ∇]h · Jsv dx +
∫

[Js, B · ∇]v · Jsh dx,

I5 := −
∫

Js(v · ∇U) · Jsv dx −
∫

Js(v · ∇B) · Jsh dx,

I6 :=
∫

Js(h · ∇B) · Jsv dx +
∫

Js(h · ∇U) · Jsh dx,

I7 :=
∫

Jsf · Jsv dx +
∫

Jsg · Jsh dx.

By Lemma 2.2,

|I1| ≤ C ‖∇v‖L∞ ‖v‖2
Hs + C ‖∇v‖L∞ ‖h‖2

Hs + C ‖∇h‖L∞ ‖v‖Hs ‖h‖Hs

≤ C ‖v‖Hs ‖v‖2
Hs+α + C ‖v‖Hs+α ‖h‖Hs+β ‖h‖Hs

≤ C (‖v‖2
Hs+α + ‖h‖2

Hs+β ) (‖v‖Hs + ‖h‖Hs),

where we have used the Sobolev inequalities

‖∇v‖L∞ ≤ C ‖v‖Hs+α and ‖∇h‖L∞ ≤ C ‖h‖Hs+β
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for s > max{ 5
2 − α, 5

2 − β}. Applying Lemma 2.2 with p1 < ∞ large and 1
p1

+ 1
p2

= 1
2 and Lemma 2.1,

|I2| ≤ C ‖v‖Hs (‖JsU‖Lp1 ‖∇v‖Lp2 + ‖∇U‖L∞‖v‖Hs)
+ C ‖h‖Hs (‖JsU‖Lp1 ‖∇h‖Lp2 + ‖∇U‖L∞‖h‖Hs)

≤ C ε1− 2
p1

(

log
1
ε

)

e−C0t (‖v‖2
Hs + ‖h‖2

Hs),

where we have used the Sobolev inequality ‖∇v‖Lp2 ≤ C ‖v‖Hs for s > 1 and p2 > 2 but close to 2.
For simplicity, we take p1 = 40 (a concrete number is not crucial here). Using the simple fact that, for
0 < ε ≤ 1,

ε
1
20

(

log
1
ε

)

≤ C,

we have

|I2| ≤ C ε
9
10 e−C0t (‖v‖2

Hs + ‖h‖2
Hs).

I3 can be similarly estimated as I1,

|I3| ≤ C (‖v‖2
Hs+α + ‖h‖2

Hs+β ) (‖v‖Hs + ‖h‖Hs).

I4 can be similarly estimated as I2,

|I4| ≤ C ε
9
10 e−C0t (‖v‖2

Hs + ‖h‖2
Hs).

By Lemma 2.2,

|I5| ≤ C ‖v‖Hs (‖Js∇U‖Lp1 ‖v‖Lp2 + ‖∇U‖L∞‖v‖Hs)
+ C ‖v‖Hs (‖Js∇B‖Lp1 ‖h‖Lp2 + ‖∇B‖L∞‖h‖Hs).

Applying Lemma 2.1 and following the estimates for I2, we find

|I5| ≤ C ε
9
10 e−C0t (‖v‖2

Hs + ‖h‖2
Hs).

I6 can be estimated similarly as I5,

|I6| ≤ C ε
9
10 e−C0t (‖v‖2

Hs + ‖h‖2
Hs).

By Lemma 2.1,

|I7| ≤ ‖f‖Hs ‖v‖Hs + ‖g‖Hs ‖h‖Hs

≤ Cεe−2C0t
(‖φ0‖2

Hs+2 + ‖ψ0‖2
Hs+2

)√‖v‖2
Hs + ‖h‖2

Hs .

By Lemma 2.1,

‖φ0‖Hs+2 , ‖ψ0‖Hs+2 ≤ C

(

log
1
ε

)

.

Therefore, if we use the simple fact that, for 0 < ε ≤ 1,

ε
1
20

(

log
1
ε

)

≤ C,

we obtain

|I7| ≤ C ε
9
10 e−2C0t

√

‖v‖2
Hs + ‖h‖2

Hs .
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Inserting the estimates in (2.2) yields
1
2

d
dt

(‖v‖2
Hs + ‖h‖2

Hs

)
+ (ν − C5 (‖v‖Hs + ‖h‖Hs)) ‖v‖2

Hs+α

+ (η − C5 (‖v‖Hs + ‖h‖Hs)) ‖h‖2
Hs+β

≤ C6 ε
9
10 e−C0t (‖v‖2

Hs + ‖h‖2
Hs) + C7 ε

9
10 e−2C0t

√

‖v‖2
Hs + ‖h‖2

Hs . (2.3)

We apply the bootstrap argument to (2.3) to establish that ‖v(t)‖Hs +‖h(t)‖Hs remains uniform bounded
if ‖v0‖Hs + ‖h0‖Hs is taken to be sufficiently small. The bootstrap argument starts with an ansatz that
‖v(t)‖Hs + ‖h(t)‖Hs is bounded, say

‖v(t)‖Hs + ‖h(t)‖Hs ≤ M

and shows that ‖v(t)‖Hs + ‖h(t)‖Hs actually admits a smaller bound, say

‖v(t)‖Hs + ‖h(t)‖Hs ≤ 1
2
M

when ‖v0‖Hs + ‖h0‖Hs is sufficiently small. A rigorous statement of the abstract bootstrap principle can
be found in T. Tao’s book (see [31, p.21]). To apply the bootstrap argument to (2.3), we assume that

‖v(t)‖Hs + ‖h(t)‖Hs ≤ M :=
1

2C5
min{ν, η}. (2.4)

Clearly, when (2.4) is fulfilled, we have

ν − C5 (‖v‖Hs + ‖h‖Hs) > 0, η − C5 (‖v‖Hs + ‖h‖Hs) > 0.

It then follows from (2.3) that
1
2

d

dt

(‖v‖2
Hs + ‖h‖2

Hs

)

≤ C6 ε
9
10 e−C0t (‖v‖2

Hs + ‖h‖2
Hs) + C7 ε

9
10 e−2C0t

√

‖v‖2
Hs + ‖h‖2

Hs

or
d
dt

√

‖v‖2
Hs + ‖h‖2

Hs ≤ C6 ε
9
10 e−C0t

√

‖v‖2
Hs + ‖h‖2

Hs + C7 ε
9
10 e−2C0t.

By Gronwall’s inequality,
√

‖v(t)‖2
Hs + ‖h(t)‖2

Hs ≤ e
C6 ε

9
10

t∫

0
e−C0τdτ(√

‖v0‖2
Hs + ‖h0‖2

Hs

+

t∫

0

C7 ε
9
10 e−2C0τ dτ

)

≤ M1 (‖v0‖Hs + ‖h0‖Hs) + M1ε
9
10 , (2.5)

where

M1 = max
{

eC6C−1
0 ,

1
2
C7C

−1
0 eC6C−1

0

}

.

If v0, h0 and ε satisfy

‖v0‖Hs + ‖h0‖Hs ≤ 1
8
√

2M1C5

min{ν, η}, ε ≤
(

min{ν, η}
8
√

2M1C5

) 10
9

, (2.6)

then (2.5) implies
√

‖v(t)‖2
Hs + ‖h(t)‖2

Hs ≤ M1
min{ν, η}
8
√

2M1C5

+ M1
min{ν, η}
8
√

2M1C5

=
M

2
√

2
.
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That is,

‖v(t)‖Hs + ‖h(t)‖Hs ≤
√

2
√

‖v(t)‖2
Hs + ‖h(t)‖2

Hs ≤ M

2
.

The bootstrap argument then implies that, for all t > 0,

‖v(t)‖Hs + ‖h(t)‖Hs ≤ M

2
=

1
4C5

min{ν, η}

when ‖v0‖Hs + ‖h0‖Hs and ε satisfy (2.6). This proves Theorem 1.1. �

3. Proof of Theorem 1.2

This section proves Theorem 1.2. Since the proof shares many similarities with that for Theorem 1.1, we
shall just provide the details for those parts that differ.

As a preparation of the proof, the following lemma provides upper bounds for Ũ , B̃, f and g in the
2D case.

Lemma 3.1. Let φ̃ and ψ̃ be given by (1.8), and Ũ and B̃ by (1.9). Let Ũ(t) and B̃(t) be given by

Ũ(t) = e−ν(−Δ)αtŨ0, B̃(t) = e−η(−Δ)βtB̃0.

Let f and g be given by (1.13), namely

f = −Ũ · ∇Ũ + B̃ · ∇B̃ and g = −Ũ · ∇B̃ + B̃ · ∇Ũ .

Then, the following estimates hold.
(1) For any σ ≥ 0 and 2 ≤ q ≤ ∞,

‖Λσφ̃‖Lq(R2), ‖Λσψ̃‖Lq(R2) ≤ C ε
1
2− 1

q log
1
ε
,

‖ΛσŨ(t)‖Lq(R2), ‖ΛσB̃(t)‖Lq(R2) ≤ C ε
1
2− 1

q log
1
ε

e−C0t.

(2) For any s > 1,

‖f‖Hs + ‖g‖Hs ≤ Cε e−2C0t
(‖φ̃‖2

Hs+2 + ‖ψ̃‖2
Hs+2

)
. (3.1)

Proof. The first part of the estimates can be similarly proven as in the proof of Lemma 2.1. To prove
(3.1), we write

φ̃ = e−ν(−Δ)αtφ̃0, ψ̃ = e−η(−Δ)βtψ̃0

and rewrite the first component of f as

f1 = −Ũ · ∇Ũ1 + B̃ · ∇B̃1

= ∂1φ̃∂2∂2φ̃ − ∂2φ̃∂1∂2φ̃ − ∂1ψ̃∂2∂2ψ̃ + ∂2ψ̃∂1∂2ψ̃

= (∂1 − ∂2)φ̃∂2∂2φ̃ + ∂2φ̃∂2(∂2 − ∂1)φ̃ + (∂2 − ∂1)ψ̃∂2∂2ψ̃ + ∂2ψ̃∂2(∂1 − ∂2)ψ̃.

By Hölder’s inequality and Sobolev embedding, for s > 1,

‖f1‖Hs ≤ C
(‖(∂1 − ∂2)φ̃‖Hs‖φ̃‖Hs+2 + ‖φ̃‖Hs+1‖(∂2 − ∂1)φ̃‖Hs+1

+ ‖(∂1 − ∂2)ψ̃‖Hs‖ψ̃‖Hs+2 + ‖ψ̃‖Hs+1‖(∂2 − ∂1)ψ̃‖Hs+1

)

≤ Ce−2C0t
(‖(∂1 − ∂2)φ̃‖Hs‖φ̃‖Hs+2 + ‖φ̃‖Hs+1‖(∂2 − ∂1)φ̃‖Hs+1

)

+ Ce−2C0t
(‖(∂1 − ∂2)ψ̃‖Hs‖ψ̃‖Hs+2 + ‖ψ̃‖Hs+1‖(∂2 − ∂1)ψ̃‖Hs+1

)
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≤ Cεe−2C0t
(‖φ̃‖Hs‖φ̃‖Hs+2 + ‖φ̃‖Hs+1‖φ̃‖Hs+1

)

+ Cεe−2C0t
(‖ψ̃‖Hs‖ψ̃‖Hs+2 + ‖ψ̃‖Hs+1‖ψ̃‖Hs+1

)

≤ Cεe−2C0t
(‖φ̃‖2

Hs+2 + ‖ψ̃‖2
Hs+2

)
,

The second component of f admits the same bound. Therefore,

‖f‖Hs ≤ ‖f1‖Hs + ‖f2‖Hs ≤ Cεe−2C0t
(‖φ̃‖2

Hs+2 + ‖ψ̃‖2
Hs+2

)
.

‖g‖Hs can be similarly estimated. This completes the proof of Lemma 3.1. �

The proof of Theorem 1.2 is close to that for Theorem 1.1 and we omit the details.
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