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ABSTRACT. In this paper, we consider the modified quasi-geostrophic
equation

010+ (u-V)0+kA%0 =0
u=A%1R'0,

with k > 0, @ € (0,1] and 0y € L%(R?). We remark that the
extra A%! is introduced in order to make the scaling invariance
of this system similar to the scaling invariance of the critical quasi-
geostrophic equations. In this paper, we use Besov space techniques
to prove global existence and regularity of strong solutions to this
system.

1. INTRODUCTION

The 2-dimensional quasi-geostrophic equations are

(1.1) 010+ (u-V)0+kA%0 =0,

(1.2) u =R*0,
where & > 0, k > 0, A = (—A)1/? is the Zygmund operator, and
R0 =A"1(-0,0,00).
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The case & = 1 (termed as the critical case) arises in the geophysical study of
rotating fluids [10].

In this paper we consider the following modification of the 2 dimensional
dissipative quasi-geostrophic equation:

(1.3) 010+ (u-V)o0+kA%0 =0,
(1.4) u=A%1R'0.

We assume k > 0 and « € (0, 1].

Note that when & = 1 this is the critical dissipative quasi-geostrophic equa-
tion. The case of & = 0 arises when @ is the vorticity of a two dimensional damped
inviscid incompressible fluid [3]. When k > 0, « € (0, 1), the dissipation term is
the same as that of the supercritical quasi-geostrophic equation, however the extra
A%"1in the definition of u makes the drift term (u - V)6 scale the same way as
the dissipation A®6. Precisely, Equations (1.3)—(1.4) are invariant with respect to
the scaling 0, (x,t) = 0(ex, €*t), similar to the scaling invariance of the critical
dissipative quasi-geostrophic equation.

Our goal in this paper is to show the global existences of smooth solutions
to (1.3)—(1.4) with I? initial data. For the dissipative quasi-geostrophic equations
(1.1)—(1.2), this problem has been extensively studied, partly because several au-
thors have emphasized a deep analogy between the 2-dimensional critical dissipa-
tive quasi-geostrophic equations and the 3-dimensional Navier-Stokes equations.
While global existence of the Navier-Stokes equations remains an outstanding
open problem in fluid dynamics [4, 8], the global existence of the 2-dimensional
quasi-geostrophic equations was recently settled by Kiselev, Nazarov and Volberg
[9] in the periodic case.

Using different techniques, the global existence of smooth solutions to (1.1)—
(1.2) (with & = 1) was proved in general R" by Caffarelli-Vasseur [1]. In the
supercritical case (0 < o < 1) global existence of smooth solutions is still open.
The works [6, 7] have extended the framework of Caffarelli-Vasseur [1] to apply
in this situation, however two parts of this proof require additional assumptions:
Hélder continuity of weak solutions, and smoothness of Hélder continuous solu-
tions. In this paper, we show that both these difliculties can be resolved for the
modified equation (1.3)—(1.4). We describe briefly outline this below.

Following Caffarelli-Vasseur [1], the first step is to show that Leray-Hopf weak
solutions to (1.3)—(1.4) are in fact L”. Using a level set energy inequality this
was shown in [1] for general equations of the form (1.3), provided & = 1 and
V -u = 0. In the case 0 < & < 1, the same result has been shown in [7] for the
equations (1.1)—(1.2). The latter result directly applies in our situation, and thus
Leray-Hopf weak solutions to (1.3)—(1.4) are automatically L™.

The next step is to show that an L Leray-Hopf weak solution of (1.3)—(1.4)
is also Holder continuous, with some small exponent 8. For & = 1, this has again
been shown by Caffarelli-Vasseur [1] using a diminishing oscillation result and the
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natural scaling invariance of the critical quasi-geostrophic equations. The paper
[7] generalizes the diminishing oscillation result in the supercritical case. However
the natural scaling of (1.1)—(1.2) when 0 < « < 1 will not preserve the BMO
norm of u, which is required in order to apply the diminishing oscillation result.
To circumvent this difficulty, [7] assumes that u is apriori C'~%, which gives the
desired control on the BMO norm of u after the appropriate rescaling.

We remark, however, that the natural scaling of (1.3)—(1.4) preserves the
BMO norm of u for any « > 0. Thus the method of Caffarelli-Vasseur can
be applied to show that Leray-Hopf weak L™ solutions of (1.3)—(1.4) are actually
C? for some small §. However, one can directly deduce this from the work [7].
Note that Equation (1.4) guarantees u € C'~* provided 6 € L which we know
to be true for Leray-Hopf weak solutions. Thus, the result of [7] directly applies
in this situation and hence weak solutions of (1.3)—(1.4) are automatically Holder
continuous with some small exponent 6 > 0.

The final step is to show that a Leray-Hopf weak solution which is C? is a
smooth solution. The paper [6] shows this for the supercritical quasi-geostrophic
equations provided § > 1 — «, and that result applies in the present case. Thus
the only case that requires special attention is that when 0 < 6 < 1 — «. This is
the main theorem of this paper, and the only theorem for which we present the
complete proof. Following the method of [6], we essentially show that if a Leray-
Hopf weak solution of (1.3)—(1.4) is spatially By for some &; € (0,1), then it
is actually Bg:w, where 6" = 61 + min{d1, &}. Successive application of this result
will guarantee our weak solution is in fact a classical solution, which can be shown
to be smooth via well known methods.

In the next section, we establish our notational convention, and prove im-
proved regularity of Hélder continuous solutions to (1.3)—(1.4) (the main theo-
rem). We only provide a proof for two spatial dimensions, but we remark that the
proof goes through almost verbatim in higher dimensions. Finally for complete-
ness, we conclude the paper by stating the required theorems from [1,6,7] and
using them to deduce smoothness of weak solutions of (1.3)—(1.4).

2. IMPROVED HOLDER REGULARITY
We recall that 0 is a Leray-Hopf weak solution of (1.3)—(1.4) if

0 € I2([0, ), I2(R2)) 1 I2([0, o), F * (R2))

and 0 solves (1.3)—(1.4) in the distribution sense.

In this section we will show that if for some §; € (0, 1), a Leray-Hopf weak
solution of (1.3)—(1.4) is spatially Hélder continuous with exponent § € (0, 1),
then it is actually (spatially) Hélder continuous with a better exponent 8" = 6 +
% min{d, «}.

We begin with a brief description of our notation. Let {¢p; | j € Z} be a
standard dyadic decomposition of R2. Namely, for each j € Z, ¢; is a Schwartz
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function with Fourier support (compactly) contained in the annulus 2/-1 < [§]| <
21" and 3 p;(E) = 1 for € 0.

We define Aj by Ajf = ¢pj x f, Sj = Zk<jAjf, and the (homogeneous)
Besov norm of f by

(S 1af1)%)" " ifq <o
WAllgs, =1 7
s 2r A £l ifq = o

J

and the homogeneous Besov space By, ; to be the set of all f such that

1S 1y, < oo

We refer the reader to [6] for a concise statement of standard embedding
theorems, and inequalities we use subsequently. For a more detailed account, and
proofs we refer the reader to Stein [13, Chapter 5], Stein [14, p264], Schlag [12],
or the classical papers of Taibleson [15-17].

Finally, we need a lower bound on the (dissipative) term that arises in the pro-
cess of obtaining ¥ estimates of (1.3)—(1.4) (see [18], or Chen, Miao, Zhang [2]).

Lemma 2.1. Let x € (0,2), and2 < p < o, j € Z and f be a tempered
distribution on R™. Then there exists ¢ = c(n, &, p) such that

2%

A paa = 218,015

We now state and prove the main result of this section.

Theorem 2.2. Suppose 0 is a Leray-Hopf weak solution of (1.3)—(1.4) such
that for some & > 0, we have 0 € L*([to, t11,C?). Then for any ty > to, 0 €
L™ ([ty, t11,C%) where 8’ = 6 + %min{é,(x}.

Proof. Letp > 2,and 61 = (1 —2/p)d. Then
. = 61j .
HQtHBg’lw 51;p2 140l Le

; 1-2/ 2/
<sup 22 [1A; 0111~ 1A 011757
J

1-2/p o 112/P
< 10cll 5™ " 11072

Thus 0 € L*([to, tl],Bg}o@). Note that we use the notation 0; to denote the
function O(-, t), and not the time derivative of 0.
Now applying A to (1.3) gives

(2.1) atAJ'@ + KA(XAJ'Q = —Aj(u - Vo)
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We know that
Aj(u-V0) = > Aj(Sk—u-VAO) + > Aj(Aku - VSk-10)
[j—kl<2 lj—kl<2

+ > D> Aj(Aku - VAD) .
k=>j-1|k-l|<1

Multiplying (2.1) by p|A;01P7%A;6, integrating over R? and using Lemma 2.1
gives

K2%J
c

(2.2) oA 0117, + 180017, <Iy + I, + I,

where
L=-p > J|A19|p—2A19 < Aj (Sk—1u - VARO)
[J—kl<2

L =-p Z J’|A19|p72AJ'9 . AJ' (Aru - VSk_10) ,
Lj—kl<2

Ii=-p Z J|Aj9|p_2Aj9' Z Aj(Aru - VAO9).
k>j-1 lj-ll<1

We first bound I3 directly using Holder’s and Bernstein’s inequalities.
(2.3) 1 <cplaoll, |av- (Y > auae)l|,
k>j-1|1-k|<1

<cpllaoly,'27 > S Al 1AkO Ly -
k=j—1[l-k[<1

Similarly for I.
(2.4) LI <cllaonl," > Akl IVSk-1011~

lj—k|<2

<cplaoly, S > AUl 2™ A6l -
|j—kl<2m<k-1
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For I, we note

> A (Sko1u - VAD) = D> [AjSkaiu - VIAO + D> Skoqu - VAALO
lj—k|<2 [j—k|<2 [j—kl<2

= > [Aj,Sk-iu-VIAO+ D> Sju- VAAO
lj—kl<2 lj—kl<2

+ > (Skeiu—Sju) - VAjAO,
|j—kl<2

where we use the notation [A, B] to denote the commutator AB — BA. Since we
know > k<2 AjAx = Aj, we have

I = Iy + Iy + 113
where

Li=-p 2 |14;01724;0 - [A),Sk-1u - VIAO,
i—kl<2

Iy =—p J 1A;01P72A;0 - (Sju - VA;0),

Iz=-p > |14;0177%A;0 - ((Sk-1u — Sju) - VAjALO) .
|j—kl<2

Note that u (and hence Sju) is divergence free, thus I, = 0. We bound I3
directly using Holder’s inequality:

(2.5) ILsl <cpllaonl,t > I1Sk-1u - Sjullpr VA0 -
lj—k|<2

,1 _ .
<cpllaj0lf, 297209101lcs; > llAkulle
[j—k|<2

We now split the analysis into two cases.
Case 1. 61 < «.

In this case, we will show that for any t; > to, 0 € L*([t), t1], B;zqfs&)) for any
t > to. After this the theorem will follow using standard embedding theorems
about Besov spaces.

We first bound I», I3 further. The idea is to obtain a 2(%~201)J times norms
which are apriori controlled on the right. As we shall see, this doubles the regular-

ity of 0.
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From (2.3) we have

151 < cpl|a;0l[5 2 [ullcore 3 27Ok |A 0|
k>j-1

= cpl|a;0lf 220 ful[goreia 3T 2020 0GRROK A 6|
k=j-1

< cpla; 0|y 2020 |0]| o 101152, -
For I, we have from (2.4)

Ll =cplla o' > llawulp2i-ovk 3 2m-d=00moi|A, 4| .
lj—kl<2 ms<k—1

< CPHAJQHZ”—IH9HC512(D(7251)]' Z 2(k7j)(0(7251)2(51+170()k‘|AkuHLn
|j—kl<2

< cpl|a; 017" 220110l o [l 1

<cpllajolly 2207 10]|ca 0]l o -
For I}, we bound Iy, ..., I;3 individually. For I3 we have from (2.5)

= cpl[a;0llp 21200 |j]| e > 2URGr 20Ok Ay |y
i-kl<2

< cpl|A;0||F 22001 ]| ellzs .

The term I1, = 0 and requires no bounding. Finally we bound the commuta-
tor I1;. Note that

(A, Skortt - V1A = jqu(x ) [Seu () - Seru(x)] - VAO() dy .
Since §; < &, 01+ 1 — «x < 1, thus

[ISk-1u(x) = Sk1 )| < [Juf]eori-alx — |21

< cll6llen 1x - y 1o

Hence

Il < cpl|ao|ffy 27O =d|jgf| o 3 24|Ac0]|p
lj—k|<2

< cp|[a0|lf ' 20200d o)l o T 29K]|AL0)|
lj—kl<2

< cplla; ol "2720]10]1co1 1615,
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Combining estimates, we have from (2.2)
DLy a )
(2.6) oe]|A;0]p + T||AJ-9||Lp < c2(*=281|9]| oo ||9||Bﬁ}m’
which upon integration yields
14;0:]]p < e~ (ROt A0, ||

t i .
ve [ e8|, o |0, s
O ,

Multiplying by 221/ and taking the supremum in j gives

194135, < sup o (12NN 22017|A 10y, ||
' J

+ S sup (1- e (0 qup | [0y

g
J s€lto,t]

which immediately shows that for any t; > to, 0 € L” ([t), t1], B?fi}o .

Now note that
251—3:2(5—3)—3
p p p
and hence as p — o, 26; — 2/p — 26. Thus for some large choice of p, we have
261 —2/p = 36/2. Thus for this p, we have
5201 36 /2
B’y c BYL
530/2 C35/2

by the Besov embedding theorem. Finally, we know L* N Bz e =
ing the proof for Case 1.

, conclud-

Case 2. 61 > «.

This case can already be handled by result of [6], and we only provide a brief
sketch here for completeness. The main difference here is in the commutator I;1,
where we can only get a 279/ on the right. Consequently, this will increase the
regularity of 0 by « (and not 81, as in the previous case).

We deal with the commutator I first. Note that 6; > « implies 01 +1 -« >
1, and hence

[[Sk—1u(x) = Skm1u W) || < IVulls |x — »|

< [10ll¢csr 1x = ¥
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This in turn gives

Il < cpllaol[fy 27710l > 2K A0
lj—k|<2
<cplla;olllr 2700l > 20 K||Ak)|p
lj—k|<2

< cpl|a;0lp " 2729]|0]lco 1|0 go.

The bounds for I, I3 and I;3 are similar to the first case, aqd we omit the
details. Combining our estimates leads us to (2.6) with 2(*=201)J replaced with
279, Multiplying by 2(®*%1)J and integrating gives

||9t||351+tx < sup e—((Kzﬂ‘f)/c)(t—to)z(a+51)j||Aj9t0||Ln
" i

+ S sup (1 - (20 qup |01 0], -
K selto,t] e
As before, this shows that for any t; > to, 0 € L* ([, tl],BS};“).
Now, 01 + &« — 2/p converges to 0 + & as p — co. Thus for some large p, we
must have 01 + ® — 2/p = 6 + «/2. Applying the Besov embedding concludes
the proof in Case 2. O

3. REGULARITY OF WEAK SOLUTIONS

Given Theorem 2.2, one can use the work [7] and [1] to immediately show the
existence of global smooth solutions to (1.3)—(1.4) with I* initial data. We recall
the relevant facts from [1,6,7] in this section, and briefly outline the proof.

Theorem 3.1 (Caffarelli-Vasseur [1], Constantin-Wu [7]). Let 6y € [*(R?),
and 0 be a Leray-Hopf weak solution of (1.3)—(1.4) with initial data 0. Then for
anyt > 0, 0; € L (R?), and further

[10ollp2
(Kt)l/o(

10ell~ < ¢

We remark that Caffarelli-Vasseur [1] only proves Theorem 3.1 for & = 1,
and Constantin-Wu [7] only prove Theorem 3.1 for the system (1.1)—(1.2). The
proof of this theorem in Constantin-Wu [7] however only uses the fact that u is
divergence free, and thus applies directly for the system (1.3)—(1.4). We do not
present the proof of Theorem 3.1 here.

Corollary 3.2. Under the assumptions of Theorem 3.1, for any t > 0, u; €
C'" and further
[16o]]2

luellere <
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Proof. This follows immediately from the fact that

A fll e < el £l =

Corollary 3.3. Under the assumptions of Theorem 3.1, for any to > 0, 0 €
C%(R2 X [tg, ®)) for some 8 > 0.

Proof- By Corollary 3.2, we know u € L*([ty, ), C'"*(R2)). Thus the
results of Constantin and Wu [7] (Theorem 4.1 in particular) applies proving the
corollary. O

Lemma 3.4. Suppose 0 is a Leray-Hopf weak solution of (1.3)—(1.4). If for any
0e Lw([to,tl],CB([Rz)forsomeé' e (0,1), then 0 € C*((ty, t1] X R2).

Proof. We apply Theorem 2.2 can be applied repeatedly to show that for any
to > to, @ € L™([t), t1]1,C?) for some &' > 1. Now the space regularity can be
converted to time regularity, showing that 0 is a classical solution of (1.3)—(1.4)
on the interval [t, t;]. Higher regularity now follows via standard techniques. ™

Theorem 3.5. For any 0y € I (R2), there exists 0 € C®(R2 x (0, )) which
solves (1.3)—(1.4) with initial data 0.

Proof. Global existence of Leray-Hopf weak solutions to (1.3)—(1.4) can be es-
tablished using the standard method of Galerkin approximations (see for instance
[11], in the case of (1.1)—(1.2), or [5] in the case of Navier-Stokes). The proof is

now immediate from the above results. O

Acknowledgement. Stimulating discussions with Luis Caffarelli are grate-
fully acknowledged. Peter Constantin acknowledges partial support from NSF
grant DMS-0504213. Gautam Iyer acknowledges partial support from NSF grant
DMS-0707920, and thanks the University of Chicago for its hospitality and sup-
port.

REFERENCES

[1] Luis CAFFARELLI and ALEXIS VASSEUR, Drift diffusion equations with fractional diffusion and
the quasi-geostrophic equation (20006), arxiv:math.AP/0608447 .

[2] QIONGLEI CHEN, CHANGXING MIAO, and ZHIFEI ZHANG, A new Bernstein’s inequality
and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys. 271 (2007), 821-838.

[3] ALEXANDRE J. CHORIN and JERROLD E. MARSDEN, A mathematical introduction to fluid
mechanics, 3rd ed., Texts in Applied Mathematics, vol. 4, Springer-Verlag, New York, 1993, ISBN
0-387-97918-2.

[4] PETER CONSTANTIN, Some open problems and research directions in the mathematical study of
Jfluid dynamics, Mathematics Unlimited—2001 and Beyond, Springer, Berlin, 2001, pp. 353
360.



(5]

(6]

(10]
[11]

(12]
(13]

(14]

[16]

[17]

(18]

Global Regularity for a Modified Quasi-geostrophic Equation 20691

PETER CONSTANTIN and CIPRIAN FOIAS, Navier-Stokes equations, Chicago Lectures in
Mathematics, University of Chicago Press, Chicago, IL, 1988, ISBN 0-226-11548-8, 0-226-
11549-6.

PETER CONSTANTIN and JAIHONG WU, Regularity of Hilder continuous solutions of the su-
percritical quasi-geostrophic equation (2007), arxiv:math.AP/0701592.

, Holder continuity of solutions of supercritical dissipative hydrodynamic transport equations
(2007), arxiv:math.AP/0701594.

CHARLES L. FEFFERMAN, Existence and smoothness of the Navier-Stokes equation, The Millen-
nium Prize Problems, Clay Math. Inst., Cambridge, MA, 2006, pp. 57-67.

A. KISELEV, E NAZAROV, and A. VOLBERG, Global well-posedness for the critical 2D dissipative
quasi-geostrophic equation, Invent. Math. 167 (2007), 445-453.

JOSEPH PEDLOSKY, Geophysical Fluid Dynamics, Springer-Verlag, 1982.

SERGE RESNICK, Dynamical problems in nonlinear advective partial differential equations., Ph.
D. Thesis, University of Chicago, 1995.

WILHELM SCHLAG, Lecture notes on Harmonic Analysis (unpublished).

ELIAS M. STEIN, Singular integrals and differentiability properties of functions, Princeton Math-
ematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, ISBN 0-691-
03216-5, With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III.
MITCHELL H. TAIBLESON, On the theory of Lipschitz spaces of distributions on Euclidean n-
space. I. Principal properties, . Math. Mech. 13 (1964), 407-479.

, On the theory of Lipschitz spaces of distributions on Euclidean n-space. II. Translation
invariant operators, duality, and interpolation, J. Math. Mech. 14 (1965), 821-839.

, On the theory of Lipschitz spaces of distributions on Euclidean n-space. III. Smoothness
and integrability of Fourier tansforms, smoothness of convolution kernels, J. Math. Mech. 15 (1966),
973-981.

JIAHONG WU, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces,
SIAM J. Math. Anal. 36 (2004/05), 1014—1030 (electronic).

PETER CONSTANTIN:
Department of Mathematics
University of Chicago

5734 University Avenue
Chicago, IL 60637, U.S.A.

E-MAIL: const@cs.uchicago.edu

GAUTAM IYER:

Department of Mathematics
Stanford University

Stanford, CA 94305, U.S.A.
E-MAIL: gi1242@stanford.edu

JIAHONG WU:

Department of Mathematics

Oklahoma State University

Stillwater, OK 74078, U.S.A.

E-MAIL: jiahong@math.okstate.edu



2692 PETER CONSTANTIN, GAUTAM IYER ¢ JIAHONG WU

KEY WORDS AND PHRASES:
blow up, global regularity, quasi-geostrophic equations, nonlocal equations.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 35Q35 (76B47).

Received: March 30th, 2008.
Article electronically published on September 8th, 2008.



	1. Introduction
	2. Improved Hölder Regularity
	3. Regularity of Weak Solutions
	Acknowledgement.

	References

