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Abstract. We consider the inviscid limit of the incompressible
Navier-Stokes equations for the case of two-dimensional non-smooth
initial vorticities in Besov spaces. We obtain uniform rates of Lp con-
vergence of vorticities of solutions of the Navier Stokes equations to
appropriately mollified solutions of Euler equations. We apply these
results to prove strong convergence in Lp of vorticities of Navier-
Stokes solutions to vorticities of the corresponding, not mollified,
Euler solutions. The short time results we obtain are for a class of
solutions that includes vortex patches with rough boundaries and the
long time results for a class of solutions that includes vortex patches
with smooth boundaries.

1. Introduction. In a recent paper ([1]) we discussed the L2 limit of solu-
tions u(NS) of the Navier-Stokes equations in the case of vortex patch initial data.
We proved that, if the initial vorticity is a vortex patch with smooth boundary,
then the difference u(NS) − u(E) between the the Navier-Stokes and Euler veloc-
ities corresponding to this initial datum is in L2 and converges to zero at a rate
proportional to

√
ν. This is a slower rate of convergence than the rate (O(ν))

of the inviscid limit for smooth solutions ([2], [3], [4], [5]). The fact that there
is a drop in the rate of convergence when one passes from the smooth to the
non-smooth regime is not an artifact: there are elementary examples providing
lower bounds.

In the present work we investigate the Lp inviscid limit for vorticities. We are
motivated in our study by the statistical equilibrium theory of vortices ([6], [7]).
The initial vorticities are taken in the phase space Y of bounded functions that
vanish outside a compact set. We are mostly interested in long time, uniform
bounds, i.e., bounds that are valid for many turnover times and that have an
explicit rate of vanishing, i.e., we ask whether

‖ω(NS) − ω(E)‖Lp = O(ναp)
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with some positive αp and for a time interval that is long compared with the
inverse of the size of the initial vorticity. If the initial vorticity is not a smooth
function we believe that such uniform rates are false in general. The smoothing
effect that is present in the Navier-Stokes equations is absent in the Euler equa-
tions. Because of this, internal transition layers prevent uniform Lp bounds
for the difference between vorticities of solutions with the same non-smooth ini-
tial data. Therefore, it seems that a pathwise uniform Eulerian inviscid limit
in this phase space is not possible. The term pathwise refers here to the com-
parison of individual solutions, paths that start from the same initial data. We
find that in order to obtain uniform bounds we need to consider non-pathwise
bounds: the most convenient close companion to a solution of the Navier-Stokes
equation might be a mollified Euler solution. To be more precise, if SNS(t)b
represents the solution (vorticity) of the Navier-Stokes equation with initial vor-
ticity b ∈ Y, if SE(t)b represents the solution of the Euler equation and if we
denote by fδ = f ∗ ϕδ the convolution with a mollifier ϕδ, then a pathwise
estimate concerns the difference SNS(t)b − SE(t)b and non pathwise estimates
concern differences SNS(t)b−SE(t)bδ and SNS(t)b−(

SE(t)b
)
δ
. We find that the

latter is better suited for long time estimates. While SE(t)bδ solves the Euler
equations,

(
SE(t)b

)
δ

solves suitably modified Euler equations.
We prove uniform Lp bounds that vanish as νs/(2p) for the difference between

Navier-Stokes and modified Euler solutions corresponding to initial data in Besov
spaces b ∈ Y∩Bs,∞

2 (R2). We find that the optimal mollification is over a distance
of order δ ∼ √

ν, a fact that is consistent with the estimate for the smallest length
scales in two dimensional turbulence. In order to obtain a short time result it is
enough to mollify the initial datum for the Euler evolution. However, in order
to obtain a long time result we have to mollify the solution. Thus, the long time
approximation follows slightly modified Eulerian dynamics. The assumptions
we require for the long time results are satisfied by vortex patches with smooth
boundaries.

The main difficulty is due to the fact that one needs to estimate gradients
of the Eulerian vorticity. We use the method of ([1]) to show that velocity
differences are small and we obtain estimates for the gradients of the Eulerian
vorticity; the smallness of velocity differences counterbalances the large vorticity
gradients. The non pathwise uniform results can be used to obtain non-uniform
pathwise results (that is, pathwise results without rates of convergence). In
particular we prove the strong pathwise convergence in Lp, 1 < p <∞.

2. Previous results. The Navier-Stokes equations and the Euler equations
in R2 are

∂u

∂t
+ u · ∇u = −∇p+ ν∆u

∇ · u = 0
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where ν > 0 in the case of the Navier-Stokes equations, ν = 0 in that of the
Euler equation. The corresponding vorticity

ω = ∇⊥ · u

satisfies
∂ω

∂t
+ u · ∇ω = ν∆ω,

and u can be recovered from ω via

u =
1

2π
(∇⊥ log(| · |)) ∗ ω.

The notation ∇⊥ refers to the gradient rotated by 90 degrees.
We consider the evolution in the vorticity space Y

Y = L1(R2) ∩ L∞
c (R2)

of bounded functions with compact support; the norm is the sum of the L1 and
L∞ norms. The solutions

SNS(t)a0 = ωNS(x, t)

and
SE(t)a0 = ωE(x, t)

of the Navier-Stokes and, respectively Euler equation, corresponding to initial
datum ω(x, 0) = a0 ∈ Y, exist for all t ≥ 0, (t ∈ R) and are unique.

A much studied class of examples of a ∈ Y is that of vortex patches: the
initial vorticity a0(x) is a simple function

a0 =
N∑

j=1

ω
(j)
0 χDj

where ω(j)
0 are real constants and χDj

are characteristic functions of bounded,
simply connected domains in R2.

We associate to any a ∈ Y certain basic objects: two functions and four
numbers. The functions are a stream function ψa and a velocity field ua:

ψa(x) =
1

2π

∫
log(|x− y|)a(y)dy,

and
ua = ∇⊥ψa.
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The numbers are a length scale La, a time scale Ta, a velocity scale Ua, and a
kinetic energy Ea:

La =

√
‖a‖L1(R2)

‖a‖L∞(R2)
,

Ta =
1

‖a‖L∞(R2)
,

Ua =
√

‖a‖L1(R2) ‖a‖L∞(R2),

Ea = −1
2

∫
ψa(y)a(y) dy.

The more familiar definition of a kinetic energy would be one-half the square of
the L2 norm of ua; unfortunately that number is infinite in this case. In the case
of periodic boundary conditions, the two definitions coincide as is easily seen by
an integration by parts. We also associate to a ∈ Y a distribution πa(dy) defined
by ∫

f(y)πa(dy) =
∫

spt a

f(a(x)) dx.

If the initial vorticity is in Y then the fundamental existence result, due to
Yudovich ([9]) is

Theorem 2.1. For every a ∈ Y there exists a unique weak solution

ωE(x, t) = SE(t)a

of the Euler equations that satisfies ωE(x, 0) = a(x).

The quantities La, Ta, Ua, Ea and the distribution πa are conserved by the
Eulerian flow, i.e.

CSE(t)a = Ca

if Ca stands for any of these quantities. The velocity

uE(x, t) = uSE(t)a

satisfies
‖uE( · , t)‖L∞ ≤ Ua

for all t ∈ R. We denote by S the strain matrix – the symmetric part of the
gradient of velocity:

S(x, t) =
1
2

((∇u) + (∇u)∗) .
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We caution the reader about the double use of the letter S: S(x, t) for the
strain matrix and SE(t) and SNS(t) for solution map, semigroup. The notation
is traditional; we hope to avoid confusion by context and the fact that we never
use superscript E or NS when we refer to the strain matrix and always use
superscripts when we refer to the solution maps.

If the initial vorticity is smooth then the solution is a classical solution. The
following precise estimates will be used in the sequel:

Theorem 2.2. Let a ∈ Y ∩W 1,∞ be a smooth initial vorticity. Then the
strain matrix

S(x, t) =
1
2

(
(∇uE) + (∇uE)∗)

satisfies

‖S( · , t)‖L∞ ≤ ‖a‖L∞

[(
2 +

1
π

)
+ 2 log+

(
La

‖∇a‖L∞

‖a‖L∞

)]
exp (2‖a‖L∞t).

The gradient of the vorticity ωE = SE(t)a satisfies

‖∇ωE( · , t)‖Lp ≤ ‖∇a‖Lp exp
(∫ t

0
‖S( · , s)‖L∞ ds

)
.

for all time t ∈ R and all p including infinity: 1 ≤ p ≤ ∞.
The Lagrangian trajectory map X(x, t) defined by

d

dt
(X(x, t)) = uE(X(x, t), t), X(x, 0) = x

satisfies

‖∇X( · , t)‖L∞ ≤ exp (
∫ t

0
‖S( · , s)‖L∞ds).

Logarithmic estimates for the strain in terms of the vorticity are familiar;
they have been used in a variety of contexts. One of the earlier uses was in the
proof of the well known Beale, Kato, Majda result regarding the condition for
finite time blow up in the three dimensional Euler equations.

The quantity

A(t) =
∫ t

0
‖S( · , s)‖L∞ ds

plays an important role. It controls not only the growth of the Lipschitz norm
of particle trajectories and of the Lp norms of gradients of vorticity but also the
L2 operator norm of the Gateaux derivative of the velocity solution map. That
means, loosely speaking, that if one desires an initial vorticity a for which the
velocity map ub �→ uE( · , T ) is continuous in L2 at b = a one needs the quantity
A(t) to be finite for 0 ≤ t ≤ T . The only class of non-smooth functions a ∈ Y
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that are known to have A(t) finite for all time are vortex patches with smooth
boundaries ([8]) or minor variations thereof.

We start by estimating the difference between velocities of solutions of the
Navier-Stokes equations and Euler equations. Assume that a ∈ Y and b ∈ Y
are initial vorticities for the Euler and respectively Navier-Stokes equation. The
difference

u(x, t) = uSNS(t)b − uSE(t)a

satisfies (
∂t + uNS · ∇ − ν∆

)
u+ ∇q = ν∆uE − u · ∇uE .

Using the method of [1] one obtains the following result.

Theorem 2.3. Let a ∈ Y be the initial vorticity for a solution of the Euler
equations and b ∈ Y the initial vorticity for a solution of the Navier-Stokes
equations with kinematic viscosity ν. If the corresponding velocities, ua and ub

are such that ub − ua is square integrable, then

‖uNS( · , t) − uE( · , t)‖L2(R2) ≤
(
‖ub − ua‖L2(R2) + ‖a‖L2(R2)

√
νt

)
exp (A(t))

holds for all t ≥ 0 with

A(t) =
∫ t

0

∥∥∥∥1
2

((∇uE
)

+
(∇uE

)∗)∥∥∥∥
L∞

ds.

For general a, b ∈ Y, ua − ub is not square integrable. Quite obviously,
however, we have the following result.

Proposition 2.4. Assume that b ∈ Y and that a = bδ, where

bδ = b ∗ ϕδ

with ϕδ(x) = δ−2ϕ(x/δ) a standard mollifier. Then

‖ua − ub‖L2(R2) ≤ Cδ‖b‖L2(R2).

3. Further results. If a = bδ and b ∈ Y we have so far a L2 bound

‖uNS( · , t) − uE( · , t)‖L2(R2) ≤ C‖b‖L2(R2)

[
δ +

√
νt

]
exp (Aδ(t)),

where Aδ is computed on the Euler solution SE(t)bδ. We will keep the notation
b for the initial vorticity for the Navier-Stokes evolution and a for that of the
Euler evolution. A direct consequence of Theorem 2 is as follows.

Lemma 3.1. Let b ∈ Y and let a = bδ. Then there exists a nondimensional
constant C depending only on the mollifier ϕ such that

Aδ(t) ≤
[
C + log+

(
Lb

δ

)] [
exp

(
2‖b‖L∞(R2)t

) − 1
]
.
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As a consequence of this inequality, it follows that the exponential exp (Aδ(t))
is bounded by a small power of δ−1 for times that are short compared to Tb. In
order to continue the estimates we will make an additional assumption regarding
b: we will assume a certain degree of regularity:

b ∈ Y ∩ (∪0<s<1B
s,∞
2 (R2)

)
,

where Bs,∞
2 (R2) is the Besov space (see for instance, [10]) of vorticities in L2(R2)

that have an L2 modulus of continuity that is Hölder continuous of order s. If
b ∈ Bs,∞

2 (R2), then

δ‖∇bδ‖L2(R2) ≤ C
(
δ

ρb

)s

‖b‖L2(R2)

where

ρb =
(‖b‖L2(R2)

Ns(b)

) 1
s

and

Ns(b) = sup
y∈R2

‖b( · + y) − b( · )‖L2(R2)

|y|s .

Note that, if b is a vortex patch initial datum and if the boundary of the
patch is smooth, then b ∈ B(1/2),∞

2 . More generally,

Lemma 3.2. Let b = χD be the characteristic function of a bounded domain
whose boundary has box-counting (fractal) dimension not larger than d < 2:

dF (∂D) ≤ d.
Then

b ∈ B
2−d

p ,∞
p (R2)

for 1 ≤ p <∞.

We start with a short time result:

Theorem 3.3. Assume that b ∈ Y ∩Bs,∞
2 for some 0 < s < 1. Consider

ωNS( · , t) = SNS(t)b,

and
ωE( · , t) = SE(t)bδ

with δ =
√
νTb.

For every ε > 0, there exists an absolute constant γ depending only on s, ε
such that, if

0 ≤ t

Tb
≤ γ
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then, for every p ≥ 2 there exists a constant Kb depending on p and b alone,
such that

‖ωNS( · , t) − ωE( · , t)‖Lp(R2) ≤ Kbν
(s−ε)/(2p)

holds for all ν small enough.

In order to obtain a long time result we need to know that

lim sup
δ→0

Aδ(t) <∞.

Recall that this quantity is computed by solving a family of Euler equations.
The map δ �→ Aδ(t) is not known to be upper semicontinuous. In other words,
even in the class of vortex patches with smooth boundaries, we can not rule
out the possibility that there exists b, a time t and a sequence δ → 0 such that
A(t) <∞ for the solution starting from b but limδ→0 Aδ(t) = ∞. If this does not
happen then the result above holds without loss of ε and without restriction on
time. Remarkably, though, the global estimates can be obtained if one reverses
the order of operations and, instead of mollifying the initial datum and then
solving the Euler equations, one rather solves first the Euler equations and then
mollifies. Let us consider thus b ∈ Y ∩Bs,∞

2 and assume that

A(t) <∞

for 0 ≤ t ≤ T . In view of the results of [8], this is the case if b represents a vortex
patch with smooth boundaries. Now we consider

ωE(x, t) = SE(t)b

and mollify it, i.e., we consider the function

ωδ(x, t) =
(
SE(t)b

) ∗ ϕδ.

The equation obeyed by the mollified vorticity ωδ =
(
SE(t)b

)
δ

is

(∂t + uδ · ∇)ωδ = ∇ · τδ(uE , ωE),

where
τδ(v, w) = (v − vδ) (w − wδ) − rδ(v, w)

with

rδ(v, w)(x) =
∫
ϕ(y) (v(x− δy) − v(x)) (w(x− δy) − w(x)) dy.

The three dimensional analogues of these formulae were first used in a proof of
the Onsager conjecture ([11]).

We will choose δ =
√
νTb and compare ωδ to ωNS(x, t) = SNS(t)b.
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Theorem 3.4. Let b ∈ Y ∩ Bs,∞
2 ∩ B(s/2),∞

4 with 0 < s < 1. Consider the
solution

ωE( · , t) = SE(t)b

and assume that

A(T ) =
∫ T

0

∥∥∥∥1
2

(
(∇uE) + (∇uE)∗)∥∥∥∥

L∞
dt <∞

and that the solution satisfies

ωE ∈ L2(0, T ;B(s/2),∞
4 ∩Bs,∞

2 ).

Consider δ =
√
νTb and set

ωδ = ωE ∗ ϕδ

and
uδ = uE ∗ ϕδ

where ϕδ is an appropriate mollifier. Consider the solution

ωNS( · , t) = SNS(t)b.

Then there exists K (depending on b only) such that

‖uNS − uδ‖L2 ≤ K√
ν

holds for all 0 ≤ t ≤ T and ν small. Moreover, for every p ≥ 2 there exists a
constant Kp (depending only on p and and the solution SE(t)b for 0 ≤ t ≤ T )
such that

‖ωNS( · , t) − ωδ( · , t)‖Lp ≤ Kpν
s/(2p)

holds for all 0 ≤ t ≤ T . In particular, if b is a vortex patch with smooth
(C1,γ

)
boundaries then

‖SNS(t)b− (
SE(t)b

)
√

νTb
‖Lp ≤ Kpν

1/(4p)

holds for all 0 ≤ t ≤ T .
As a consequence of the non-pathwise, uniform results one can obtain path-

wise, non-uniform results. We recall a theorem from [1]:

Theorem 3.5. Assume that the initial vorticity b ∈ L1 ∩ L∞ has compact
support, included in the disk

{x; |x| ≤ L}.
Then

‖ωNS( · , t)‖L∞(Qt) ≤ ‖b‖L∞e−(UbL)/ν .
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where

Qt = {x; |x| ≥ C
(
L+

ν

Ub
+ Ubt

)
}

and C is an absolute constant. Moreover, if we set

[[x
δ

]]
=

√
1 +

|x|2
δ2
,

then, for any δ > 0

‖ωNS( · , t)e[[ ·
δ ]]‖Lp ≤ ‖b( · )e[[ · /δ]]‖Lpe(Ubt/δ)+(7νt/δ2)

holds for any p, 1 ≤ p ≤ ∞.

We will now state the pathwise results:

Theorem 3.6. Let b ∈ Y ∩ Bs,∞
2 , 0 < s < 1, be an initial vorticity and

consider ωNS = SNS(t)b. There exists an absolute constant γ such that, for all
t ∈ [0, γTb] and all Lipschitz functions f that vanish at the origin

lim
ν→0

∫
f(ωNS(x, t) dx =

∫
f(b(x)) dx

holds. Consequently, the weak limit of distributions is

lim
ν→0

π[SNS(t)b](dy) = πb(dy).

The same result holds for arbitrary any time interval [0, T ] provided the solution
of the Euler equation ωE = SE(t)b satisfies the assumptions

b ∈ Y ∩Bs,∞
2 ∩B(s/2),∞

4 ,

A(T ) =
∫ T

0

∥∥∥∥1
2

(
(∇uE) + (∇uE)∗)∥∥∥∥

L∞
dt <∞

and
ωE ∈ L2(0, T ;B(s/2),∞

4 ∩Bs,∞
2 ).

As a consequence, the strong limit

lim
ν→0

SNS(t)b = SE(t)b

holds in the Lp norm for vorticities, for all 1 < p < ∞, and the time intervals
corresponding to the two situations considered above.
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4. Proofs. The proof of Theorem 2.2 follows from a few well-known ob-
servations. First a classical inequality for Calderon-Zygmund singular integrals
yields in this case

‖S‖L∞ ≤ ‖ωE‖L∞

[(
2 +

1
π

)
+ 2 log+

(
LωE

‖∇ωE‖L∞

‖ωE‖L∞

)]
.

Using the conservation laws this becomes

‖S‖L∞ ≤ ‖a‖L∞

[(
2 +

1
π

)
+ 2 log+

(
La

‖∇ωE‖L∞

‖a‖L∞

)]
.

The equation obeyed by ∇⊥ωE is(
∂t + uE · ∇) ∇⊥ωE = (∇uE)∇⊥ωE .

Consequently,

‖∇⊥ωE‖L∞ ≤ ‖∇⊥a‖L∞ exp
(∫ t

0
‖S‖L∞ ds

)
,

and the theorem follows by combining these facts and a straightforward Gronwall
inequality argument.

The proof of Theorem 2.3 follows closely the proof of the similar pathwise
result in [1] and will not be repeated here. Proposition 2.4 is elementary and
Lemma 3.1 is just a direct application of Theorem 2.2 for the case of a = bδ.

We sketch the proof of Lemma 3.2. Consider b = χD and consider a vector
y of small length δ. The function b( · + y) − b( · ) is supported in a thin open
neighborhood of ∂D of width δ. The two dimensional area of this open set
vanishes as δ2−d: Indeed one can cover ∂D with N(δ) ∼ δ−d balls of radii less or
equal to δ. Any point that is at distance at most δ from ∂D is at distance at most
2δ from the center of at least one of these balls. So the union of the balls with
the same centers but with radii 2δ covers the δ neighborhood of the boundary
and has the advertised area. The Lp norm of the difference is bounded by the
1/p power of this area. Note that the argument fails if we replace box-counting
dimension by Hausdorff dimension.

Now we turn to the ideas for the proof of Theorem 3.3. We note first that,
in view of the fact that b ∈ Y ∩Bs,∞

2 , it follows that

‖b− bδ‖Lp ≤ C∥∥b∥∥1−(2/p)
L∞

∥∥b∥∥(2/p)
L2

(
δ

ρb

)(2s)/p

.

The equation obeyed by the difference of vorticities

ω = ωNS − ωE
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between solutions of the Navier-Stokes equations with initial data b and solutions
of the Euler equation with initial data a = bδ is(

∂t + uNS · ∇ − ν∆
)
ω = ν∆ωE − u · ∇ωE

where
u = uω

is the corresponding velocity. We take p ≥ 2, multiply by |ω|p−2ω and integrate.
The first term on the right hand side is integrated by parts and a straightforward
Hölder inequality is applied.

Using the bounds in Theorem 2.2 and Theorem 2.3, one can estimate∫
|u| |∇ωE | |ω|p−1 dx ≤ C∥∥b∥∥p−1

L∞
∥∥b∥∥

L2

[
δ +

√
νt

]
‖∇bδ‖L2 exp (2Aδ(t))

and
ν

∫
|∇ωE |2 |ω|p−2 dx ≤ Cν∥∥b∥∥p−2

L∞
∥∥∇bδ

∥∥2
L2 exp (2Aδ(t)).

Now, in view of the fact that b ∈ Bs,∞
2 these would be respectively δs and

νδ−2+2s estimates if exp (2Aδ(t)) would be bounded uniformly as δ → 0. For
general b ∈ Y ∩ Bs,∞

2 we can use Lemma 3.1 to estimate this exponential by a
small power δ−ε for times that are short by comparison to Tb. We omit further
details of the proof of Theorem 3.3.

For the long time estimates of Theorem 3.4 we mollify the Euler solution. If
uE solves the Euler equation then uδ =

(
uE

)
δ

solves ([11])

(∂t + uδ · ∇)uδ + ∇pδ = ∇ · τδ(uE , uE),

where
τδ(v, w) = (v − vδ) ⊗ (w − wδ) − rδ(v, w)

with

rδ(v, w)(x) =
∫
ϕ(y) (v(x− δy) − v(x)) ⊗ (w(x− δy) − w(x)) dy.

If uNS solves the Navier-Stokes equations with initial velocity ub for b ∈ Y
then the difference u = uNS − uδ solves(

∂t + uNS · ∇ − ν∆
)
u+ ∇q = ν∆uδ − u · ∇uδ − ∇ · τδ(uE , uE).

Note that, because we assumed (or proved) that

∫ T

0

∥∥∥∥1
2

((∇uE
)

+
(∇uE

)∗)∥∥∥∥
L∞

ds
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is finite, then it follows immediately that the same is true for

∫ T

0

∥∥∥∥1
2

((∇uE
δ

)
+

(∇uE
δ

)∗)∥∥∥∥
L∞

ds.

The term involving τδ is handled in the following manner. One integrates by
parts and, after using the viscosity, one has to estimate

1
ν

∥∥τδ(uE , uE)
∥∥2

L2 .

In view of the fact that

‖uω( · − y) − uω( · )‖L4 ≤ C|y| ‖ω‖L4 ,

it follows that
‖τδ(uE , uE)‖L2 ≤ Cδ2∥∥b∥∥2

L4 .

But ν ∼ δ2, so we conclude that

‖u‖L2 = O(δ).

The equation obeyed by the mollified vorticity ωδ =
(
SE(t)b

)
δ

is

(∂t + uδ · ∇)ωδ = ∇ · τδ(uE , ωE).

Consequently, the equation for the difference

w = SNS(t)b − (
SE(t)b

)
δ

is (
∂t + uNS · ∇ − ν∆

)
w = ν∆ωδ − u · ∇ωδ − ∇ · τδ(uE , ωE).

Using the fact that ωδ ∈ Bs,∞
2 , we obtain

‖∇ωδ‖L2 = O(δ−1+s)

and, together with the estimate ‖u‖L2 = O(δ), it follows that the estimates for
the first two terms on the right-hand side of the equation obeyed by

∫ |w|p dx
are similar to the corresponding ones in the proof of Theorem 3.3. The estimate
for the term involving τδ uses the viscosity, integration by parts and the estimate

1
ν

∥∥τδ(uE , ωE)
∥∥2

L2 ≤ Kν−1δ2+s,

where
K = C

∥∥b∥∥2
L4

∥∥SE(t)b
∥∥2

B
(s/2),∞
4

.



80 P. Constantin & J. Wu

One obtains thus estimates of the type ‖w‖Lp = O(δs/p) = O(νs/(2p)), and this
concludes our presentation of the ideas for the proof of Theorem 3.4.

We show now hints for the proof of Theorem 3.6. In view of the result of
Theorem 3.5 that was proved in [1] we have∫

R2
f(ωNS(x, t)) dx �

∫
R2\Qt

f(ωNS(x, t)) dx.

(We use � to denote quantities that become equal in the limit ν → 0.) In view
of the fact that∫

R2\Qt

f
((
ωE(x, t)

)
δ

)
dx �

∫
R2\Qt

f(ωE(x, t)) dx =
∫

R2
f(ωE(x, t)) dx,

one needs to show that∫
R2\Qt

f
((
ωE(x, t)

)
δ

)
dx �

∫
R2\Qt

f(ωNS(x, t)) dx.

Using the Lipschitz condition for f and the fact that R2 \ Qt is compact, one
only needs to have ∫

R2\Qt

∣∣ωNS(x, t) − (
ωE(x, t)

)
δ

∣∣2 dx � 0.

But this follows from the non-pathwise estimates

‖ωNS − ωδ‖L2 ≤ Kνs/4.

The proof of the Lp convergence follows from the fact that the norms converge
(f(y) = |y|p)

lim
ν→0

‖SNS(t)b‖Lp = ‖SE(t)b‖Lp

and the strong convergence of velocities in L2 (Theorem 2.3). This last fact
implies that any weak limit as ν → 0 of a sequence SNS(t)b for fixed b and t
must be SE(t)b. Strong convergence in Lp for 1 < p < ∞ follows from weak
convergence and convergence of the norms because these spaces are uniformly
convex.

5. Conclusions. We proved that a strong Lp convergence of vorticities of
solutions of Navier-Stokes equations to solutions of Euler equations is possible
if the initial datum belongs to some Besov space, that is for data that have
some additional constraints. In particular, our result holds for initial data that
are vortex patches with smooth boundaries. The additional constraints are not
constants of motion and we strongly believe that for most initial vorticities in Y
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they deteriorate rapidly in time. This would have implications on the statistical
theories of vortices. These theories have as an input at the microscopic level
the distribution πa(dy) which is assumed to be fixed. This distribution provides
then constraints for a mean field theory whose prediction is that the expected
(average or coarsened) vorticity solves a very particular steady Euler equation
ω = F (ψ). The function F depends on the distribution πa. Our results present
few classes of a for which the dependence of the F on a is robust under slow,
slightly viscous perturbation. We expect that this dependence is not robust in
general.
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