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ABSTRACT. The 2D quasi-geostrophic (QG) equation is a two
dimensional model of the 3D incompressible Euler equations.
When dissipation is included in the model, then solutions always
exist if the dissipation’s wave number dependence is super-linear.
Below this critical power, the dissipation appears to be insuffi-
cient. For instance, it is not known if the critical dissipative QG
equation has global smooth solutions for arbitrary large initial
data. In this paper we prove existence and uniqueness of global
classical solutions of the critical dissipative QG equation for ini-
tial data that have small L∞ norm. The importance of an L∞
smallness condition is due to the fact that L∞ is a conserved norm
for the non-dissipative QG equation and is non-increasing on all
solutions of the dissipative QG, irrespective of size.

1. INTRODUCTION

Do singularities develop in finite time in smooth solutions of unforced, incom-
pressible 3D fluid equations? This challenging question remains yet unanswered.
Lower dimensional model equations have been proposed and studied ([2], [9],
[3], [5]) in an attempt to develop mathematical insight in this problem. The
2D quasi-geostrophic (QG) equation is one of these models. The dissipative QG
equation is

∂ϑ
∂t
+u · ∇ϑ + κ(−∆)αϑ = 0,(1.1)

where α ∈ [0,1], κ > 0 is the dissipative coefficient, and the 2D velocity field
u = (u1, u2) is determined from ϑ by a stream function ψ via the auxiliary
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relations

(u1, u2) =
(
− ∂ψ
∂x2

,
∂ψ
∂x1

)
, (−∆)1/2ψ = ϑ.(1.2)

Equation (1.1) with α = 1
2 is the critical dissipative QG. Criticality means that

the dissipation balances nonlinearity when one takes into account the conservation
laws.

In addition to its intrinsic mathematical interest, the equation (1.1) is relevant
in the context of general quasi-geostrophic models of atmospheric and ocean fluid
flow [10].

We are concerned here with global existence results for solutions of the initial-
value problem (IVP) for equation (1.1) wherein

ϑ(x,0) = ϑ0(x)(1.3)

is specified. We consider periodic boundary conditions with period box Ω =
[0,2π]2. Without loss of generality we may restrict the discussion to ϑ that obey
for all time (2π)−2

∫Ω ϑdx = 0.
The issue of global existence for equation (1.1) is non-trivial ([4, 14]). If no

smallness condition is imposed on the initial data, then the issue of global existence
for arbitrary data is open. In this paper we show that if the L∞-norm of the initial
data is small, then(1.1) possesses a global solution in the critical case α = 1

2 .
The QG equations (dissipative or not) have global weak solutions for arbitrary L2

initial data ([11], see Appendix B). The L∞ norm condition is significant in view
of the fact that the QG equations have a maximum principle ([11], see Appendix
A) that ensures that for all time and initial data the L∞ norm is non-increasing
in time. If the initial data is smooth enough, then the solution of the critical
dissipative QG is unique, smooth, and decays in time. These results and their
proofs are presented in Section 2. When α > 1

2 , the smallness assumption on the
data is not needed for global existence of smooth solutions for equation (1.1). This
can be proved using the same ideas as for the critical case. The theory of global
existence and regularity in the sub-critical (α > 1

2) case is thus in a satisfactory
state. More details for the sub-critical case can be found in [14].

We establish now some of the notation. The Fourier transform of f is f̂

f̂ (k) = 1
(2π)2

∫
Ω f(x)e−ik·x dx.

Λ is used to denote the operator (−∆)1/2, defined at the Fourier level by

Λ̂f(k) = |k|f̂ (k).
The relation in (1.2) can be identified as

u = (−∂x2Λ−1ϑ, ∂x1Λ−1ϑ) = (−R2ϑ,R1ϑ) or û(j) = i(ĵ)⊥ϑ̂(j),(1.4)
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where i = √−1, ĵ = j/|j| for j ∈ Z2 \ {0}, (j1, j2)⊥ = (−j2, j1), and R1 and
R2 are Riesz transforms ([12]). The spaces Hs are the familiar Sobolev spaces of
functions having s derivatives in L2.

2. GLOBAL EXISTENCE

The initial value problem for the critical dissipative QG equation is
ϑt +u · ∇ϑ + κΛϑ = 0, (x, t) ∈ Ω× [0,∞),
u = (u1, u2) = (−R2ϑ,R1ϑ), (x, t) ∈ Ω× [0,∞),
ϑ(x,0) = ϑ0(x), x ∈ Ω,(2.1)

where κ > 0 is a constant.
In this section we assume that the L∞ norm of the initial data ϑ0 is small. We

establish that the IVP (2.1) has a global bounded solution in H1. If the initial data
is smoother (H2), then the solution’s norm in H2 is non-increasing in time. The
solution becomes real analytic at positive time and decays exponentially. For the
sub-critical case, no smallness assumption is necessary and these results hold for
arbitrary data.

We start with an apriori estimate.

Theorem 2.1. There exists a constant c∞ such that for any ϑ0 ∈ H2 ∩ C3 with

‖ϑ0‖L∞ ≤ c∞κ,(2.2)

the classical solution ϑ of the IVP (2.1) satisfies

‖ϑ(·, t)‖H2 ≤ ‖ϑ0‖H2(2.3)

for all t ≥ 0.

Proof. Multiplying the first equation in (2.1) by ∆2ϑ and integrating by parts,
we obtain

1
2
d
dt

∫
|∆ϑ|2 dx + κ ∫ |(−∆)5/4ϑ|2 dx = −∫ ∆2ϑ(u · ∇ϑ)dx.

Further integration by parts gives∫ ∆2ϑ(u · ∇ϑ)dx = 2
∫
∇u · (∇(∇ϑ))∆ϑ + ∫ (∆u · ∇ϑ)∆ϑ.

By Hölder’s inequality,∣∣∣∣∫ ∆2ϑ(u · ∇ϑ)dx
∣∣∣∣ ≤ C[‖∇u‖L3

∥∥∆ϑ∥∥2
L3 + ‖∆u‖L3‖∇ϑ‖L3‖∆ϑ‖L3

]
.
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The Riesz transforms are bounded in Lp spaces, so

‖∆u‖L3 ≤ C‖∆ϑ‖L3 , ‖∇u‖L3 ≤ C‖∇ϑ‖L3 .

The Gagliardo-Nirenberg inequalities

‖∇ϑ‖L3 ≤ C
∥∥ϑ∥∥7/9

L∞
∥∥(−∆)5/4ϑ∥∥2/9

L2 , ‖∆ϑ‖L3 ≤ C
∥∥ϑ∥∥1/9

L∞
∥∥(−∆)5/4ϑ∥∥8/9

L2

follow from classical ones ([6]) by complex interpolation (see also [8]). Using
them we obtain∣∣∣∣∫ (−∆)2ϑ(u · ∇ϑ)dx∣∣∣∣ ≤ C‖ϑ‖L∞∥∥(−∆)5/4ϑ∥∥2

L2 .

Collecting the above estimates, we have

1
2
d
dt

∫
|∆ϑ|2 dx + κ ∫ |(−∆)5/4ϑ|2 dx ≤ C∞‖ϑ‖L∞∥∥(−∆)5/4ϑ∥∥2

L2 .

It was proved in [11] (see Appendix A) that ϑ satisfies the maximum principle

‖ϑ(·, t)‖L∞ ≤ ‖ϑ0‖L∞ for all t ≥ 0.

Taking c∞ = (C∞)−1, the bound (2.3) then follows from the smallness condition
(2.2). This completes the proof of the theorem. ❐

Theorem 2.2. There exists a constant c∞ (the same as in Theorem 2.1) so that
for any ϑ0 ∈ H2 with ‖ϑ0‖L∞ ≤ c∞κ the IVP (2.1) has a unique global solution ϑ
satisfying

‖ϑ(·, t)‖H2 ≤ ‖ϑ0‖H2

for any t ≥ 0.

Proof. Let ϑ be the unique local solution on [0, T0] with T0 depending on
‖ϑ0‖H2 only (standard techniques can be applied to show that a unique local
solution exists and depends continuously on initial data in H2). By Theorem 2.1,
ϑ satisfies

‖ϑ(·, t)‖H2 ≤ ‖ϑ0‖H2

for any t ∈ [0, T0]. Therefore the local solution can be extended uniquely to
[0,2T0], and the global solution is obtained by repeating this procedure. ❐
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Theorem 2.3. Assume that the initial data ϑ0 ∈ H2 satsifies the bound ‖ϑ0‖L∞ <
c∞κ. Then the solution of the IVP (2.1) decays exponentially

∥∥ϑ∥∥2
H2 ≤ exp (−ct)

∥∥ϑ0
∥∥2
H2

for all t ≥ 0. Here c = 2(κ − c−1∞ ‖ϑ0‖L∞), and c∞ is the same as in the previous
theorems.

The proof is a trivial consequence of the obvious Poincaré inequality∫
Ω |(−∆)5/4ϑ|2 dx ≥

∫
Ω |(−∆)ϑ|2 dx.

Theorem 2.4. Assume that the initial data ϑ0 ∈ H2 satsifies the bound ‖ϑ0‖L∞ <
c∞κ. Then there exists a time t0 > 0 such that the solution of the IVP (2.1) is real
analytic for t ≥ t0. More precisely, there exists an extension of ϑ, ϑ(z, t) that is an
analytic function in the time-expanding strip Σt ⊂ C2,

Σt = {z = x + iy | x ∈ Ω, |y| < 1
2
κ(t − t0)

}
,

and obeys the inequality

|ϑ(z, t)| ≤ κ
2

uniformly for z ∈ Σt.
Proof. Let us consider t0 to be the first time when

Y(t) =
∑

j∈Z2\{0}
|ϑ̂(j, t)|

becomes smaller than κ/4:

Y(t0) ≤ κ4 .

In view of the preceding theorem and the elementary inequality

Y(t) ≤ C‖ϑ(t)‖H2 ,

the existence of t0 is guaranteed. Consider the function

y(t) =
∑

j∈Z2\{0}
|ϑ̂(j, t)| exp

{
(t − t0)κ|j|

2

}
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and the function

z(t) =
∑

j∈Z2\{0}
|j| |ϑ̂(j, t)| exp

{
(t − t0)κ|j|

2

}
.

Formally,

dy
dt
+ z(t)

(
κ
2
−y(t)

)
≤ 0

holds. This implies that the function y(t) is non-increasing for t ≥ t0. The more
rigorous proof requires one to take only a finite sum, and introduce an artificial
power to avoid differentiating the modulus at zero:

yn,ε(t) =
∑

j∈Z2\{0}
|j|≤n

|ϑ̂(j, t)|1+ε exp
{
(t − t0)κ|j|

2

}
.

This is now a differentiable function in time. One differentiates, and obtains

d
dt
yn,ε(t)+

κ
2
zn,ε(t) ≤ γεy(t)z(t),

where

zn,ε(t) =
∑

j∈Z2\{0}
|j|≤n

|j| |ϑ̂(j, t)|1+ε exp
{
(t − t0)κ|j|

2

}
,

and γε = (1+ ε)‖ϑ0‖εL2 , and thus limε→0 γε = 1. One integrates from t = t0 to t
and passes to the limit n→∞, ε → 0. One obtains then

y(t)+ κ
2

∫ t
t0
z(s)ds ≤ κ

4
+
∫ t
t0
y(s)z(s)ds.

Then, becausey(t0) ≤ κ/4, it follows that the set {t ≥ t0 | y(s) ≤ κ/2, ∀s, t0 ≤
s ≤ t} equals [t0,∞). The completely rigorous proof requires a regularization of
the equation so that z(t) is guaranteed to be finite. After t = t0 one may use
Galerkin approximations for this purpose. The conclusion is that, for t ≥ t0, one
has

∑
j∈Z\{0}

|ϑ̂(j, t)| exp
{
(t − t0)κ|j|

2

}
≤ κ

2
.
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The analytic extension is

ϑ(z, t) =
∑

j∈Z2\{0}
eij·zϑ̂(j, t),

and the uniform convergence and bound in Σt follow. This completes the proof.
The idea of using time dependent exponential weights was introduced in [7]. ❐

Initial data in H1 are sufficient for a global existence results to hold.

Theorem 2.5. There exists a constant d∞ such that for any ϑ0 ∈ H1 and ‖ϑ0‖L∞ ≤
d∞κ there exists a weak solution of the QG equation satisfying

‖ϑ(·, t)‖H1 ≤ ‖ϑ0‖H1

for any t ≥ 0.

Proof. It was proved in [11] that the IVP (2.1) with ϑ0 ∈ L2 has a global weak
solution ϑ(·, t) ∈ L2 (see Appendix B). The L2 weak solutions are constructed
using a Galerkin approximation. The H1 weak solutions can be constructed by
solving approximate equations

∂tϑ +uδ · ∇ϑ + κΛϑ = 0,(2.4)

where

uδ = kδ ∗u = kδ ∗ (R⊥ϑ),

and kδ the periodic Poisson kernel in 2D given at the Fourier level by

k̂δ(ξ) = e−δ|ξ|,

ξ ∈ Z2. The approximations have gobal smooth solutions for positive time, uni-
form bounds in L∞(dt;L2(dx)), and converge weakly to solutions of the QG
equation. In addition, and in contrast with Galerkin approximations, these ap-
proximations have monotonic non-increasing Lp norms of u. Multiplying the
first equation in (2.4) by ∆ϑ and integrating by parts, we obtain

1
2
d
dt

∫
|∇ϑ|2 dx + κ

∫
|Λ3/2ϑ|2 dx ≤

∫
|(∇ϑ) · ∇uδ · (∇ϑ)|dx.

By a similar argument as in the proof of Theorem 2.1, the term on the right hand
side can be bounded as follows.∫

|(∇ϑ) · ∇uδ · (∇ϑ)|dx ≤ C
∥∥∇ϑ∥∥2

L3‖∇uδ‖L3 ≤ C
∥∥∇ϑ∥∥3

L3

≤ C‖ϑ‖L∞
∥∥Λ3/2ϑ

∥∥2
L2 .
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In addition to the boundedness of Riesz transforms in Lp spaces and an appropri-
ate Gagliardo-Nirenberg inequality, we use here the fact that convolution with the
Poisson kernel does not increase Lp norms. Therefore,

1
2
d
dt

∫
|∇ϑ|2 dx + κ

∫
|Λ3/2ϑ|2 dx ≤ D∞‖ϑ‖L∞

∥∥Λ3/2ϑ
∥∥2
L2 .

Using d∞ = (D∞)−1 and the maximum principle, we deduce from ‖ϑ0‖L∞ ≤ d∞
and the inequality above that

‖ϑ(·, t)‖H1 ≤ ‖ϑ0‖H1 and
∫ t

0

∫
|Λ3/2ϑ|2(x, τ)dx dτ < ∞(2.5)

for any t > 0. The solutions obtained thus are relatively strong, and the equation
holds in time integral form in L2. ❐

For the sub-critical case α > 1
2 the maximum principle allows one to get a

sublinear bound of the nonlinearity in terms of the dissipation and, consequently,
the global existence result holds without any smallness assumption on ‖ϑ‖L∞ .

Theorem 2.6. Let α > 1
2 and ϑ0 ∈ H2. Then there exists a unique global

solution ϑ solving the IVP (2.1). The solution is real analytic for positive time and
decays exponentially to zero.

APPENDIX A.

In [11] it was shown that a solution to (2.1) for 1
2 ≤ α ≤ 1 satisfies the following

maximum principle

‖ϑ(·, t)‖Lp ≤ ‖ϑ0‖Lp for 1 < p ≤ ∞, for all t ≥ 0.

Below we give a short description of the proof in the case α = 1
2 .

Define ϑ̃ = ks ∗ ϑ, where k̂s(ξ) = e−s|ξ|. The Poisson kernel ks is positive
and has integral equal to one. ϑ̃ satisfies

dϑ̃
ds
+Λϑ̃ = 0

and

d‖ϑ̃‖pLp
ds

+ p
∫
|ϑ̃|p−2ϑ̃Λϑ̃ dx = 0.

Integrating with respect to s we obtain

p
∫ s2
s1

∫
|ϑ̃|p−2ϑ̃Λϑ̃ dx ds = ∥∥ϑ̃∥∥pLp(s1)− ∥∥ϑ̃∥∥pLp(s2).
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Using the properties of the Poisson Kernel ks ,∥∥ks1 ∗ ϑ∥∥pLp − ∥∥ks2−s1 ∗ (ks1 ∗ ϑ)∥∥pLp ≥ 0,

therefore ∫
|ϑ|p−2ϑΛϑdx = lim

s→0+

∫
|ϑ̃|p−2ϑ̃Λϑ̃ dx ≥ 0.

Hence, returning to the evolution equation for ϑ

d‖ϑ‖pLp
dt

= −p
∫
|ϑ|p−2ϑΛϑdx ≤ 0.

APPENDIX B.

It was proved in [11] that the QG equations, dissipative or not, have global weak
solutions in L2. We present here a brief description of the main reason for this
fact. We consider QG as an infinite system of ODEs:

d
dt
ϑ̂(`, t)+ κ|`|2αϑ̂(`, t) = b`(ϑ,ϑ),(B.1)

with

b`(ϑ,ϑ) =
∑

j+k=`

1
|j|(j

⊥ · k)ϑ̂(j, t)ϑ̂(k, t).(B.2)

Note that because of the perpendicularity

(j⊥ · k) = (j⊥ · `) = −(k⊥ · `),

and because of symmetry considerations in the sum we can write

b`(ϑ,ϑ) =
∑

j+k=`
γ`j,kϑ̂(j, t)ϑ̂(k, t),(B.3)

with

γ`j,k =
1
2
(j⊥ · `) |k| − |j||j| |k| .

Note the inequality

|γ`j,k| ≤
|`|2

2(max |j|; |k|) .
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Consider now the weak norm

‖ϑ‖w = sup
j∈Z2\{0}

|ϑ̂(j)|.

The nonlinearity can be written as

B(ϑ,ϑ)(x) =
∑

`∈Z2\{0}
b`(ϑ,ϑ)ei`·x.

The main observation is that the nonlinearity has a weak continuity property. Let
ϑ1 and ϑ2 be in L2. There exists a constant C so that

‖Λ−2(B(ϑ1, ϑ1)− B(ϑ2, ϑ2))‖w

≤ C‖ϑ1 − ϑ2‖w
(
1+ log

(
1+

∥∥ϑ1 − ϑ2
∥∥−1
w
))
(‖ϑ1‖L2 + ‖ϑ2‖L2).

This is the key ingredient in the existence of weak solutions. The method of proof
employs a Galerkin approximation. The weak continuity guarantees the fact that
the weak limit of the approximations solves the weak formulation of the equation.
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