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ABSTRACT. We consider the inviscid limit of the incompressible
Navier-Stokes equations for the case of two-dimensional non-smooth
initial vorticities in Besov spaces. We obtain uniform rates of L? con-
vergence of vorticities of solutions of the Navier Stokes equations to
appropriately mollified solutions of Euler equations. We apply these
results to prove strong convergence in LP of vorticities of Navier-
Stokes solutions to vorticities of the corresponding, not mollified,
Euler solutions. The short time results we obtain are for a class of
solutions that includes vortex patches with rough boundaries and the
long time results for a class of solutions that includes vortex patches
with smooth boundaries.

1. Introduction. In a recent paper ([1]) we discussed the L? limit of solu-
tions u(™%) of the Navier-Stokes equations in the case of vortex patch initial data.
We proved that, if the initial vorticity is a vortex patch with smooth boundary,
then the difference u™¥%) — 4(¥) between the the Navier-Stokes and Euler veloc-
ities corresponding to this initial datum is in L? and converges to zero at a rate
proportional to /v. This is a slower rate of convergence than the rate (O(v))
of the inviscid limit for smooth solutions ([2], [3], [4], [5]). The fact that there
is a drop in the rate of convergence when one passes from the smooth to the
non-smooth regime is not an artifact: there are elementary examples providing
lower bounds.

In the present work we investigate the LP inviscid limit for vorticities. We are
motivated in our study by the statistical equilibrium theory of vortices ([6], [7]).
The initial vorticities are taken in the phase space Y of bounded functions that
vanish outside a compact set. We are mostly interested in long time, uniform
bounds, i.e., bounds that are valid for many turnover times and that have an
explicit rate of vanishing, i.e., we ask whether

W — Bl = Owe)
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with some positive o), and for a time interval that is long compared with the
inverse of the size of the initial vorticity. If the initial vorticity is not a smooth
function we believe that such uniform rates are false in general. The smoothing
effect that is present in the Navier-Stokes equations is absent in the Euler equa-
tions. Because of this, internal transition layers prevent uniform LP bounds
for the difference between vorticities of solutions with the same non-smooth ini-
tial data. Therefore, it seems that a pathwise uniform Eulerian inviscid limit
in this phase space is not possible. The term pathwise refers here to the com-
parison of individual solutions, paths that start from the same initial data. We
find that in order to obtain uniform bounds we need to consider non-pathwise
bounds: the most convenient close companion to a solution of the Navier-Stokes
equation might be a mollified Euler solution. To be more precise, if S™°(¢)b
represents the solution (vorticity) of the Navier-Stokes equation with initial vor-
ticity b € Y, if S¥(t)b represents the solution of the Euler equation and if we
denote by fs = f * ¢s the convolution with a mollifier ¢, then a pathwise
estimate concerns the difference S™° ()b — SF(¢)b and non pathwise estimates
concern differences SN ()b — S (t)bs and SN (t)b— (SE(t)b)é. We find that the
latter is better suited for long time estimates. While S¥(t)bs solves the Euler
equations, (S B (t)b) s solves suitably modified Euler equations.

We prove uniform LP bounds that vanish as v%/(2P) for the difference between
Navier-Stokes and modified Euler solutions corresponding to initial data in Besov
spaces b € YNBy > (R?). We find that the optimal mollification is over a distance
of order § ~ /v, a fact that is consistent with the estimate for the smallest length
scales in two dimensional turbulence. In order to obtain a short time result it is
enough to mollify the initial datum for the Euler evolution. However, in order
to obtain a long time result we have to mollify the solution. Thus, the long time
approximation follows slightly modified Eulerian dynamics. The assumptions
we require for the long time results are satisfied by vortex patches with smooth
boundaries.

The main difficulty is due to the fact that one needs to estimate gradients
of the Eulerian vorticity. We use the method of ([1]) to show that velocity
differences are small and we obtain estimates for the gradients of the Eulerian
vorticity; the smallness of velocity differences counterbalances the large vorticity
gradients. The non pathwise uniform results can be used to obtain non-uniform
pathwise results (that is, pathwise results without rates of convergence). In
particular we prove the strong pathwise convergence in L?, 1 < p < oc.

2. Previous results. The Navier-Stokes equations and the Euler equations
in R? are
ou
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where ¥ > 0 in the case of the Navier-Stokes equations, v = 0 in that of the
Euler equation. The corresponding vorticity

w=Vt.u

satisfies

Oow

ot

and u can be recovered from w via

+u-Vw =rAw,

1

5 (VL log(] - |)) * W,

u
The notation V= refers to the gradient rotated by 90 degrees.
We consider the evolution in the vorticity space Y

Y = LY(R*) N LS°(R?)

of bounded functions with compact support; the norm is the sum of the L' and
L norms. The solutions

SN (t)ag = W™ (1)

and
SE(t)ag = wF(x,t)

of the Navier-Stokes and, respectively Euler equation, corresponding to initial
datum w(z,0) = ag € Y, exist for all ¢ > 0, (¢t € R) and are unique.

A much studied class of examples of @ € Y is that of vortex patches: the
initial vorticity ag(x) is a simple function

N
ag = Z u)(()j)XDj
7j=1

where w(()j ) are real constants and XD, are characteristic functions of bounded,
simply connected domains in R2.
We associate to any a € Y certain basic objects: two functions and four

numbers. The functions are a stream function 1, and a velocity field u,:

ala) = 5= [ og(le ~ yatu)dy,

and
Uq = V5.
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The numbers are a length scale L,, a time scale Ty, a velocity scale U,, and a

kinetic energy E,:
L = lallz1(r2)
lall Lo (r2)

1
T, = —y
||a||L°°(R2)
U = /Nl lall ey,
1
Eo = —5 [ $aly)aly)dy.

The more familiar definition of a kinetic energy would be one-half the square of
the L? norm of u,; unfortunately that number is infinite in this case. In the case
of periodic boundary conditions, the two definitions coincide as is easily seen by
an integration by parts. We also associate to a € Y a distribution 7, (dy) defined
by

[t = [ sata) .

If the initial vorticity is in Y then the fundamental existence result, due to
Yudovich ([9]) is

Theorem 2.1. For every a € Y there exists a unique weak solution
wP(x,t) = SE(t)a
of the Euler equations that satisfies w¥(x,0) = a(z).

The quantities L,, Ty, U,, E, and the distribution 7, are conserved by the
Eulerian flow, i.e.

CSE(t)a - Ca
if C, stands for any of these quantities. The velocity
uP(x,t) = ugr(p)a
satisfies
[u (-, )l < Us

for all t € R. We denote by S the strain matrix — the symmetric part of the
gradient of velocity:

S(z,t) = = (Vu) + (Vu)*).

DN =
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We caution the reader about the double use of the letter S: S(x,t) for the
strain matrix and S (t) and S™9(t) for solution map, semigroup. The notation
is traditional; we hope to avoid confusion by context and the fact that we never
use superscript £ or NS when we refer to the strain matrix and always use
superscripts when we refer to the solution maps.

If the initial vorticity is smooth then the solution is a classical solution. The
following precise estimates will be used in the sequel:

Theorem 2.2. Let a € Y N W1 be a smooth initial vorticity. Then the
strain matriz

S(z,t) = = (Vi) + (Vu®)*)

DN |

satisfies

\V4 o
T 2108, (LYY e 2)1all ).
“alli=

The gradient of the vorticity w® = S¥(t)a satisfies

s‘w

1SC-,8)llze < flall [(

t
IV&2 (-, )l < [ Vallio exp ( R ds).
0

for all time t € R and all p including infinity: 1 < p < oco.
The Lagrangian trajectory map X (x,t) defined by

d
%(X(x,t)) =uP(X(x,t),t), X(z,0)=zx

satisfies

VXDl < op ([ 1S )l

Logarithmic estimates for the strain in terms of the vorticity are familiar;
they have been used in a variety of contexts. One of the earlier uses was in the
proof of the well known Beale, Kato, Majda result regarding the condition for
finite time blow up in the three dimensional Euler equations.

The quantity
/ IS(-, )]l ds

plays an important role. It controls not only the growth of the Lipschitz norm
of particle trajectories and of the L? norms of gradients of vorticity but also the
L2 operator norm of the Gateaux derivative of the velocity solution map. That
means, loosely speaking, that if one desires an initial vorticity a for which the
velocity map uy — u?(-,T) is continuous in L? at b = a one needs the quantity
A(t) to be finite for 0 < ¢t < T. The only class of non-smooth functions a € Y
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that are known to have A(t) finite for all time are vortex patches with smooth
boundaries ([8]) or minor variations thereof.

We start by estimating the difference between velocities of solutions of the
Navier-Stokes equations and Euler equations. Assume that a € Y and b € Y
are initial vorticities for the Euler and respectively Navier-Stokes equation. The
difference

u(z,t) = UGNS (1) — USE(t)a
satisfies
(3t+uNS~V7VA)u+Vq: vAuP —u - VuF.
Using the method of [1] one obtains the following result.

Theorem 2.3. Let a € 'Y be the initial vorticity for a solution of the Euler
equations and b € Y the initial vorticity for a solution of the Navier-Stokes
equations with kinematic viscosity v. If the corresponding velocities, u, and wuy
are such that up — ug s square integrable, then

||UNS( . ’t) — uE( . 7t)HL2(R2) < (Hub — uaHLQ(Rz) + ||G,||L2(R2)\/E) exp (A(t))

holds for all t > 0 with

A(t):/ot

For general a,b € Y, u, — up is not square integrable. Quite obviously,
however, we have the following result.

ds.
LDO

% ((Vu®) + (vu®)")

Proposition 2.4. Assume that b € Y and that a = bs, where
b5 =bx ©s
with os(x) = 6~2p(x/5) a standard mollifier. Then

||ua — ub”Lz(Rz) S C5||b||L2(Rz)

3. Further results. If a = bs and b € Y we have so far a L? bound
™S, 8) = P (-, )l z2gre) < Clbllnacae) 8+ Virt] exp (A5(1)),

where Aj; is computed on the Euler solution S (t)bs. We will keep the notation
b for the initial vorticity for the Navier-Stokes evolution and a for that of the
Euler evolution. A direct consequence of Theorem 2 is as follows.

Lemma 3.1. Letb € Y and let a = bs. Then there exists a nondimensional
constant C' depending only on the mollifier ¢ such that

As(t) < {C—Hong (L(;’ﬂ lexp (20[bll o)) — 1].
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As a consequence of this inequality, it follows that the exponential exp (As(t))
is bounded by a small power of 6! for times that are short compared to 3. In
order to continue the estimates we will make an additional assumption regarding
b: we will assume a certain degree of regularity:

b €Y N (Upes<1 By (R?)) ,

where By *(R?) is the Besov space (see for instance, [10]) of vorticities in L?(R?)
that have an L? modulus of continuity that is Holder continuous of order s. If
b € By (R?), then

6 S
51bsl 2y < € (p) T

where .
[ Ibllrer2) \ ®
P =\ "~
N (b)
and ; ;
Noth) = sup W+ =0 ey
yEeR2 |y|s

Note that, if b is a vortex patch initial datum and if the boundary of the
patch is smooth, then b € Bél/ 2:°° More generally,

Lemma 3.2. Letb = xp be the characteristic function of a bounded domain
whose boundary has boz-counting (fractal) dimension not larger than d < 2:

dr (0D) < d.
Then Y
be B,” " (R?)
for1 <p<oo.
We start with a short time result:

Theorem 3.3. Assume that b € Y N By for some 0 < s < 1. Consider
W (- 1) = SN (1),

and
WP (- t) = SP(t)bs

with 6 = \/vTy.

For every € > 0, there exists an absolute constant v depending only on s, €
such that, if
t

0< —
<z

<7
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then, for every p > 2 there exists a constant K depending on p and b alone,
such that
Hsz( ) — WP (- llLe(re) < Kyp(5—9)/(2p)

holds for all v small enough.

In order to obtain a long time result we need to know that

lim sup As(t) < oo.
6—0

Recall that this quantity is computed by solving a family of Euler equations.
The map 6 — As(t) is not known to be upper semicontinuous. In other words,
even in the class of vortex patches with smooth boundaries, we can not rule
out the possibility that there exists b, a time ¢ and a sequence § — 0 such that
A(t) < oo for the solution starting from b but lims_,¢ As(¢) = co. If this does not
happen then the result above holds without loss of € and without restriction on
time. Remarkably, though, the global estimates can be obtained if one reverses
the order of operations and, instead of mollifying the initial datum and then
solving the Euler equations, one rather solves first the Euler equations and then
mollifies. Let us consider thus b € Y N B3> and assume that

A(t) < oo

for 0 < ¢ <T. In view of the results of [8], this is the case if b represents a vortex
patch with smooth boundaries. Now we consider

wP(x,t) = SE(t)b
and mollify it, i.e., we consider the function
ws(z,t) = (ST (t)b) * 5.

The equation obeyed by the mollified vorticity ws = (S¥(t)b) 518

(0 +us - V)ws = V-T(;(uE,wE),

where
Ts(v,w) = (v —vs) (W — ws) — rs(v,w)

with
rs(v, w)(z) = /so(y) (v(z = dy) — v(@)) (w(z — 0y) — w(x)) dy.

The three dimensional analogues of these formulae were first used in a proof of
the Onsager conjecture ([11]).
We will choose § = +/v/T; and compare ws to w™¥(z,t) = SN (t)b.
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Theorem 3.4. Let b € Y N By™ N BY*?*° with 0 < s < 1. Consider the

solution
WwE(- 1) = SF(t)b

and assume that

A(T):/OT

and that the solution satisfies

% (Vu®) + (Vu)*) dt < 00

Lo

WP e L2(0,T; BY?> 0 By™).
Consider 6 = \/VvT}, and set
ws = wE * Q5

and
us = U,E * Q5

where @g is an appropriate mollifier. Consider the solution
w3 (- 1) = SNS(t)b.

Then there exists K (depending on b only) such that
™ — s 2 < Ko

holds for all 0 <t < T and v small. Moreover, for every p > 2 there exists a
constant K, (depending only on p and and the solution S¥(t)b for 0 <t < T)
such that

™) —ws (- )| < K™/ 3P

holds for all 0 <t < T. In particular, if b is a vortex patch with smooth (CLV)
boundaries then

1S™5 (1)b — (SE(t)b) < Kpt/¢r)

g
holds for all0 <t < T.

As a consequence of the non-pathwise, uniform results one can obtain path-
wise, non-uniform results. We recall a theorem from [1]:

Theorem 3.5. Assume that the initial vorticity b € L' N L™ has compact
support, included in the disk
{z; x| < L}

Then
™S ()l oo (e < IIbll e CPEY.
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where

Q1 = {aslal >c(L+”+Ubt)}
Uy

and C is an absolute constant. Moreover, if we set
z ||
N =4/1+ 2

51l =1+

™S (-, 0)ellsl || o < |1b(-)ell /|, e(Urt/O)+(Tw1/57)

then, for any 6 >0

holds for any p, 1 < p < oco.
We will now state the pathwise results:

Theorem 3.6. Let b € Y N By™, 0 < s < 1, be an initial vorticity and
consider w™N° = SN9(t)b. There exists an absolute constant ~ such that, for all
t € [0,~4Ty] and all Lipschitz functions f that vanish at the origin

lim/f(sz(:c,t) dac:/f(b(:v))d:c

v—0

holds. Consequently, the weak limit of distributions is
lim W[SNS(t)b](dy) = wb(dy).

v—0

The same result holds for arbitrary any time interval [0, T] provided the solution
of the Euler equation w¥ = ST (t)b satisfies the assumptions

beYnBy™®nB2>

A(T)/OT

w? € L2(0,T; BS/?>° 0 By™).

dt < oo
LOO

% ((Vu®) + (Vu®))

and

As a consequence, the strong limit

lim S™ ()b = SE(t)b

v—0

holds in the LP norm for vorticities, for all 1 < p < oo, and the time intervals
corresponding to the two situations considered above.
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4. Proofs. The proof of Theorem 2.2 follows from a few well-known ob-
servations. First a classical inequality for Calderon-Zygmund singular integrals
yields in this case

1 Vw?|| e
[l < ||WE||L°° |:(2 + 7r) +2log, (LwEM:>:| .

[lwF | Lo

Using the conservation laws this becomes

1 VwE| e
5]z~ < flallz~ [(z+ ) +2log, (LIH)] |

llall Lo
The equation obeyed by V+tw¥ is
(0 + u” - V) VEwF = (VuF)VEuE.

Consequently,

t
78l < 9 el oo ([ 11 as),
0

and the theorem follows by combining these facts and a straightforward Gronwall
inequality argument.

The proof of Theorem 2.3 follows closely the proof of the similar pathwise
result in [1] and will not be repeated here. Proposition 2.4 is elementary and
Lemma 3.1 is just a direct application of Theorem 2.2 for the case of a = bs.

We sketch the proof of Lemma 3.2. Consider b = xp and consider a vector
y of small length §. The function b(- 4+ y) — b(-) is supported in a thin open
neighborhood of 9D of width 6. The two dimensional area of this open set
vanishes as §2~%: Indeed one can cover D with N(§) ~ §~¢ balls of radii less or
equal to §. Any point that is at distance at most ¢ from 9D is at distance at most
26 from the center of at least one of these balls. So the union of the balls with
the same centers but with radii 20 covers the § neighborhood of the boundary
and has the advertised area. The LP norm of the difference is bounded by the
1/p power of this area. Note that the argument fails if we replace box-counting
dimension by Hausdorff dimension.

Now we turn to the ideas for the proof of Theorem 3.3. We note first that,
in view of the fact that b € Y N By, it follows that

(2s)/p
1-(2/p) 1,2/ (9
I bl < ol 27 ()
Pb
The equation obeyed by the difference of vorticities

w=w - F
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between solutions of the Navier-Stokes equations with initial data b and solutions
of the Euler equation with initial data a = bs is

(8,5—|—UNS-V—VA)wzquE—u-VwE

where
U= Uy

is the corresponding velocity. We take p > 2, multiply by |w[P~2w and integrate.
The first term on the right hand side is integrated by parts and a straightforward
Holder inequality is applied.

Using the bounds in Theorem 2.2 and Theorem 2.3, one can estimate

/|u\ VWP JwP~ dz < C|b|2 2 |1b]l L. [6+ \/E} | Vbs || 12 exp (2As(t))

and
1//|VwE|2 WP~ dz < Cw||p||" 22 [[bs|%, exp (245(1)).

Now, in view of the fact that b € B3 these would be respectively §° and
vd~2+2s estimates if exp (245(t)) would be bounded uniformly as § — 0. For
general b € Y N By™ we can use Lemma 3.1 to estimate this exponential by a
small power §—¢ for times that are short by comparison to 7. We omit further
details of the proof of Theorem 3.3.

For the long time estimates of Theorem 3.4 we mollify the Euler solution. If
u? solves the Euler equation then us = (u”) solves ([11])

(O +us - V) us + Vps = V- 75(u”, u®),

where
(v, w) = (v —v5) @ (W —ws) — 75(v, W)

with
ra(0, w)(z) = / o) (0 — by) — v(x)) © (w(z — by) — w(z)) dy.

If u™% solves the Navier-Stokes equations with initial velocity u, for b € Y
then the difference v = 4™ — wu; solves

(at +u™ v — VA) u+Vqg=vAus —u-Vus — V- T(;(uE,uE).
Note that, because we assumed (or proved) that

r

% ((VuE) + (qu)*)

ds
LOO
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is finite, then it follows immediately that the same is true for
T
/

The term involving 75 is handled in the following manner. One integrates by
parts and, after using the viscosity, one has to estimate

% ((Vaf)+ (Vuf))|| s

Lo

1
1 ORI
In view of the fact that

[ (=) = uo()llze < Clyl @]z,

it follows that 9
75 (u, u®)[| 2 < C82||b]|.-

But v ~ §2, so we conclude that
[ul| L2 = O(9).

The equation obeyed by the mollified vorticity ws = (S%(t)b) 518

(O +us - V)ws = V- 15(u?, wP).
Consequently, the equation for the difference
w =8N (t), — (ST (t)b),

is
(Bt—i—uNS-V—VA)w =vAws —u - Vws —V~Tg(uE,wE).

Using the fact that ws € By'°°, we obtain
||Vw5\|L2 = 0(5_1+S)

and, together with the estimate ||u||L2 = O(9), it follows that the estimates for
the first two terms on the right-hand side of the equation obeyed by [ |w|? dx
are similar to the corresponding ones in the proof of Theorem 3.3. The estimate
for the term involving 75 uses the viscosity, integration by parts and the estimate

s, wB) 2, < Kv o,

where ) )
K = bl IS @b o
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One obtains thus estimates of the type ||w||r» = O(6%/?) = O(v*/(?")), and this
concludes our presentation of the ideas for the proof of Theorem 3.4. O

We show now hints for the proof of Theorem 3.6. In view of the result of
Theorem 3.5 that was proved in [1] we have

f(N (1)) do ~ / (N, 1)) d.
R2 R2\Q:

(We use =~ to denote quantities that become equal in the limit ¥ — 0.) In view
of the fact that

/ f ((wE(x,t))é) dx ~ / f(WE(x,t)) de = f(WE (1)) dx,
RA\Q: R2\Q: R?

one needs to show that

WE.'E T =~ UJNSI Z.
Jo F(@F D)) e [ Gy

R2\Qy

Using the Lipschitz condition for f and the fact that R?\ @ is compact, one
only needs to have

/ | (2,8) — (WP (2, 1)) ,|” do 0.
R2\Q,

But this follows from the non-pathwise estimates
W™ — ws |2 < Kv*/4,

The proof of the LP convergence follows from the fact that the norms converge

(f(y) = [yl?)
lim 1SN ()bl Lo = 1S (£)bl| e

and the strong convergence of velocities in L? (Theorem 2.3). This last fact
implies that any weak limit as v — 0 of a sequence S™9(t)b for fixed b and t
must be S¥(t)b. Strong convergence in LP for 1 < p < oo follows from weak
convergence and convergence of the norms because these spaces are uniformly
convex.

5. Conclusions. We proved that a strong LP convergence of vorticities of
solutions of Navier-Stokes equations to solutions of Euler equations is possible
if the initial datum belongs to some Besov space, that is for data that have
some additional constraints. In particular, our result holds for initial data that
are vortex patches with smooth boundaries. The additional constraints are not
constants of motion and we strongly believe that for most initial vorticities in Y
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they deteriorate rapidly in time. This would have implications on the statistical
theories of vortices. These theories have as an input at the microscopic level
the distribution 7, (dy) which is assumed to be fixed. This distribution provides
then constraints for a mean field theory whose prediction is that the expected
(average or coarsened) vorticity solves a very particular steady Euler equation
w = F(¢). The function F' depends on the distribution m,. Our results present
few classes of a for which the dependence of the F' on a is robust under slow,
slightly viscous perturbation. We expect that this dependence is not robust in
general.
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