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ABSTRACT. In this paper, we consider the modified quasi-geostrophic
equation

∂tθ + (u · ∇)θ + κΛαθ = 0

u = Λα−1R⊥θ,

with κ > 0, α ∈ (0,1] and θ0 ∈ L2(R2). We remark that the
extra Λα−1 is introduced in order to make the scaling invariance
of this system similar to the scaling invariance of the critical quasi-
geostrophic equations. In this paper, we use Besov space techniques
to prove global existence and regularity of strong solutions to this
system.

1. INTRODUCTION

The 2-dimensional quasi-geostrophic equations are

∂tθ + (u · ∇)θ + κΛαθ = 0 ,(1.1)

u = R⊥θ ,(1.2)

where α > 0, κ á 0, Λ = (−4)1/2 is the Zygmund operator, and

R⊥θ = Λ−1(−∂2θ, ∂θ).
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The case α = 1 (termed as the critical case) arises in the geophysical study of
rotating fluids [10].

In this paper we consider the following modification of the 2 dimensional
dissipative quasi-geostrophic equation:

∂tθ + (u · ∇)θ + κΛαθ = 0 ,(1.3)

u = Λα−1R⊥θ .(1.4)

We assume κ > 0 and α ∈ (0,1].
Note that when α = 1 this is the critical dissipative quasi-geostrophic equa-

tion. The case ofα = 0 arises when θ is the vorticity of a two dimensional damped
inviscid incompressible fluid [3]. When κ > 0, α ∈ (0,1), the dissipation term is
the same as that of the supercritical quasi-geostrophic equation, however the extraΛα−1 in the definition of u makes the drift term (u · ∇)θ scale the same way as
the dissipation Λαθ. Precisely, Equations (1.3)–(1.4) are invariant with respect to
the scaling θε(x, t) = θ(εx, εαt), similar to the scaling invariance of the critical
dissipative quasi-geostrophic equation.

Our goal in this paper is to show the global existences of smooth solutions
to (1.3)–(1.4) with L2 initial data. For the dissipative quasi-geostrophic equations
(1.1)–(1.2), this problem has been extensively studied, partly because several au-
thors have emphasized a deep analogy between the 2-dimensional critical dissipa-
tive quasi-geostrophic equations and the 3-dimensional Navier-Stokes equations.
While global existence of the Navier-Stokes equations remains an outstanding
open problem in fluid dynamics [4, 8], the global existence of the 2-dimensional
quasi-geostrophic equations was recently settled by Kiselev, Nazarov and Volberg
[9] in the periodic case.

Using different techniques, the global existence of smooth solutions to (1.1)–
(1.2) (with α = 1) was proved in general Rn by Caffarelli-Vasseur [1]. In the
supercritical case (0 < α < 1) global existence of smooth solutions is still open.
The works [6, 7] have extended the framework of Caffarelli-Vasseur [1] to apply
in this situation, however two parts of this proof require additional assumptions:
Hölder continuity of weak solutions, and smoothness of Hölder continuous solu-
tions. In this paper, we show that both these difficulties can be resolved for the
modified equation (1.3)–(1.4). We describe briefly outline this below.

Following Caffarelli-Vasseur [1], the first step is to show that Leray-Hopf weak
solutions to (1.3)–(1.4) are in fact L∞. Using a level set energy inequality this
was shown in [1] for general equations of the form (1.3), provided α = 1 and
∇ · u = 0. In the case 0 < α < 1, the same result has been shown in [7] for the
equations (1.1)–(1.2). The latter result directly applies in our situation, and thus
Leray-Hopf weak solutions to (1.3)–(1.4) are automatically L∞.

The next step is to show that an L∞ Leray-Hopf weak solution of (1.3)–(1.4)
is also Hölder continuous, with some small exponent δ. For α = 1, this has again
been shown by Caffarelli-Vasseur [1] using a diminishing oscillation result and the
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natural scaling invariance of the critical quasi-geostrophic equations. The paper
[7] generalizes the diminishing oscillation result in the supercritical case. However
the natural scaling of (1.1)–(1.2) when 0 < α < 1 will not preserve the BMO
norm of u, which is required in order to apply the diminishing oscillation result.
To circumvent this difficulty, [7] assumes that u is apriori C1−α, which gives the
desired control on the BMO norm of u after the appropriate rescaling.

We remark, however, that the natural scaling of (1.3)–(1.4) preserves the
BMO norm of u for any α > 0. Thus the method of Caffarelli-Vasseur can
be applied to show that Leray-Hopf weak L∞ solutions of (1.3)–(1.4) are actually
Cδ for some small δ. However, one can directly deduce this from the work [7].
Note that Equation (1.4) guarantees u ∈ C1−α provided θ ∈ L∞ which we know
to be true for Leray-Hopf weak solutions. Thus, the result of [7] directly applies
in this situation and hence weak solutions of (1.3)–(1.4) are automatically Hölder
continuous with some small exponent δ > 0.

The final step is to show that a Leray-Hopf weak solution which is Cδ is a
smooth solution. The paper [6] shows this for the supercritical quasi-geostrophic
equations provided δ > 1 − α, and that result applies in the present case. Thus
the only case that requires special attention is that when 0 < δ à 1 − α. This is
the main theorem of this paper, and the only theorem for which we present the
complete proof. Following the method of [6], we essentially show that if a Leray-
Hopf weak solution of (1.3)–(1.4) is spatially Ḃδ1

p,∞ for some δ1 ∈ (0,1), then it
is actually Ḃδ′p,∞, where δ′ = δ1 +min{δ1, α}. Successive application of this result
will guarantee our weak solution is in fact a classical solution, which can be shown
to be smooth via well known methods.

In the next section, we establish our notational convention, and prove im-
proved regularity of Hölder continuous solutions to (1.3)–(1.4) (the main theo-
rem). We only provide a proof for two spatial dimensions, but we remark that the
proof goes through almost verbatim in higher dimensions. Finally for complete-
ness, we conclude the paper by stating the required theorems from [1, 6, 7] and
using them to deduce smoothness of weak solutions of (1.3)–(1.4).

2. IMPROVED HÖLDER REGULARITY

We recall that θ is a Leray-Hopf weak solution of (1.3)–(1.4) if

θ ∈ L∞([0,∞), L2(R2))∩ L2([0,∞), Ḣ
α
2 (R2))

and θ solves (1.3)–(1.4) in the distribution sense.
In this section we will show that if for some δ1 ∈ (0,1), a Leray-Hopf weak

solution of (1.3)–(1.4) is spatially Hölder continuous with exponent δ ∈ (0,1),
then it is actually (spatially) Hölder continuous with a better exponent δ′ = δ +
1
2 min{δ,α}.

We begin with a brief description of our notation. Let {φj | j ∈ Z} be a
standard dyadic decomposition of R2. Namely, for each j ∈ Z, φj is a Schwartz
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function with Fourier support (compactly) contained in the annulus 2j−1 < |ξ| <
2j+1 and

∑
j φ̂j(ξ) = 1 for ξ ≠ 0.

We define ∆j by ∆jf = φj ∗ f , Sj =
∑
k<j ∆jf , and the (homogeneous)

Besov norm of f by

∥∥f∥∥Ḃsp,q =

(∑
j

(
2js‖∆jf‖Lp)q)1/q

if q < ∞

sup
j

2js‖∆jf‖Lp if q = ∞

and the homogeneous Besov space Ḃsp,q to be the set of all f such that
‖f‖Ḃsp,q <∞.

We refer the reader to [6] for a concise statement of standard embedding
theorems, and inequalities we use subsequently. For a more detailed account, and
proofs we refer the reader to Stein [13, Chapter 5], Stein [14, p264], Schlag [12],
or the classical papers of Taibleson [15–17].

Finally, we need a lower bound on the (dissipative) term that arises in the pro-
cess of obtaining Lp estimates of (1.3)–(1.4) (see [18], or Chen, Miao, Zhang [2]).

Lemma 2.1. Let α ∈ (0,2), and 2 à p < ∞, j ∈ Z and f be a tempered
distribution on Rn. Then there exists c = c(n,α,p) such that∫

Rn
|∆jf |p−2∆jfΛα∆jf á 2αj

c
‖∆jf‖pp .

We now state and prove the main result of this section.

Theorem 2.2. Suppose θ is a Leray-Hopf weak solution of (1.3)–(1.4) such
that for some δ > 0, we have θ ∈ L∞([t0, t1], Cδ). Then for any t′0 > t0, θ ∈
L∞([t′0, t1], C

δ′) where δ′ = δ+ 1
2 min{δ,α}.

Proof. Let p > 2, and δ1 = (1− 2/p)δ. Then∥∥θt∥∥Ḃδ1
p,∞
= sup

j
2δ1j‖∆jθt‖Lp

à sup
j

2δ1j‖∆jθt‖1−2/p
L∞ ‖∆jθt‖2/p

L2

à ‖θt‖1−2/p
Cδ ‖θt‖2/p

L2

Thus θ ∈ L∞([t0, t1], Ḃδ1
p,∞). Note that we use the notation θt to denote the

function θ(·, t), and not the time derivative of θ.
Now applying ∆j to (1.3) gives

(2.1) ∂t∆jθ + κΛα∆jθ = −∆j(u · ∇θ)
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We know that

∆j(u · ∇θ) = ∑
|j−k|à2

∆j (Sk−1u · ∇∆kθ)+ ∑
|j−k|à2

∆j (∆ku · ∇Sk−1θ)

+
∑
káj−1

∑
|k−l|à1

∆j (∆ku · ∇∆lθ) .
Multiplying (2.1) by p|∆jθ|p−2∆jθ, integrating over R2 and using Lemma 2.1
gives

(2.2) ∂t‖∆jθ‖pLp + κ2αj

c
‖∆jθ‖pLp à I1 + I2 + I3 ,

where

I1 = −p
∑

|j−k|à2

∫
|∆jθ|p−2∆jθ ·∆j (Sk−1u · ∇∆kθ) ,

I2 = −p
∑

|j−k|à2

∫
|∆jθ|p−2∆jθ ·∆j (∆ku · ∇Sk−1θ) ,

I3 = −p
∑
káj−1

∫
|∆jθ|p−2∆jθ · ∑

|j−l|à1

∆j(∆ku · ∇∆lθ) .
We first bound I3 directly using Hölder’s and Bernstein’s inequalities.

|I3| à cp‖∆jθ‖p−1
Lp

∥∥∥∆j∇ · ( ∑
káj−1

∑
|l−k|à1

∆lu∆kθ)∥∥∥Lp(2.3)

à cp‖∆jθ‖p−1
Lp 2j

∑
káj−1

∑
|l−k|à1

‖∆lu‖L∞‖∆kθ‖Lp .
Similarly for I2.

|I2| à c‖∆jθ‖p−1
Lp

∑
|j−k|à2

‖∆ku‖Lp‖∇Sk−1θ‖L∞(2.4)

à cp‖∆jθ‖p−1
Lp

∑
|j−k|à2

∑
màk−1

‖∆ku‖Lp2m‖∆mθ‖L∞ .
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For I1, we note∑
|j−k|à2

∆j(Sk−1u · ∇∆kθ) = ∑
|j−k|à2

[∆j, Sk−1u · ∇]∆kθ + ∑
|j−k|à2

Sk−1u · ∇∆j∆kθ
=

∑
|j−k|à2

[∆j, Sk−1u · ∇]∆kθ + ∑
|j−k|à2

Sju · ∇∆j∆kθ
+

∑
|j−k|à2

(Sk−1u− Sju) · ∇∆j∆kθ ,

where we use the notation [A, B] to denote the commutator AB − BA. Since we
know

∑
|j−k|à2∆j∆k = ∆j , we have

I1 = I11 + I12 + I13

where

I11 = −p
∑

|j−k|à2

∫
|∆jθ|p−2∆jθ · [∆j, Sk−1u · ∇]∆kθ ,

I12 = −p
∫
|∆jθ|p−2∆jθ · (Sju · ∇∆jθ) ,

I13 = −p
∑

|j−k|à2

∫
|∆jθ|p−2∆jθ · ((Sk−1u− Sju) · ∇∆j∆kθ) .

Note that u (and hence Sju) is divergence free, thus I12 = 0. We bound I13
directly using Hölder’s inequality:

|I13| à cp‖∆jθ‖p−1
Lp

∑
|j−k|à2

‖Sk−1u− Sju‖Lp‖∇∆jθ‖L∞(2.5)

à cp‖∆jθ‖p−1
Lp 2(1−δ1)j‖θ‖Cδ1

∑
|j−k|à2

‖∆ku‖Lp
We now split the analysis into two cases.

Case 1. δ1 < α.

In this case, we will show that for any t′0 > t0, θ ∈ L∞([t′0, t1], Ḃ2δ1
p,∞) for any

t > t0. After this the theorem will follow using standard embedding theorems
about Besov spaces.

We first bound I2, I3 further. The idea is to obtain a 2(α−2δ1)j times norms
which are apriori controlled on the right. As we shall see, this doubles the regular-
ity of θ.
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From (2.3) we have

|I3| à cp
∥∥∆jθ∥∥p−1

Lp 2j
∥∥u∥∥Cδ1+1−α

∑
káj−1

2−(δ1+1−α)k∥∥∆kθ∥∥Lp
= cp

∥∥∆jθ∥∥p−1
Lp 2(α−2δ1)j

∥∥u∥∥Cδ1+1−α
∑
káj−1

2(1+2δ1−α)(j−k)2δ1k
∥∥∆kθ∥∥Lp

à cp
∥∥∆jθ∥∥p−1

Lp 2(α−2δ1)j
∥∥θ∥∥Cδ1

∥∥θ∥∥Ḃδ1
p,∞
.

For I2, we have from (2.4)

|I2| = cp
∥∥∆jθ∥∥p−1

Lp
∑

|j−k|à2

∥∥∆ku∥∥Lp2(1−δ1)k
∑

màk−1

2(m−k)(1−δ1)2mδ1
∥∥∆mθ∥∥L∞

à cp
∥∥∆jθ∥∥p−1

Lp
∥∥θ∥∥Cδ1 2(α−2δ1)j

∑
|j−k|à2

2(k−j)(α−2δ1)2(δ1+1−α)k∥∥∆ku∥∥Lp
à cp

∥∥∆jθ∥∥p−1
Lp 2(α−2δ1)j

∥∥θ∥∥Cδ1

∥∥u∥∥Ḃδ1+1−α
p,∞

à cp
∥∥∆jθ∥∥p−1

Lp 2(α−2δ1)j
∥∥θ∥∥Cδ1

∥∥θ∥∥Ḃδ1
p,∞
.

For I1, we bound I11, . . . , I13 individually. For I13 we have from (2.5)

= cp
∥∥∆jθ∥∥p−1

Lp 2(α−2δ1)j
∥∥θ∥∥Cδ1

∑
|j−k|à2

2(j−k)(δ1+1−α)2(δ1+1−α)k∥∥∆ku∥∥Lp
à cp

∥∥∆jθ∥∥p−1
Lp 2(α−2δ1)j

∥∥θ∥∥Cδ1

∥∥θ∥∥Ḃδp,∞
The term I12 = 0 and requires no bounding. Finally we bound the commuta-

tor I11. Note that

[∆j, Sk−1u · ∇]∆kθ = ∫ φj(x −y)[Sk−1u(y)− Sk−1u(x)
] · ∇∆kθ(y)dy .

Since δ1 < α, δ1 + 1−α < 1, thus∥∥Sk−1u(x)− Sk−1u(y)
∥∥
L∞ à

∥∥u∥∥Cδ1+1−α|x −y|δ1+1−α

à c
∥∥θ∥∥Cδ1 |x −y|δ1+1−α.

Hence

|I11| à cp
∥∥∆jθ∥∥p−1

Lp 2−(δ1+1−α)j∥∥θ∥∥Cδ1

∑
|j−k|à2

2k
∥∥∆kθ∥∥Lp

à cp
∥∥∆jθ∥∥p−1

Lp 2(α−2δ1)j
∥∥θ∥∥Cδ1

∑
|j−k|à2

2δ1k
∥∥∆kθ∥∥Lp

à cp
∥∥∆jθ∥∥p−1

Lp 2(α−2δ1)j
∥∥θ∥∥Cδ1

∥∥θ∥∥Ḃδ1
p,∞



2688 PETER CONSTANTIN, GAUTAM IYER & JIAHONG WU

Combining estimates, we have from (2.2)

(2.6) ∂t
∥∥∆jθ∥∥Lp + κ2αj

c
∥∥∆jθ∥∥Lp à c2(α−2δ1)j

∥∥θ∥∥Cδ1

∥∥θ∥∥Ḃδ1
p,∞
,

which upon integration yields

∥∥∆jθt∥∥Lp à e−((κ2αj)/c)(t−t0)∥∥∆jθt0∥∥Lp
+ c

∫ t
t0
e−((κ2αj)/c)(t−s)2(α−2δ1)j

∥∥θs∥∥Cδ1

∥∥θs∥∥Ḃδ1
p,∞

ds.

Multiplying by 22δ1j and taking the supremum in j gives

∥∥θt∥∥Ḃ2δ1
p,∞
à sup

j
e−((κ2αj)/c)(t−t0)22δ1j

∥∥∆jθt0∥∥Lp
+ c
κ

sup
j

(
1− e−((κ2αj)/c)(t−t0)

)
sup

s∈[t0,t]

∥∥θs∥∥Cδ1

∥∥θs∥∥Ḃδ1
p,∞
,

which immediately shows that for any t′0 > t0, θ ∈ L∞([t′0, t1], Ḃ2δ1
p,∞).

Now note that

2δ1 −
2
p
= 2

(
δ− 2

p

)
− 2
p

and hence as p → ∞, 2δ1 − 2/p → 2δ. Thus for some large choice of p, we have
2δ1 − 2/p = 3δ/2. Thus for this p, we have

Ḃ2δ1
p,∞ ⊂ Ḃ3δ/2

∞,∞

by the Besov embedding theorem. Finally, we know L∞∩ Ḃ3δ/2
∞,∞ = C3δ/2, conclud-

ing the proof for Case 1.

Case 2. δ1 á α.

This case can already be handled by result of [6], and we only provide a brief
sketch here for completeness. The main difference here is in the commutator I11,
where we can only get a 2−δ1j on the right. Consequently, this will increase the
regularity of θ by α (and not δ1, as in the previous case).

We deal with the commutator I11 first. Note that δ1 á α implies δ1+1−α á
1, and hence ∥∥Sk−1u(x)− Sk−1u(y)

∥∥
L∞ à ‖∇u‖L∞ |x −y|

à ‖θ‖Cδ1 |x −y|



Global Regularity for a Modified Quasi-geostrophic Equation 2689

This in turn gives

|I11| à cp
∥∥∆jθ∥∥p−1

Lp 2−j
∥∥θ∥∥Cδ1

∑
|j−k|à2

2k
∥∥∆kθ∥∥Lp

à cp
∥∥∆jθ∥∥p−1

Lp 2−δ1j
∥∥θ∥∥Cδ1

∑
|j−k|à2

2δ1k
∥∥∆kθ∥∥Lp

à cp
∥∥∆jθ∥∥p−1

Lp 2−δ1j
∥∥θ∥∥Cδ1

∥∥θ∥∥Ḃδ1
p,∞

The bounds for I2, I3 and I13 are similar to the first case, and we omit the
details. Combining our estimates leads us to (2.6) with 2(α−2δ1)j replaced with
2−δ1j . Multiplying by 2(α+δ1)j and integrating gives

∥∥θt∥∥Ḃδ1+α
p,∞

à sup
j
e−((κ2αj)/c)(t−t0)2(α+δ1)j

∥∥∆jθt0∥∥Lp
+ c
κ

sup
j

(
1− e−((κ2αj)/c)(t−t0)

)
sup

s∈[t0,t]

∥∥θs∥∥Cδ1

∥∥θs∥∥Ḃδ1
p,∞
.

As before, this shows that for any t′0 > t0, θ ∈ L∞([t′0, t1], Ḃδ1+α
p,∞ ).

Now, δ1 +α− 2/p converges to δ+α as p →∞. Thus for some large p, we
must have δ1 + α − 2/p = δ + α/2. Applying the Besov embedding concludes
the proof in Case 2. ❐

3. REGULARITY OF WEAK SOLUTIONS

Given Theorem 2.2, one can use the work [7] and [1] to immediately show the
existence of global smooth solutions to (1.3)–(1.4) with L2 initial data. We recall
the relevant facts from [1, 6, 7] in this section, and briefly outline the proof.

Theorem 3.1 (Caffarelli-Vasseur [1], Constantin-Wu [7]). Let θ0 ∈ L2(R2),
and θ be a Leray-Hopf weak solution of (1.3)–(1.4) with initial data θ. Then for
any t > 0, θt ∈ L∞(R2), and further

∥∥θt∥∥L∞ à c
∥∥θ0

∥∥
L2

(κt)1/α

We remark that Caffarelli-Vasseur [1] only proves Theorem 3.1 for α = 1,
and Constantin-Wu [7] only prove Theorem 3.1 for the system (1.1)–(1.2). The
proof of this theorem in Constantin-Wu [7] however only uses the fact that u is
divergence free, and thus applies directly for the system (1.3)–(1.4). We do not
present the proof of Theorem 3.1 here.

Corollary 3.2. Under the assumptions of Theorem 3.1, for any t > 0, ut ∈
C1−α and further ∥∥ut∥∥C1−α à c

∥∥θ0
∥∥
L2

(κt)1/α
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Proof. This follows immediately from the fact that

∥∥Λα−1f
∥∥
C1−α à c

∥∥f∥∥L∞ . ❐

Corollary 3.3. Under the assumptions of Theorem 3.1, for any t0 > 0, θ ∈
Cδ(R2 × [t0,∞)) for some δ > 0.

Proof. By Corollary 3.2, we know u ∈ L∞([t0,∞), C1−α(R2)). Thus the
results of Constantin and Wu [7] (Theorem 4.1 in particular) applies proving the
corollary. ❐

Lemma 3.4. Suppose θ is a Leray-Hopf weak solution of (1.3)–(1.4). If for any
θ ∈ L∞([t0, t1], Cδ(R2) for some δ ∈ (0,1), then θ ∈ C∞((t0, t1]×R2).

Proof. We apply Theorem 2.2 can be applied repeatedly to show that for any
t′0 > t0, θ ∈ L∞([t′0, t1], Cδ

′
) for some δ′ > 1. Now the space regularity can be

converted to time regularity, showing that θ is a classical solution of (1.3)–(1.4)
on the interval [t′0, t1]. Higher regularity now follows via standard techniques. ❐

Theorem 3.5. For any θ0 ∈ L2(R2), there exists θ ∈ C∞(R2 × (0,∞)) which
solves (1.3)–(1.4) with initial data θ0.

Proof. Global existence of Leray-Hopf weak solutions to (1.3)–(1.4) can be es-
tablished using the standard method of Galerkin approximations (see for instance
[11], in the case of (1.1)–(1.2), or [5] in the case of Navier-Stokes). The proof is
now immediate from the above results. ❐
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