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Abstract. We survey the Stanley-Reisner correspondence in combinatorial commutative
algebra, describing fundamental applications involving Alexander duality, associated primes,
f - and h-vectors, and Betti numbers of monomial ideals.

1. Introduction

Stanley-Reisner theory provides the central link between combinatorics and commuta-
tive algebra. Pioneered in the 1970s, the correspondence between simplicial complexes
and squarefree monomial ideals has been responsible for substantial progress in both fields.
Among the most celebrated results are Reisner’s criterion for Cohen-Macaulayness, Stan-
ley’s proof of the Upper Bound Conjecture for simplicial spheres, and Hochster’s formula
for computing multigraded Betti numbers of squarefree monomial ideals via simplicial ho-
mology. Moreover, techniques such as deformation and polarization can allow one to take a
problem about homogeneous ideals and turn it into a question about squarefree monomial
ideals.

This paper is written to give a self-contained introduction to Stanley-Reisner theory, di-
recting it especially at relatively new graduate students in commutative algebra and combi-
natorics. Our goal is to provide enough background to enable readers to progress to more
detailed treatments in one of the many excellent references (for example, [MS, P, St, V]).

In the following section, we define some important terms and explain the basics of the
Stanley-Reisner correspondence. We introduce some running examples in Section 3. In
Section 4, we discuss the important role Alexander duality plays in studying squarefree
monomial ideals and simplicial complexes and its interaction with associated primes. We
develop this topic further in Section 5, paying particular attention to shellability and the
Cohen-Macaulay property. Section 6 is devoted to connections between f - and h-vectors
on the combinatorial side and Hilbert series on the algebraic side. Finally, in Section 7, we
explore Hochster’s formula and the use of simplicial homology to compute multigraded Betti
numbers of monomial ideals.

2. Background and notation

We begin by making explicit some familiar ideas and notation from combinatorics and
algebra. Most readers should be comfortable skipping to §2.3, which defines the Stanley-
Reisner correspondence.

This work was partially supported by grants from the Simons Foundation (#199124 to Francisco and
#202115 to Mermin).
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2.1. Combinatorics. Fix n > 0, and let X = {x1, x2, . . . , xn}. An abstract simplicial
complex ∆ on vertex set X is a collection of subsets of X (that is, ∆ ⊆ 2X) such that A ∈ ∆
whenever A ⊆ B ∈ ∆. The members of ∆ are called simplices or faces, and a simplex of ∆
not properly contained in another simplex of ∆ is called a facet. If all the facets of ∆ have
the same cardinality, then ∆ is called pure.

If ∆ contains no sets, it is called the void complex. Any simplicial complex other than
the void complex contains the empty set as a face. This may seem like a minor point, but
in the future it will be necessary to differentiate between the void complex, ∅ ⊆ 2X , and the
complex whose only simplex is the empty simplex, {∅} ⊆ 2X .

Now fix some `. If k ≤ `, the convex hull of k + 1 points in general position in R` is a
geometric k-simplex. In general, a collection ∆ of geometric simplices in R` is a geometric
simplicial complex if σ∩τ is a geometric simplex in ∆ for any σ, τ ∈ ∆. It is a basic fact from
combinatorial topology that every abstract simplicial complex has a geometric realization,
and thus we often use the term “simplicial complex” to simultaneously refer to both these
points of view. In Section 3, each figure is a geometric realization of the corresponding
simplicial complex.

The dimension of a simplex A ∈ ∆ is one less than the cardinality of A. This coincides
with our usual geometric notion of a simplex, as it requires k + 1 points in general position
in Euclidean space to have a k-dimensional convex hull.

If A /∈ ∆ but B ∈ ∆ for any B ( A, then A is called a minimal non-face of ∆. For
example, the minimal non-faces of the complex in Example 3 are ad, ae, bd, and be.

2.2. Algebra. Let k be a field, and let S = k[X] = k[x1, x2, . . . , xn].
A monomial of S is an element m which factors (uniquely, up to order) as a product of the

variables in X; it is squarefree if no variable appears more than once in this factorization.
The degree of m is the number of variables in its factorization; if m is squarefree, its degree
is equal to the number of variables dividing m.

Given two monomials m and m′, we say that m divides m′ if every variable appears at
least as many times in the factorization of m′ as in the factorization of m. The monomials
are partially ordered by divisibility, and this ordering refines degree: If m divides m′, then
degm ≤ degm′, with equality only if m = m′.

A monomial ideal I ⊂ S is an ideal which, when viewed as a k-vector space, has a (unique)
basis consisting of monomials. Equivalently, a monomial ideal is one with a generating
set consisting of monomials. Of course, I is generated by the set of all its monomials,
but this generating set is highly redundant. We can remove the redundancy by restricting
our attention to those monomials of I which are minimal under divisibility. This yields a
generating set which is minimal in the sense that any monomial generating set of I contains it;
this is called gens(I), or the unique minimal monomial generating set for I, and its elements
are simply referred to as generators of I. A squarefree monomial ideal is a monomial ideal
whose monomial generators are all squarefree.

2.3. The Stanley-Reisner correspondence. The Stanley-Reisner correspondence arises
from two important observations connecting the information in simplices to that in squarefree
monomials. The first observation is that these are in natural bijection.



A SURVEY OF STANLEY-REISNER THEORY 3

Definition 2.1. Let A ⊂ X. Then the monomial supported on A is the squarefree monomial

mA =
∏
xi∈A

xi. Conversely, if m is a squarefree monomial, then its support is suppm = {xi :

xi divides m}.

Proposition 2.2. For every squarefree monomial m, we have msuppm = m. For every subset
A ⊂ X, we have supp(mA) = A. If m and m′ are squarefree monomials, then m divides m′

if and only if suppm ⊆ suppm′.

Proof. The only difficulty is with the empty set. Observe that m∅ is the empty product,
namely the monomial 1, and that the support of 1 is the empty set. �

Notation 2.3. Throughout the paper, we will abuse notation without comment by writing
squarefree monomials in place of subsets of X. That is, we will refer to faces of a simplicial
complex as m instead of as suppm, and in the examples we will dispense with the set brackets
and the commas.

The second observation of Stanley-Reisner theory is that simplicial complexes and mono-
mial ideals have opposite behavior with respect to the partial orders of inclusion and divis-
ibility. That is, simplicial complexes are closed under “shrinking” and monomial ideals are
closed under “growing”:

Proposition 2.4. Let m be a squarefree monomial. If I is a squarefree monomial ideal and
m ∈ I, then m′ ∈ I whenever m divides m′. On the other hand, if ∆ is a simplicial complex
and m ∈ ∆, then m′ ∈ ∆ whenever m′ ⊂ m.

The corollary to this observation motivates the definitions at the heart of Stanley-Reisner
theory.

Corollary 2.5. If I ⊂ S is a squarefree monomial ideal, then the set of monomials not
contained in I forms a simplicial complex.

Definition 2.6. For a squarefree monomial ideal I, the Stanley-Reisner complex of I is the
simplicial complex consisting of the monomials not in I,

∆I = {m ⊂ X : m 6∈ I}.

For a simplicial complex ∆, the Stanley-Reisner ideal of ∆ is the squarefree monomial
ideal generated by the non-faces of ∆,

I∆ = (m ⊂ X : m 6∈ ∆).

The face ring or Stanley-Reisner ring of ∆ is the quotient by the Stanley-Reisner ideal,
R∆ = S/I∆.

Observe that the minimal monomial generators of I∆ are the minimal non-faces of ∆.
The following is immediate.

Proposition 2.7. If I is a squarefree monomial ideal, then I∆I
= I. If ∆ is a simplicial

complex, then ∆I∆ = ∆.
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3. Running examples

In the examples, we set X = {a, b, c, . . . } instead of {x1, x2, x3, . . . }. Throughout the
paper, we will refer to the examples in this section.

Example 3.1. Let K be the complex in Figure 1. The facets of K are abc, abe, ace, bcd,
bce, and cde. The minimal nonfaces of K are ad and bce, so IK = (ad, bce). Both K and IK
are very well-behaved objects; for example, the geometric realization of K is homeomorphic
to a sphere, and IK is a complete intersection.

e

a

b

c

d

Figure 1. A simplicial complex homeomorphic to S2.

Example 3.2. Let Q be the standard triangulation of the real projective plane, as in Figure
2. The facets of Q are abd, abf , acd, ace, aef , bce, bcf , bde, cdf , and def , and IQ is generated
by the ten minimal nonfaces, all of which have cardinality three:

IQ = (abc, abe, acf, ade, adf, bcd, bdf, bef, cde, cef).

The projective plane is globally strange (for example, its homology is characteristic-dependent)
but locally well-behaved; we will see this in the ideal as well.

a

a

b

c

b

c

d

e

f

Figure 2. The standard minimal triangulation of the projective plane. (Note
the identifications on the boundary.)
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Example 3.3. Let B be the “bow-tie” complex shown in Figure 3. The facets of B are abc
and cde, and the minimal non-faces of B are ad, ae, bd, and be, meaning IB = (ad, ae, bd, be).

c

b

a d

e

Figure 3. The bow-tie complex B.

4. Alexander duality and associated primes

The notion of Alexander duality comes from algebraic topology, where for a sufficiently
“nice” subspace Γ of the n-dimensional sphere there is an isomorphism between Hi(Γ) and
Hn−i−1(Γc). The combinatorial flavor of Alexander duality, which we discuss here, produces
a dual complex ∆∨ from a simplicial complex ∆, and relates this complex to the prime ideals
associated to the Stanley-Reisner ideal I∆.

Definition 4.1. If ∆ is a simplicial complex, the Alexander dual of ∆, denoted by ∆∨, is
the simplicial complex with faces {X rm : m /∈ ∆}. That is, faces of ∆∨ are complements
of non-faces of ∆.

Note that the facets of ∆∨ are thus complements of minimal nonfaces of ∆.

Example 4.2. The complex K of Figure 6 has minimal non-faces ad and bce, and thus K∨

has facets bce and ad. Note that K∨ is the disjoint union of a line segment and solid triangle,
meaning K∨ is homotopy equivalent to S0, whereas K is homotopy equivalent to S2.

Example 4.3. If Q is the triangulation of the projective plane shown in Figure 2, then Q is
self-dual. Indeed, the minimal non-faces of Q are abc, abe, acf , ade, adf , bcd, bdf , bef , cde,
and cef , and so facets of Q∨ are the complements of these non-faces: def , cdf , bde, bcf , bce,
aef , ace, acd, abf , and abd. Note that these are exactly the facets of Q, and thus Q∨ = Q.

Example 4.4. The complex B of Figure 3 has minimal non-faces ad, ae, bd, and be, and
thus the facets of B∨ are bce, bcd, ace, and acd. The complex B∨ is shown below in Figure 4.

a

b

c

e

d

Figure 4. The dual of the complex B.

Observe that c is a cone point in both B and B∨. This illustrates the general fact that a
cone point of a complex is also a cone point of the dual.
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Remark 4.5. The name “Alexander dual” is justified by the fact that ∆∨ is homotopic to
the complement of ∆ in the (n− 2)-sphere. See [BCP, Theorem 2.1] or [MS, Remark 5.7].

The translation of Alexander duality to squarefree monomial ideals involves the set of
associated primes, which is a natural generalization of the prime factorization of an integer.

Fact 4.6. Let I be a squarefree monomial ideal. Then I decomposes as an intersection of
prime monomial ideals,

I =
⋂
P⊃I

P.

Here P ranges over the primes which contain I and are monomial ideals. Of course,
this intersection is highly redundant. For example, the homogeneous maximal ideal appears
in the intersection but can be deleted unless I is itself the maximal ideal. It is natural
to remove the redundancy by restricting our attention to the monomial primes which are
minimal among those containing I; these are called the associated primes of I.

Remark 4.7. The discussion above fails badly if I is not a squarefree monomial ideal.
Monomial ideals cannot in general be written as intersections of primes, or even of powers
of primes. Instead, we can find a irredundant primary decomposition: that is, we can write
an arbitrary ideal as an irredundant intersection of primary ideals. This decomposition is
usually not unique, but the set of primes which occur as radicals of the primary ideals is, and
we call these the associated primes. The minimal primes containing an ideal are associated,
but it is possible for non-minimal primes to be associated as well. Associated primes can be
detected as the annihilators of elements as in the last condition of Theorem 4.8 below. For
more details, see [E, Chapter 3].

Theorem 4.8. Let I be a squarefree monomial ideal. Then the following are equivalent for
a monomial prime ideal P .

(1) P contains I, and is minimal among the prime ideals that do so.
(2) I may be written as an irredundant intersection of primary ideals, I =

⋂
Qj, and P

is the radical of one of the Qj in this intersection.
(3) There is a monomial m 6∈ I with the property that mx ∈ I if and only if x ∈ P .

Definition 4.9. Let I be a squarefree monomial ideal. If P is a monomial prime ideal
satisfying the equivalent conditions of Theorem 4.8, then we say that P is an associated
prime of I. The set of all associated primes of I is written Ass(I).

To understand the associated primes of a monomial ideal, we need to study monomial
primes. The chief observation is that every monomial prime is generated by a subset of the
variables. Thus, prime ideals carry the same information that monomials do.

Notation 4.10. If A ⊂ V is a subset of the variables, then write PA for the prime ideal
generated by the elements of A, PA = (xi : xi ∈ A). If m is a monomial, write Pm for Psuppm.

This notation allows us to describe the facets of ∆ in terms of the associated primes of I.

Proposition 4.11. Let I be a squarefree monomial ideal, and let X = x1 . . . xn be the product
of the variables. Let m be a squarefree monomial. Then Pm is associated to I if and only if
X
m

is a facet of ∆I . More generally, Pm contains I if and only if X
m
∈ ∆I .



A SURVEY OF STANLEY-REISNER THEORY 7

Proof. Observe that Pm contains I if and only if suppm shares a variable with suppµ for
every monomial µ ∈ I. Equivalently, the complement of suppm, X

m
, does not contain suppµ.

This means that X
m

is not divisible by any µ, so is not contained in I. In other words, X
m
∈ ∆I .

This proves the second claim.
For the first claim, observe that facets are maximal, associated primes are minimal, and

the operation taking m to X
m

is order-reversing. (Alternatively, X
m

is a facet if and only if

xi
X
m
∈ I for all xi dividing m.) �

These observations inspire the definition of the (algebraic) Alexander dual of I as (abusing
notation) the ideal generated by the associated primes of I.

Definition 4.12. Let I be a squarefree monomial ideal. Then the Alexander dual of I is

I∨ =
(
m : Pm ∈ Ass(I)

)
.

We justify this name by showing that Alexander duality commutes with the Stanley-
Reisner correspondence.

Theorem 4.13. If I is a squarefree monomial ideal, then ∆(I∨) = (∆I)
∨. If ∆ is a simplicial

complex, then I(∆∨) = (I∆)∨. Thus, we can write I∨∆ or ∆∨I without confusion.

Proof. The faces of ∆(I∨) are the monomials m such that Pm does not contain I, i.e., the
monomials whose complements are contained in I. The faces of (∆I)

∨ are the complements
of the non-faces of ∆I , i.e., the complements of the monomials in I. �

It immediately follows that algebraic Alexander duality is a duality operation, and that
it gives us a somewhat more efficient way to compute the associated primes of a squarefree
monomial ideal.

Corollary 4.14. Let I be a squarefree monomial ideal. Then (I∨)∨ = I.

Corollary 4.15. Let I be a squarefree monomial ideal. Then I∨ =
⋂

m∈gens(I)

Pm, and the

associated primes of I correspond to the generators of I∨. That is, Ass(I) = {Pµ : µ ∈
gens(I∨)}.

If we know the Stanley-Reisner ideal of a complex (or vice-versa) we can use it to compute
the dual with less work.

Corollary 4.16. Let X = x1 . . . xn be the product of the variables.

(1) Let ∆ be a simplicial complex. Then the facets of ∆∨ are the monomials X
m

, where
m ranges over the generators of I∆.

(2) Let I be a squarefree monomial ideal. Then the generators of I∨ are the monomials
X
f

, where f ranges over the facets of ∆I .

Corollary 4.17. Let I be a squarefree monomial ideal. Then I is equidimensional (i.e., all
its associated primes have the same height) if and only if ∆∨I is pure (i.e., all its facets have
the same dimension).
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Example 4.18. Let K be the complex in Example 3.1. Then IK = (ad, bce), so I∨K =
(a, d)∩(b, c, e) = (ab, ac, ae, bd, cd, de). Note that the Stanley-Reisner complex corresponding
to I∨K has facets ad and bce. This is consistent with the computation in Example 4.2.

Example 4.19. Let Q be the triangulation of the projective plane from Example 3.2. As
we saw in Example 4.3, Q is self-dual, and therefore IQ is also self-dual.

Example 4.20. Let B be the bow-tie complex in Example 3.3. It has two facets, abc and
cde. Therefore I∨B is generated by X

abc
= de and X

cde
= ab; i.e., I∨B = (ab, de).

Alexander duality plays a vital role in linking the notions of Cohen-Macaulayness of sim-
plicial complexes and linearity in free resolutions of squarefree monomial ideals, as we discuss
in the next section.

5. Shellablity, Cohen-Macaulayness, and linear resolutions

Shellable complexes occur frequently throughout combinatorics. The shellability condition
is particularly helpful because shellable simplicial complexes are homotopic to bouquets of
spheres and, in particular, are Cohen-Macaulay over any field.

Definition 5.1. An ordering F1, F2, . . . , Ft of the facets of a simplicial complex ∆ is a
shelling if, for each j with 1 < j ≤ t, the intersection(

j−1⋃
i=1

Fi

)
∩ Fj

is a non-empty union of facets of ∂Fj. If there exists a shelling of ∆, then ∆ is called
shellable.

See [BW1, BW2] for more details, particularly in the nonpure case, and motivation.

Example 5.2. The complex in Figure 5 is shellable. (One shelling is cde, ad, ab, bc, bd.)
Note, however, that any sequence of facets of this complex in which the sole 2-dimensional
facet is not first cannot be a shelling.

b
c

d

e

a

Figure 5. A shellable simplicial complex.

The complex K from Example 3.1 is shellable, as we discuss in detail in the next section.
The other examples from Section 3 are not shellable.

We sketch the proof that shellable complexes are bouquets of spheres. Given a shelling

F1, . . . , Ft of a simplicial complex ∆, call Fj a full-restriction facet if ∂Fj ⊆
j−1⋃
k=1

Fk.
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Theorem 5.3. Let ∆ be a simplicial complex with shelling F1, F2, . . . , Ft. Then ∆ is homo-
topy equivalent to a wedge of spheres of the dimensions of the full restriction facets,

∆ '
∨
Fj

SdimFj ,

where the wedge is taken over the full restriction facets Fj.

The complex of Figure 5 is homotopy equivalent to a wedge of two 1-dimensional spheres.

Proof of Theorem 5.3 (sketch). Let ∆′ denote the complex obtained from ∆ by removing
each full-restriction facet Fj (but keeping ∂Fj in ∆′). Then the given shelling order, after
removing the full-restriction facets, is a shelling of ∆′.

A straightforward induction on the number of facets of ∆′ shows that it is contractible. If
Fj is an i-dimensional full-restriction facet of ∆, then contracting ∆′ identifies the boundary
of Fj, creating an i-dimensional sphere. The same holds for all full-restriction facets of ∆,
proving the result. �

Shellability of simplicial complex implies an important algebraic property known as se-
quential Cohen-Macaulayness.

Definition 5.4. Let M be a finitely-generated graded module. We say that M is Cohen-
Macaulay if its depth is the same as its dimension; equivalently, if its projective dimension is
the same as its codimension. The module M is sequentially Cohen-Macaulay if there exists
a filtration

0 = M0 ⊂M1 ⊂ · · ·Mr = M

such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are
increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

See, e.g., [BH, E, Sc] for detailed discussions of Cohen-Macaulayness. For more details on
sequential Cohen-Macaulayness, see [St], and see [HS, St] for equivalent definitions in terms
of Ext modules.

We define a simplicial complex ∆ to be (sequentially) Cohen-Macaulay if S/I∆ is (sequen-
tially) Cohen-Macaulay.

Theorem 5.5. If ∆ is shellable, then ∆ is sequentially Cohen-Macaulay. If ∆ is also pure,
then ∆ is Cohen-Macaulay.

The result that a pure shellable complex is Cohen-Macaulay is [BH, Theorem 5.1.13], [MS,
Theorem 13.45], or [St, Ch. 3, Theorem 2.5]. For the first statement, build the filtration
from the Stanley-Reisner ideals of ∆i, where ∆i is the subcomplex of ∆ generated by the
facets of dimension at least i.

The characterization of when a simplicial complex is Cohen-Macaulay is known as Reis-
ner’s criterion. Recall that the link of a face F in a complex ∆, for which we write link∆(F ),
is a simplicial complex whose faces are given as follows:

link∆(F ) = {G ∈ ∆ : F ∪G ∈ ∆, F ∩G = ∅}.
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Theorem 5.6 (Reisner’s criterion). A simplicial complex ∆ is Cohen-Macaulay over k if
and only if for any face F of ∆, dimk(H̃i(link∆(F ); k)) = 0 for i < dim(link∆(F )).

That is, ∆ is Cohen-Macaulay over k if and only if the homology of each face’s link vanishes
below its top dimension.

The complex B of Example 3.3 is not Cohen-Macaulay over any field, as linkB(c) has
facets ab and de, meaning dimk(H̃0(linkB(c), k)) = 1 for any k, whereas dim(linkB(c)) = 1.

The complex of Figure 5 is 2-dimensional, yet its first homology group is non-trivial.
As the link of the empty face is the entire complex, this shows that this complex is not
Cohen-Macaulay.

Finally, consider the complex K of Example 3.1. The link of every vertex of K is a 1-
sphere (for example linkK(a) has facets bc, ce, and eb, while linkK(c) has facets ab, bd, de and
ea), and the link of every edge of K is a 0-sphere (for example linkK(ab) has facets c and e).
As linkK(∅) = K, which is a 2-sphere, it follows that no link of a face of K has nontrivial
homology below its top dimension. Thus, K is Cohen-Macaulay (as is any simplicial sphere).

The following theorem of Eagon and Reiner [ER, Theorem 3] connects Cohen-Macaulayness
and free resolutions. (For background on free resolutions, see [P].)

Theorem 5.7. A simplicial complex ∆ is Cohen-Macaulay over k if and only if I∆∨ has
linear free resolution over S = k[x1, . . . , xn].

Example 5.8. Take ∆ to be the simplicial complex of Figure 5 without the face cde. Then
I∆ = (ac, ae, be, bcd, abd, cde), and I∆∨ = (abc, abd, abe, ade, bce, cde), which has a linear
resolution. Therefore ∆ is Cohen-Macaulay. One can verify this by, for example, noting that
the codimension of I∆ is three, as is the projective dimension of S/I∆.

Note the importance of the field k in Theorem 5.7. Reisner pointed out the minimal
triangulation of the projective plane Q is Cohen-Macaulay if and only if char k 6= 2. Thus
I∨Q has linear resolution when char k 6= 2 but nonlinear resolution when char k = 2.

We can loosen the conditions in Theorem 5.7 to get another useful statement. Sequential
Cohen-Macaulayness is a natural generalization of Cohen-Macaulayness in the case in which
∆ is not pure. We define the appropriate homological analogue:

Definition 5.9. Let I be a homogeneous ideal, and write (Id) for the ideal generated by
the degree-d forms in I. The ideal I is componentwise linear if for all d, (Id) has linear
resolution.

Remark 5.10. The condition in Definition 5.9 is not as computationally difficult to check
as it appears. One needs only check that (Id) has a linear resolution for degrees d in which
I has minimal generators.

Herzog and Hibi prove the following theorem [HH, Theorem 2.1].

Theorem 5.11. A simplicial complex ∆ is sequentially Cohen-Macaulay over k if and only
if I∆∨ is componentwise linear over S = k[x1, . . . , xn].

One consequence of Theorem 5.11 is a partial converse of Theorem 5.5.

Proposition 5.12. Fix a field k. Then S/I∆ is Cohen-Macaulay over k if and only if ∆ is
pure and S/I∆ is sequentially Cohen-Macaulay over k.
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Proof. One direction is clear. For the other, assume that ∆ is pure and that S/I∆ is se-
quentially Cohen-Macaulay over k. By Theorem 5.11, because S/I∆ is sequentially Cohen-
Macaulay over k, I∆∨ is componentwise linear. Moreover, the fact that ∆ is pure means that
I∆∨ is generated in a single degree. Thus I∆∨ has a linear resolution, and by Theorem 5.7,
∆ is Cohen-Macaulay. �

One can also detect shellability with similar algebraic methods. Suppose I is a monomial
ideal, minimally generated by monomials m1, . . . ,mr, where degmi ≤ degmi+1 for all i. We
say that I has linear quotients if for each 2 ≤ i ≤ r, (m1, . . . ,mi−1) : (mi) is generated by a
subset of the variables. Herzog and Takayama note in [HT] that the statements that I∆ has
linear quotients and ∆∨ is nonpure shellable are “almost tautologically equivalent.” See also
Proposition 6.13. Moreover, if I∆ has linear quotients and is generated in a single degree,
then I∆ has a linear resolution, and therefore ∆∨ is Cohen-Macaulay.

Remark 5.13. We conclude with a brief discussion of the use of Alexander duality in the
study of edge and cover ideals of graphs. Given a graph on vertices {x1, . . . , xn}, the edge
ideal IG of G is generated by all monomials xixj such that {xi, xj} is an edge of G. The
cover ideal JG is generated by monomials m such that each edge of G contains at least one
element of suppm. Therefore JG = I∨G, and one can investigate properties of the graph G
by studying either the edge or the cover ideal of G, often passing back and forth between
the two. See [MV] for a survey of recent work on edge and cover ideals.

6. Hilbert functions and f-vectors

Probably the most important numerical invariant of a graded ideal is its Hilbert function,
which associates to each degree d the dimension of the ideal’s degree-d piece. This measures
the size of the ideal, and contains a lot of other important information, such as its dimension
and multiplicity.

Definition 6.1. Let M be a graded module. Then the Hilbert function of M is

HFM : Z→ Z

d 7→ dimk(Md).

In order to use generating function techniques, we also define the Hilbert series as the
generating function on the Hilbert function, HSM(t) =

∑
d HFM(d)td.

Given an ideal I, we study both the Hilbert function of I, HFI , and the Hilbert function
of the quotient of S by I, HFS/I . Observe that HFI + HFS/I = HFS.

We begin by computing the Hilbert function of S.

Proposition 6.2. Let S = k[x1, . . . , xn]. Then HSS(t) = 1
(1−t)n .

Proof. We induct on n. If n = 1, then S = k[x] has basis {1, x, x2, . . . } and Hilbert series
t0 + t1 + t2 + · · · = 1

1−t .
In general, let B be a graded k-basis for k[x1, . . . , xn−1]. Then S decomposes (as a vector

space) as

S =
⊕
b∈B

b · k[xn].
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If b has degree d, the Hilbert series of the corresponding summand b · k[xn] is td + td+1 +

td+2 + · · · = td

1−t . We have

HSS(t) =
∑
b∈B

HSb·k[xn](t)

=
∑
b∈B

tdeg b

1− t

=
1

1− t
∑
b∈B

tdeg b

=

(
1

1− t

)
HSk[x1,...,xn−1](t)

=

(
1

1− t

)
1

(1− t)n−1
. �

It turns out that the Hilbert series is always a rational function.

Fact 6.3. Let M be a finitely generated S-module. Then

HSM(t) =
p(t)

(1− t)n

for some polynomial p(t). If we write this in lowest terms, it becomes

HSM(t) =
h(t)

(1− t)d
,

where d is the Krull dimension of M . Here, h(t) is called the h-polynomial of M and h(1)
is the multiplicity of M .

If I is a monomial ideal, then the Hilbert function of I counts the monomials appearing
in I, and the Hilbert function of S/I counts the monomials not appearing in I. If I is a
squarefree monomial ideal, this is still true, but it’s much easier to count the smaller number
of squarefree monomials in I. To this end, we define another object, the squarefree Hilbert
function.

Definition 6.4. Let I be a squarefree monomial ideal. Then the squarefree Hilbert function
of I is the function

HFsqfree
I : Z→ Z

d 7→ #{m ∈ I : m is a squarefree monomial of degree d}

We define HFsqfree
S/I similarly, and define the squarefree Hilbert series HSsqfree

I and HSsqfree
S/I

to be the generating functions on the squarefree Hilbert functions. Note that the squarefree
Hilbert series is actually a polynomial, since there are no squarefree monomials of degree
greater than n.

In order to understand the relationship between the Hilbert function and squarefree Hilbert
function of a squarefree monomial ideal, we need a little more machinery.
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Definition 6.5. Let m =
∏
xei
i be a monomial. Then the squarefree part of m is the result

of “deleting the exponents” from m,

sqfree(m) =
∏
ei≥1

xi =
∏

xi divides m

xi.

The idea is that a monomial’s presence in or absence from a squarefree ideal depends only
on its squarefree part.

Lemma 6.6. Let I be a squarefree monomial ideal and m a monomial. Then m ∈ I if and
only if sqfree(m) ∈ I.

This observation allows us to compute so-called “Stanley decompositions” of I and S/I.

Corollary 6.7. Let I be a squarefree monomial ideal. Then, viewed as vector spaces, I and
S/I have the decompositions

I =
⊕
m∈I

m · k[suppm] and S/I =
⊕
m 6∈I

m · k[suppm],

both sums being taken over the set of squarefree monomials.

These decompositions will enable us to compute the Hilbert functions in terms of the
corresponding squarefree Hilbert functions.

Lemma 6.8. Let m be a squarefree monomial. Then the Hilbert series of m · k[suppm] is(
t

1−t

)degm
.

Proof. By Proposition 6.2, the Hilbert series of k[suppm] is 1
(1−t)deg(m) . Multiplying by m

increases the degree of everything by degm, so multiplies the Hilbert series by tdegm. �

Theorem 6.9. Let I be a squarefree monomial ideal. Then HSI(t) = HSsqfree
I

(
t

1−t

)
and

HSS/I(t) = HSsqfree
S/I

(
t

1−t

)
.

Proof. By Corollary 6.7 and Lemma 6.8 we have

HSI(t) =
∑

m∈I, squarefree

HSm·k[suppm](t)

=
∑

m∈I, squarefree

(
t

1− t

)degm

= HSsqfree
I

(
t

1− t

)
.

The computation for the quotient is identical. �

The Stanley-Reisner analogue of the squarefree Hilbert Function, which counts squarefree
monomials, is the f -vector, which counts faces of a simplicial complex.
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Definition 6.10. The f -vector of a (d− 1)-dimensional complex ∆ is the sequence f(∆) =
(f−1, f0, . . . , fd−1) where fi is the number of i-dimensional faces of ∆ (and f0 = 1 whenever
∆ is not the void complex). The f -polynomial is the generating function of the f -vector,

f∆(t) = f−1t
d + f0t

d−1 + · · ·+ fd−2t+ fd−1.

Note that the coefficient of ti is the number of codimension-i faces (reversing the convention
of the Hilbert series).

The f -vector is perhaps the most natural combinatorial invariant of simplicial complexes.
In a sense, study of the f -vector dates back to Euler: The reduced Euler characteristic of ∆,
which is a topological invariant, is given by

χ̃(∆) =
d−1∑
i=−1

(−1)ifi.

The h-vector of a complex ∆ is the result of an invertible transformation applied to the
f -vector of ∆.

Definition 6.11. Let ∆ be a (d− 1)-dimensional simplicial complex. The h-polynomial of
∆, written h∆(t), is the polynomial given by

h∆(t) = f∆(t− 1).

The h-vector of ∆ is the sequence h(∆) = (h0, h1, . . . , hd) of coefficients of h∆(t):

h∆(t) = h0t
d + h1t

d−1 + · · ·+ hd−1t+ hd.

Remark 6.12. The h-vector of a complex ∆ is typically studied only when ∆ is pure.

Although the f -vector and h-vector contain the same information, properties of some
simplicial complexes are often easier to express in terms of the h-vector. One example
of this are the Dehn-Sommerville relations, which state that the h-vector of a simplicial
polytope boundary is palindromic.

Note that the entries of the h-vector are not guaranteed to be nonnegative. Indeed, the
complex B in Example 3.3 has facets abc and cde, meaning it has f -vector (1, 5, 6, 2) and
h-vector (1, 2,−1, 0). However, when ∆ is a pure shellable complex its h-vector counts
something, and thus has nonnegative entries. First, we examine a shelling in greater detail.

A shelling of a complex ∆ can be thought of as a recipe for building ∆ one facet at a
time. In the shelling shown in Figure 6 of the complex K from Example 1, we begin with
the void complex (the complex with no faces). Adding the facet abc then adds the faces
∅, a, b, c, ab, ac, bc, and abc to the complex. With respect to inclusion, this set of faces has a
unique minimal face: ∅. Next, we add the facet bcd, which adds the faces d, bd, cd, and bcd to
the complex. Again, this set has a unique minimal element: d. Continuing on, the minimal
new faces obtained by adding the facets abe, bde, cde, and ace are, respectively, e, de, ce, and
ace.

It turns out that any shelling has this property: with the addition of each facet Fi, the
corresponding set of all “new” faces has a unique minimal element with respect to inclusion.
Conversely, any ordering of the facets satisfying this property is a shelling. We prove this in
the next proposition.
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Figure 6. Shelling the pure simplicial complex K from Example 1.

Proposition 6.13. Let ∆ be a simplicial complex and F1, F2, . . . , Ft an ordering of its facets.
Then this ordering is a shelling of ∆ if and only if the following property holds:

• For each j with 1 ≤ j ≤ t, the set of faces contained in
⋃j
i=1 Fi but not in

⋃j−1
i=1 Fi

has a unique minimal element with respect to inclusion.

We often call this unique minimal element the minimal face associated to Fj.

Proof. First assume that the property is satisfied, and fix j > 1. We need to show that

Fj ∩
(⋃j−1

i=1 Fi

)
is a non-empty union of facets of ∂Fj. Let A be the minimal face associated

to Fj, and note that A must be nonempty, as
⋃j−1
i=1 Fi already contains the empty set as a

face. For a face B of Fj, we have that B ⊆ Fj ∩
(⋃j−1

i=1 Fi

)
if and only if there is an a ∈ A

with a /∈ B. As Fj r a ⊆
⋃j−1
i=1 Fi for all a ∈ A, it follows that⋃

a∈A

Fj r a = Fj ∩

(
j−1⋃
i=1

Fi

)
,

which means the ordering is a shelling.
The converse is proven analogously: Fix j > 1, and let A = {a ∈ Fj : Fj r a ⊆

⋃j−1
i=1 Fi}.

Then a face B ⊆ Fj is contained in
⋃j−1
i=1 Fi if and only if it is contained in Fj r a for some

a ∈ A, as Fj ∩
(⋃j−1

i=1 Fi

)
is a union of facets of ∂Fj. Thus, a face of Fj is not contained in⋃j−1

i=1 Fi if and only if it contains A, meaning the property is satisfied. �
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Looking back at the shelling depicted in Figure 6, we found that the minimal faces asso-
ciated to the facets in the shelling were ∅, d, e, de, ce, and ace. Clearly, a different shelling of
K would not necessarily produce the same set of minimal faces. For example, if we use the
shelling abc, ace, abe, bcd, bde, cde, the associated minimal faces are, in order, ∅, e, be, c, de, cde.

While these two sets of minimal faces are distinct, they each contain one (−1)-dimensional
face (namely, ∅), two 1-dimensional faces, two 2-dimensional faces, and one 2-dimensional
face. The next theorem asserts that this information is recorded by the h-vector of K.
Indeed, the f -vector of K is (1, 5, 9, 6), and thus the h-vector of ∆ is (1, 2, 2, 1).

Theorem 6.14. Let ∆ be a pure (d − 1)-dimensional complex with shelling F1, F2, . . . , Ft,
and define Γj as above. Then the h-vector (h0, h1, . . . , hd) is given as follows: For each i,

hi = |{j : the minimal face corresponding to Fj is (i− 1)-dimensional}|

Proof. Consider a facet Fj in a shelling of ∆, and let A be the minimal face associated to Fi.

Then every new face obtained by adding Fj to the union
⋃j−1
i=1 Fi must contain A, meaning

these faces add (t+ 1)d−|A| to f∆(t), and so

h∆(t+ 1) = f∆(t). �

The next theorem expresses the relationship between the Hilbert series of a squarefree
ideal and the f - and h-vectors of its Stanley-Reisner complex. It is often paraphrased by
saying that the relationship between the Hilbert function and the squarefree Hilbert function
is the same as the relationship between the f -vector and the h-vector.

Theorem 6.15. Let ∆ be a (d−1)-dimensional simplicial complex with f -vector (f−1, f0, . . . , fd−1).
Recall that we write R∆ for the quotient S/I∆. Then:

(1) HSsqfree
R∆

(t) =
d∑
i=0

fi−1t
i.

(2) HSR∆
(t) =

d∑
i=0

fi−1t
i

(1− t)i
=

1

(1− t)d
d∑
i=0

hit
i.

Proof. In part (1), for each i, the squarefree monomials in S/I∆ of degree i are exactly those
monomials which correspond to (i− 1)-dimensional faces of ∆.

For part (2), the first equality follows from part (1) and Theorem 6.9. For the second
equality, we first write out the relation h∆(t) = f∆(t− 1):

d∑
i=0

hit
d−i =

d∑
i=0

fi−1(t− 1)d−i.

If we substitute 1/t for t, this becomes

d∑
i=0

hi
td−i

=
d∑
i=0

fi−1

(
1− t
t

)d−i
,
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and multiplying through by td yields
d∑
i=0

hit
i =

d∑
i=0

fi−1t
i(1− t)d−i.

Now we have

HSR∆
(t) =

d∑
i=0

fi−1t
i

(1− t)i

=
1

(1− t)d
d∑
i=0

fi−1t
i(1− t)d−i

=
1

(1− t)d
d∑
i=o

hit
i. �

We illustrate these ideas using the complex K of Example 4.2. The minimal non-faces of
∆ are ae and bcd, and thus I∆ = (ae, bcd) and R∆ = k[a, b, c, d, e]/(ae, bcd). The f -vector
and h-vector of ∆ are (1, 5, 9, 6) and (1, 2, 2, 1), respectively. By Theorem 6.15,

HSR∆
(t) = 1 +

5t

(1− t)
+

9t2

(1− t)2
+

6t3

(1− t)3
=

1 + 2t+ 2t2 + t3

(1− t)3
.

7. Hochster’s formula and Betti numbers

We conclude with some connections of Stanley-Reisner theory to computing Betti numbers
of monomial ideals. Many of the results we discuss in this section are for multigraded Betti
numbers; that is, the degree of the syzygy is a monomial or, equivalently, a vector in Nn.

Notation 7.1. Throughout the section, let b be a monomial. Abusing notation, we identify
b with its exponent vector b ∈ Nn, and we write xi ∈ b to indicate that xi divides b. We
adopt the common shorthand |b| = deg b.

Hochster’s formula, which appeared in [H], has been a central tool in combinatorial com-
mutative algebra for over 30 years. We begin by defining induced subcomplexes of a simplicial
complex.

Definition 7.2. Let ∆ be a simplicial complex on X, and let Y ⊆ X. The induced sub-
complex ∆[Y ] is the simplicial complex consisting of all faces of ∆ whose vertices lie in
Y .

Example 7.3. Let B be the bowtie complex from Example 3.3. The induced subcomplex
B[abde], shown in Figure 7, is the union of two disjoint line segments. Note that while B is
contractible, B[abde] has nontrivial homology. This illustrates that the collection of induced
subcomplexes contains more information about the complex than its homotopy type.

Hochster’s formula shows that the multigraded Betti numbers of a squarefree monomial
ideal I are encoded in the homology of induced subcomplexes of ∆I . When b is a multidegree
and ∆ a simplicial complex, we often write ∆[b] to mean the induced subcomplex on the
associated subset of X.
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b

a d

e

Figure 7. The induced subcomplex B[acde].

Before stating Hochster’s formula, we need a quick introduction to (multigraded) Betti
numbers. We have done our best to minimize the machinery required in this section. How-
ever, the material is necessarily more involved than what comes before. Readers who are
interested only in the statements or applications of Hochster’s formula should skip ahead to
Theorem 7.11.

There are many ways to define Betti numbers, and it is usually most convenient to think
of them in terms of a free resolution or as the ranks of certain Tor modules. However, for
our purposes, it is easiest to define Betti numbers in terms of the homology of an object
called the (algebraic) upper Koszul complex, which we construct below.

Notation 7.4. For each variable xj, define an object ej called the differential of xj. Given
a monomial g of degree d, write g = xj1xj2 . . . xjd , and set the differential of g equal to

Dg = ej1 ∧ ej2 ∧ · · · ∧ ejd ,

where ∧ (pronounced “wedge” and called the exterior product) is an associative operation
satisfying the anticommutativity relation er ∧ es = −es ∧ er. If k has characteristic other
than 2, it follows that Dg 6= 0 if and only if g is squarefree. (If char k = 2, we take this as
an additional axiom.) We endow the differential Dg with multidegree g.

Definition 7.5. The Koszul complex is the algebraic chain complex

K• : 0→ Fn → Fn−1 → · · · → F1 → F0 → k → 0,

where Fi is the free S-module with basis given by {Dg : deg g = i}. We formally set the
empty wedge D(1) equal to 1, so F0 = S. The boundary maps are given by the formula

φ(Dg) =
∑

xj∈g±xjD
(
g
xj

)
, where the sign convention is the standard simplicial boundary

convention: if g =
∏
xjs , then Dg =

∑
(−1)s+1xjsD

(
g
xjs

)
. Note that φ preserves multide-

gree.

Remark 7.6. If we stipulate that ∧ is also distributive over addition, and set E =
⊕

Fi,
then E is an anticommutative k-algebra, called the exterior algebra on {x1, . . . , xn}.

Remark 7.7. The Koszul complex is essentially the usual simplicial chain complex arising
from the (n− 1)-simplex {x1, . . . , xn}, but viewed with coefficients in S. The coefficients in
the boundary maps give it multigraded structure. It is a standard exercise in commutative
algebra that the Koszul complex is exact and hence a free resolution of k.
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Definition 7.8. Let I be a monomial ideal. Then the (algebraic) upper Koszul complex of
I is the tensor product of I with the Koszul complex,

K•(I) : 0→ IFn → IFn−1 → · · · → IF1 → IF0 → I/(x1, . . . xn)I → 0.

The ith Betti number of I is the dimension of the ith homology of this complex,

bi(I) = dimkHi(K•(I)),

and the (i,b)th multigraded Betti number of I is the dimension of the degree b part of this
homology,

bi,b(I) = dimk (Hi(K•(I)))b ,

The module IFi has k-basis consisting of symbols of the form fDg, where f ∈ I is a
monomial and g is a squarefree monomial of degree i.

The following standard theorems about Betti numbers are considerably easier to derive
from one of the many standard treatments (see, for example, [P]) than from the definitions
above.

Theorem 7.9. Let I be a squarefree monomial ideal and b a multidegree. Then

(1) bi,b(I) = bi+1,b(S/I).
(2) If b is not squarefree, then bi,b(I) = 0.

The upper Koszul complex K•(I) has k-basis consisting of symbols of the form fDg, for
monomials f ∈ I and squarefree monomials g. The symbol fDg has multidegree fg and
homological degree deg g, and its differential is φ(fDg) =

∑
xj∈g±(fxj)D( g

xj
), where the

signs alternate according to the standard convention on the order of the xj.
If we restrict to a squarefree multidegree b, K•(I) becomes a complex Kb(I) of vector

spaces, with basis B =
{
Bg = b

g
Dg
}
g∈G

, where the index set is

G =

{
g : g divides b and

b

g
∈ I
}

=

{
g : g divides b and

b

g
6∈ ∆I

}
=

{
g : g divides b and

b

g
6∈ (∆I)[b]

}
= ((∆I)[b])∨ .

Thus, Kb(I) has basis
{
Bg : g ∈ ((∆I)[b])∨

}
, and the differential is φ(Bg) =

∑
xj∈g±B g

xj
.

Remark 7.10. Note that G = ((∆I)[b])∨ is a simplicial complex. Bayer, Charalambous,
and Popescu call it the upper Koszul simplicial complex in multidegree b. See [BCP, MS].
We will revisit this object later in the section.

Meanwhile, the chain complex associated to ((∆I)[b])∨ has basis consisting of symbols{
Cg : g ∈ ((∆I)[b])∨

}
. The homological degree of Cg is dim g = deg g−1, and the differential

is ∂(Cg) =
∑

xj∈g±C g
xj

.
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Thus, the map sending Bg to Cg is an isomorphism of chain complexes, shifting homological
degree by one. It induces an isomorphism between the ith homology of Kb(I) and the (i−1)th

homology of (∆I)[b]. This gives us the first form of Hochster’s formula:

Theorem 7.11 (Hochster’s formula, dual form). Let I be a squarefree monomial ideal and
b be a squarefree multidegree. Then

bi,b(I) = dimk H̃i−1

(
((∆I)[b])∨

)
and

bi,b(S/I) = dimk H̃i−2

(
((∆I)[b])∨

)
.

We can remove the dual from this formula at the price of passing to cohomology. Recall
classical Alexander duality.

Theorem 7.12 (Alexander duality). Let ∆ be a simplicial complex on ` vertices. Then
H̃i(∆

∨; k) is isomorphic to H̃`−i−3(∆; k).

Applying this to Hochster’s formula immediately gives us a second form of Hochster’s
formula.

Corollary 7.13 (Hochster’s formula, cohomology form). Let I be a squarefree monomial
ideal and b a squarefree multidegree. Then

bi,b(S/I) = dimk H̃
|b|−i−1(∆I) and bi,b(I) = dimk H̃

|b|−i−2(∆I).

Remark 7.14. We can also obtain the cohomological form directly from the upper Koszul
complex of S/I. The computation is similar in spirit to the development of the dual form of
Hochster’s formula, but the details are much messier, and thus we omit it.

Remark 7.15. If k is characteristic zero, then the ranks of corresponding homology and
cohomology groups are equal, and we may thus rephrase Corollary 7.13 as:

bi,b(I) = dimk H̃|b|−i−2(∆I [b]; k).

Example 7.16. Let ∆ be the complex from Figure 5. Then ∆[acde] is contractible, so
H̃ i(∆[acde], k) is trivial for any i, and bi,acde(I∆) = 0 for all i.

c

d

e

a

Figure 8. The induced subcomplex ∆[acde].

However, ∆[abcd] is homotopy equivalent to the wedge product of two circles (see Figure
9), and so

b1,abcd = dimk H̃
|abcd|−1−2(∆[abcd], k) = dimk H̃

1(∆[abcd], k) = 2.
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bc

ad

Figure 9. The induced subcomplex ∆[abcd].

We turn now to the computation of multigraded Betti numbers of arbitrary monomial
ideals via simplicial complexes. When I is not squarefree, there is no Stanley-Reisner com-
plex to work with, and thus Hochster’s formula cannot be applied directly. However, the
upper Koszul simplicial complex, introduced by Bayer, Charalambous, and Popescu [BCP],
continues to make sense. (See also [MS].)

Definition 7.17. The upper Koszul simplicial complex of a monomial ideal I in multidegree
b is

Kb(I) = {g ∈ 2X :
b

g
∈ I}

(Note: This is the simplicial complex Kb(I) in [BCP]; we have adopted the notation of [MS]
to avoid confusion with another simplicial complex defined in [MS].)

Bayer, Charalambous, and Popescu prove the following theorem.

Theorem 7.18 ([BCP]). Given a monomial ideal I, the multigraded Betti numbers of I are

bi,b(I) = dim H̃i−1(Kb(I); k).

Example 7.19. We compute some multigraded Betti numbers of a monomial ideal that is
not squarefree to illustrate Theorem 7.18. Let I = (a3, b3, c4, abc, ac2, bc2) ⊂ S = k[a, b, c].

We compute Kabc2(I). Note that abc2 ∈ I, so ∅ ∈ Kabc2(I). Moreover, dividing abc2 by

any of a, b, or c yields a monomial in I, meaning Kabc2(I) contains vertices a, b, and c.
Because I is generated in degree three and higher, we cannot divide abc2 by a degree two
or higher monomial and stay in I, meaning that the facets of Kabc2(I) are exactly the three
isolated vertices a, b, and c. From this, we can compute bi,abc2(I) for any i. When i = 0, we

compute dim H̃−1(Kabc2(I); k), which is zero. When i = 1, we are counting the number of

connected components of Kabc2(I) minus one, giving us two. Hence b1,abc2(I) = 2. There is
no higher homology, meaning there are two minimal first syzygies of multidegree abc2, and
bi,abc2(I) = 0 for i 6= 1.

In another direction, Terai proved a beautiful result in [T, Corollary 0.3] showing that
the projective dimension of a squarefree monomial ideal and the regularity are dual notions.
Suppose M is a finitely graded S-module with minimal free resolution

0→
⊕
j

S(−br,j)→ · · · →
⊕
j

S(−b1,j)→
⊕
j

S(−b0,j)→M → 0.

The regularity of M is the maximum value of bi,j − i, and it is the label on the bottom row
of the Macaulay 2 Betti diagram of the resolution of M .
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Theorem 7.20 (Terai). The regularity of I∆ equals the projective dimension of S/I∆∨.

Terai actually proves something a bit stronger, namely that the difference between the
regularity of I∆ and the smallest degree of a generator of I∆ is the same as the difference be-
tween the projective dimension of S/I∆∨ and codim I∆∨ . (This is [T, Theorem 2.1], rephrased
using the Auslander-Buchsbaum Theorem.) Theorem 5.7 is an immediate consequence be-
cause ∆∨ is Cohen-Macaulay if and only if pdS/I∆∨ = codim I∆∨ , and an ideal has a linear
resolution if and only if its regularity equals the smallest degree of a minimal generator.

Bayer, Charalambous, and Popescu generalized these ideas further in [BCP] with the
notion of extremal Betti numbers, which are Betti numbers that are nonzero but occupy the
upper left corner of a block of Betti numbers that are otherwise zero in a Macaulay 2 Betti
diagram. See [BCP, Section 3] for some illustrative examples.
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