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Abstract. Let M and N be two monomials of the same degree, and let I be

the smallest Borel ideal containing M and N . We show that the toric ring
of I is Koszul by constructing a quadratic Gröbner basis for the associated

toric ideal. Our proofs use the construction of graphs corresponding to fibers

of the toric map. As a consequence, we conclude that the Rees algebra is also
Koszul.

1. Introduction

An arbitrary graded ring R over a field R0 = K is Koszul if the residue field
R/R+

∼= K has a linear resolution overR. IfR ∼= S/J is the quotient of a polynomial
ring S by an ideal J ⊂ S, then R is Koszul if J has a Gröbner basis consisting of
quadrics with respect to some monomial order [6, Section 6.1]. Our focus in this
paper is when Rees algebras associated to certain Borel ideals are Koszul, and we
shall approach this question by determining when the defining ideal of the Rees
algebra R(I) has a Gröbner basis consisting of quadrics.

Conca and De Negri show that the Rees algebra of a principal Borel ideal (the
smallest Borel ideal containing a given monomial) is Koszul, Cohen-Macaulay, and
normal. (See, e.g., [4, 5].) However, they produce examples of ideals with three
Borel generators that are none of the above:

Example 1.1. ([4, Example 1.3]) Consider the smallest Borel ideal containing the
monomials a3c3, b6, and a2b2c2. Then the cubic syzygy (a3c3)2(b6) = (a2b2c2)3 is
minimal. In particular, the Rees algebra has a minimal generator in degree three.
Moreover, the Rees algebra is neither normal nor Cohen-Macaulay.

These examples naturally raise the question of how the Rees algebras of Borel
ideals with two Borel generators behave, which Conca posed at the conference
honoring Craig Huneke in July 2016.

Question 1.2 (Conca). Let I be a Borel ideal with two Borel generators. Is the
Rees algebra of I necessarily Koszul?

In fact, the Rees ideal of an ideal with three Borel generators can have generators
of arbitrarily high degree, as the following generalization of de Negri’s example
shows. Thus the interest is appropriately concentrated on two-generated Borel
ideals.

Example 1.3. Let I be the smallest Borel ideal containing f = arcr(r−2), g =
br(r−1), and h = ar−1br−1c(r−1)(r−2). Then the syzygy fr−1g = hr is minimal
and represents a degree r generator for the Rees algebra of I. For small values
of r (r ≤ 10), computations in Macaulay2 [9] show that the Rees algebra for I is
likewise not Cohen-Macaulay or normal.
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Remark 1.4. Unlike in the principal Borel case, the Rees algebra of a two-Borel-
generated ideal is almost never normal. For example, the Rees algebra of the
smallest Borel ideal containing a2c2 and b4 is not normal. Meanwhile, limited
computational evidence suggests that Rees algebras of two-Borel-generated ideals
are Cohen-Macaulay.

The present paper gives a positive answer to Conca’s question 1.2 for equigen-
erated Borel ideals with two generators.

Remark 1.5. In the case of a principal Borel ideal, De Negri [5] provides an explicit
Gröbner basis of quadrics using the operation Sturmfels calls sorting [13]. Similar
methods can be used to give a Gröbner basis of quadrics whenever the ideal is closed
under sorting. Two-Borel-generated ideals are almost never closed under sorting,
so we must use different techniques to show the existence of a Gröbner basis of
quadrics in this case.

The paper is structured as follows. In Section 2 we define notation used through-
out the paper and recall the important definitions for Borel ideals and generators.
In Section 3 we recall important definitions about the Rees algebra, and we define
our notation for the variables in the Rees (and toric) ring. Section 4 defines a graph
associated to any multidegree in a Borel ideal, which will be the key ingredient in
our proof. Section 5 contains the proof that the toric ideal of a two-generated Borel
ideal is Koszul. Finally, Section 6 translates this result to the Rees ideal.

2. Notation and background for Borel ideals

Let R = K[x1, . . . , xn] be the polynomial ring in n variables over an arbitrary
field K. (In the examples, we refer to the variables as a, b, c instead of x1, x2, x3.)

Definition 2.1. A monomial ideal J ⊂ R is equigenerated in degree d if its minimal
monomial generators all have degree d, and simply equigenerated if it is equigener-
ated in some degree d.

Throughout the paper, all ideals of R will be equigenerated unless otherwise
stated.

We now recall standard definitions for Borel ideals and Borel generators. Experts
may safely jump to Notation 2.11, where we introduce some paper-specific notation,
or to Definition 2.12, which introduces the cumulative exponent vector.

Definition 2.2. Fix a monomial m ∈ R, and suppose that xj divides m. Then for
any i < j, the operation Bi↖j(m), which replaces m with xi

xj
m, is called the Borel

move replacing xj with xi or simply a Borel move.

Definition 2.3. A monomial ideal I ⊂ R is called Borel if it is closed under Borel
moves. More explicitly, I is Borel if, whenever xjf ∈ I and i < j, we must have
xif ∈ I as well.

Borel ideals are important because they occur as generic initial ideals (see [1, 8]),
and they have been studied extensively because the combinatorial condition in their
definition makes them susceptible to combinatorial techniques. (See [11, Section
28] for some of this flavor.)

We also define a reverse Borel move as follows.
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Definition 2.4. Fix a monomial m ∈ R, and suppose that xj divides m. Then

for any k > j, the operation RBj↗
k(m), which replaces m with xk

xj
m, is called the

reverse Borel move replacing xj with xk or simply a reverse Borel move.

Remark 2.5. Reverse Borel moves are generally not studied because they are
simply Borel moves with a different order on the variables. So the definition is
worth making only if we are already studying regular Borel moves on the same
monomials. (The only ideals closed under both Borel moves and reverse Borel
moves are powers of the maximal ideal. Nevertheless, we will need to study both
kinds of moves simultaneously in Section 4.)

Definition 2.6. Fix a degree d. We define a partial order <, called the Borel order,
on the degree d monomials of R by setting m < m′ whenever m can be obtained
from m′ by a sequence of Borel moves. In this case, we say that m precedes m′ in
the Borel order.

Remark 2.7. The Borel order, <, is not a total order and consequently not a term
order. On the other hand, the usual term orders “lex” and “revlex” are refinements
of > and not of <. (Unfortunately, we cannot simultaneously respect the subscripts
by making x1 < x2 and respect the standard orders by making x1 > x2. We have
found that respecting the subscripts leads to somewhat less confusion.) To minimize
this notational confusion, we generally use English phrases like “m comes before
m′ in the Borel order” rather than purely symbolic statements like “m < m′”.

Definition 2.8. Let B be a set of degree d monomials. Then the smallest Borel
ideal containing B is called the Borel ideal generated by B, written I = Borel(B).
In this case, B is called a Borel generating set for I. I has a unique minimal
Borel generating set (namely, its latest monomial generators in the Borel order),
whose elements are called its Borel generators. If I = Borel(m) has only one Borel
generator, we say that it is a principal Borel ideal.

For more on Borel generators and principal Borel ideals, see [7].

Definition 2.9. Suppose I = Borel(M,N) has exactly two Borel generators. We
say that I is a two-Borel ideal.

Proposition 2.10. Let I = Borel(M,N) be the two-Borel ideal generated by M
and N . Then I is the sum of the principal Borel ideals generated by M and N ,
I = Borel(M) + Borel(N).

Notation 2.11. Suppose I is a two-Borel ideal. By convention, we set M equal to
the lex-earlier of the two Borel generators, and N equal to the lex-later generator.
We refer to monomials of Borel(M) as mi and monomials of Borel(N) r Borel(M)
as ni.

Definition 2.12. For a monomial m ∈ R, write m = xa11 x
a2
2 · · ·xann . Then the

n-tuple (a1, . . . , an) is called the exponent vector of m. We define a new vector,
which we call the cumulative exponent vector σ(m) = (σ1(m), σ2(m), . . . , σn(m)),
by the rule

σi(m) = ai + ai+1 + · · ·+ an.

Example 2.13. Suppose m = a2cd2e ∈ K[a, b, c, d, e]. Then σ(m) = (6, 4, 4, 3, 1).
Also, σ1(m) = 6, σ2(m) = σ3(m) = 4, etc.
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A few properties of the cumulative exponent vector σ are immediate:

Proposition 2.14. Let m be a monomial. Then:

(1) σ1(m) is the degree of m.
(2) σ1(m) ≥ σ2(m) ≥ · · · ≥ σn(m).
(3) σi(m) 6= σi+1(m) if and only if xi divides m.

Lemma 2.15. Suppose xi divides m and j > i. (I.e., RBi↗
j(m) exists.) Then

σk

(
xj
xi
m

)
=

 σk(m) k ≤ i
σk(m) + 1 i < k ≤ j
σk(m) j < k

Proposition 2.16. If m and m′ are two monomials of equal degree, then m ∈
Borel(m′) if and only if σi(m) ≤ σi(m′) for all i.

Lemma 2.17. Suppose m ∈ Borel(m′) and σj(m) 6= σj(m
′). Then there exists an

index i < j such that the reverse Borel move RBi↗
j(m) is contained in Borel(m′).

Proof. Let i be the greatest index less than j such that σi(m) 6= σj(m). Then we
must have σi(m) > σi+1(m) = σi+2(m) = · · · = σj(m). Now, whenever i < k ≤ j,
we have σk(m) = σj(m) < σj(m

′) ≤ σk(m′), so in particular σk(m) < σk(m′).
Applying Lemma 2.15, we have σk(

xj
xi
m) ≤ σk(m′) for all such k, proving the

lemma. �

3. Notation and background for toric and Rees ideals

Let I ⊆ R be an equigenerated monomial ideal with minimal generating set
gens(I) = {w1, w2, . . . , wt}. We associate two pairs of rings and ideals to I, namely
its toric ideal and Rees ideal. The toric ideal is our main object of study.

Definition 3.1. Let S = SI denote the polynomial ring K[Yw : w ∈ gens(I)], with
a variable Yw for each generator w of I. The toric map is the map φ : S → R given
by

φ(Yw) = w,

and extended algebraically. (Here and throughout, we allow for a free re-indexing
of the wi to avoid unwieldy double subscripts.) The toric ideal of I, which we write
T (I), is the kernel of φ. The toric ring of I, denoted K[I], is the quotient SI/T (I)
(naturally isomorphic to the image of φ, which is a subring of R).

Notation 3.2. The toric ring SI inherits the multigrading from R. That is, we

have SI =
⊕
µ

Sµ, where µ ranges over the monomials of R, and Sµ is the K-vector

space

Sµ := spanK{Y =
∏

Y aww ∈ S : φ(Y ) = µ}.
Observe that,if the generating degree of I is d, then Sµ = 0 whenever µ has total
degree not divisible by d. We will abuse notation by referring to multidegrees as
monomials, or monomials of R as multidegrees, wherever it is convenient to do so.

Remark 3.3. Since we name our multidegrees by the monomials of R rather than
their exponent vectors, the field K inside SI is S1 (for the unit monomial 1) rather
than S0 (for its exponent vector).
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Proposition 3.4. The toric ideal SI is generated by binomials of the form Y −Y ′,
where Y and Y ′ have the same multidegree.

The Rees ideal of I is defined similarly to the toric ideal, but allows extra book-
keeping.

Definition 3.5. The Rees algebra of I is the R-subalgebra

RI = R⊕ It⊕ I2t2 ⊕ · · · ⊂ R[t].

More carefully, let R denote the polynomial ring K[x1, . . . , xn][Yw : w ∈ gens(I)],
with a new variable Yw for each generator w of I. The Rees map is the R-algebra
map ρ : R → R[t] given by

ρ(Yw) = wt,

and extended algebraically. (As with the toric ideal, we allow for a free re-indexing
of the wi to avoid unwieldy double subscripts.) The Rees ideal of I, which we
write R(I), is the kernel of ρ. The Rees algebra of I, denoted RI , is the quotient
RI = R/R(I) (naturally isomorphic to the image of ρ, which is a subring of R[t]).

Notation 3.6. The Rees algebra and Rees ideal have two natural gradings. The
multidegree is again inherited from R by setting the multidegree of Yw to w. (We
also set the multidegree of xi equal to xi, and, remembering that we write multi-
degree multiplicatively, set the multidegree of t to 1.) The t-degree, which counts
the number of Y ’s in a monomial, is simply the exponent on t.

Remark 3.7. The defining equations of the Rees ideal are considerably more com-
plex than those of the toric ideal. Essentially, the generators with t-degree d corre-
spond to minimal first syzygies on Id (multiplied by td). Fortunately, despite the
increased complexity, a result of Herzog, Hibi, and Vladoiu (which we discuss in
Section 6) allows us to lift our result from the toric ideal to the Rees ideal.

4. Fiber graphs for a toric ideal

Throughout this section, fix a monomial ideal I ⊂ R, its toric ideal T (I), and
a multidegree µ. We define a directed graph that will help us study the Gröbner
basis of T (I).

Definition 4.1. Define the fiber graph of I at µ, Γµ = Γµ(I) as follows: The vertices
of Γµ are the monomials of Sµ, where Z = Yw1Yw2 · · ·Ywt and Z ′ = Yw′

1
Yw′

2
· · ·Yw′

t

are connected by an edge whenever Z can be obtained from Z ′ by performing a Borel
move on one of its factors, and the corresponding reverse Borel move on another.
More precisely, Z and Z ′ are connected by an edge if there exists a reindexing of
the monomials such that w1 is obtained from w′1 by a Borel move, w2 is obtained
from w′2 via a reverse Borel move, and wi = w′i for i > 2.

Definition 4.2. Fix in addition a monomial order ≺ on SI . We direct each edge
of Γµ to point to the later of the two monomials. That is, if (Z,Z ′) is an edge of Γµ
and Z ≺ Z ′, we direct the edge towards Z. We write ~Γµ for these directed graphs.

Example 4.3. Consider I = Borel(a2c3, b4c) and µ = a3b9c. Then I has 14
minimal monomial generators, of which nine figure in the multidegree µ. The

graph ~Γµ is shown in Figure 1. The order ≺ is the reverse lex order induced from
the variable order

Yb4c � Yb5 � Yab3c � Yab4 � Ya3bc � Ya3c2 � Ya2b2c � Ya2bc2 � Ya2c3 .
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The reason for this choice of order is discussed in Section 5.

Y 2
b4cYa3bc

Yb4cYb5Ya3c2

Yb4cYab3cYa2b2c Yb4cYab4Ya2bc2

Y 3
ab3c Yb5Yab3cYa2bc2 Yb5Yab4Ya2c3

Figure 1. The fiber graph ~Γa3b9c3 for I = Borel(a2c3, b4c).

Remark 4.4. We make two observations here: First, if I is generated in degree

d, then Γµ (and hence ~Γµ) is empty if the total degree of µ is not a multiple of d.
Second, since the orientation of each Γµ is based on a monomial order, it follows
that these graphs must be directed acyclic.

Our main reason for considering these graphs comes from the following observa-
tions of Blasiak [2] and the fourth author [12].

Proposition 4.5. Suppose every nonempty ~Γµ has a unique sink. Then T (I) has
a Gröbner basis, under ≺, consisting of quadric binomials.

Proof. First, we show that the quadric binomials generate T (I). Clearly, T (I) is
generated by binomials of the form Z − Z ′ with φ(Z) = φ(Z ′). Now suppose that

Z−Z ′ is such a binomial, and let µ = φ(Z) = φ(Z ′). Then ~Γµ is nonempty and by
assumption contains a unique sink. It follows that Γµ is connected, so there exists
a path from Z to Z ′, Z = Z0, Z1, Z2, . . . , Zk = Z ′, with each Zi adjacent to Zi+1.

By construction of Γµ, we may write Zi = Ywi,1 . . . Ywi,t and Zi+1 = Ywi+1,1
. . . Ywi+1,t

,
where wi,1 = Br↖s(wi+1,1), wi,2 = RBr↗

s(wi+1,2), and wi,j = wi+1,j for all other j.
Consequently, Zi−Zi+1 is contained in the ideal generated by the quadric binomial
Ywi,1Ywi,2 − Ywi+1,1Ywi+1,2 . In particular, Z − Z ′ =

∑
(Zi − Zi+1) is contained in

the ideal generated by all quadric binomials of T (I).
Now we verify that the set of quadric binomials satisfies Buchberger’s crite-

rion. Fix two such quadric binomials Q and Q′. Then their S-polynomial is the

multihomogeneous binomial Z − Z ′ in some multidegree µ. It follows that ~Γµ is
nonempty, so by assumption it has a sink Z∗. Then there is a path from Z to Z∗,
Z = Z0, Z1, Z2, . . . , Zk = Z∗, with each Zi adjacent to Zi+1 and Zi � Zi+1.

Following the argument above, write

Zi − Zi+1 = (Ywi,1Ywi,2 − Ywi+1,1Ywi+1,2)Ywi,3 . . . Ywi,t ,

and observe that the leading term of the quadric binomial Ywi,1Ywi,2−Ywi+1,1
Ywi+1,2

is Ywi,1Ywi,2 , which divides Zi. Thus, any polynomial containing Zi may be reduced
by the quadric binomial Ywi,1Ywi,2 − Ywi+1,1

Ywi+1,2
, and the result replaces Zi with

Zi+1. Inductively, our S-polynomial Z−Z ′ reduces, modulo the quadric binomials,
to Z ′ − Z∗. By a similar argument, it then reduces to Z∗ − Z∗ = 0. We conclude
that the quadric binomials satisfy Buchberger’s criterion and so form a Gröbner
basis for T (I). �
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Remark 4.6. Proposition 4.5 may also be proved using coherent marking and
Noetherian reduction relations (see [13, Chapter 3]).

5. Two-Borel Ideals

In this section, we construct a monomial order on SI under which all the

(nonempty) directed fiber graphs ~Γµ have a unique sink. It then follows from
Proposition 4.5 that the toric ideal T (I) has a quadric Gröbner basis with respect
to this order and in particular is Koszul.

We begin with a technical lemma, which will allow us to to assume that the

Borel generators of I always divide the multidegree µ when we study the graph ~Γµ.

Lemma 5.1. Let µ be a multi-degree, M a monomial of degree d, M ′ the lex-latest
degree d monomial in Borel(M) such that M ′ divides µ, and m another monomial
in Borel(M) so that m divides µ. Then m ∈ Borel(M ′). Furthermore, if m 6= M ′

and j is the largest index so that σj(m) < σj(M
′), then there is some index i < j

so that RBi↗
j(m) ∈ Borel(M ′) and RBi↗

j(m) divides µ.

Proof. For the first statement, suppose to the contrary that m /∈ Borel(M ′). Let j
be the largest index so that σj(m) > σj(M

′) (by Lemma 2.17 there is at least one
such index). We have σj(M) ≥ σj(m) > σj(M

′), so again by Lemma 2.17, there is
some index i < j so that M ′′ =

xj
xi
M ′ ∈ Borel(M).

We claim M ′′ divides µ. Indeed, write M ′ = xa11 · · ·xann ; we need only show that

x
aj+1
j divides µ. To this end, write m = xb11 · · ·xbnn ; since m divides µ, it is enough

to show that bj > aj . But by the construction of j we have bj+σj+1(m) = σj(m) >
σj(M

′) = aj + σj+1(M ′) (taking σj+1 = 0 if j = n). Also by the choice of j, we
have σj+1(m) ≤ σj+1(M ′). It follows that bj > aj as desired.

Now we have that M ′′ = RBi↗
j(M ′), which is lex-later than M ′, is contained

in Borel(M) and divides µ. But this contradicts the choice of M ′ as the lex-last
monomial in Borel(M) dividing µ. Thus m ∈ Borel(M ′) as desired.

For the second claim, let j be the largest index with σj(m) > σj(M
′). Then by

Lemma 2.17, there is some i with RBj↗
i(m) ∈ Borel(M ′). By the same reasoning

as above, we conclude that RBj↗
i(m) divides µ.

�

Corollary 5.2. Suppose I = Borel(M1,M2, . . . ,Mk) and µ is a multi-degree. Let
M ′1, . . . ,M

′
k be the lex-last monomials of Borel(M1), . . . ,Borel(Mk), respectively,

that divide the multidegree µ, and set I ′ = Borel(M ′1, . . . ,M
′
k). Then ~Γµ(I) =

~Γµ(I ′).

For the duration of the paper, let I = Borel(M,N) be a two-Borel ideal equigen-
erated in degree d, and recall that the toric ideal T (I) is an ideal of the ring

SI = K[Yw : w ∈ gens(I)]. The structure of the directed graphs ~Γµ depends on the
choice of term order for the ring SI , so our first order of business is to define one
that allows our arguments to work.

Definition 5.3. We define the fiber sink order for SI as follows. First, partition
the minimal monomial generators of I into two sets, GM = gens(Borel(M)) and
GN = gens(I)rGM . (Note that GM is closed under going down in the Borel order,
while GN is not; see, e.g., Figure 2.) Then order the variables Yw of SI according
to the fiber sink variable order, defined as follows.
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• If u, v ∈ GN and u precedes v in the lex order, then Yv precedes Yu.
• If u ∈ GN , v ∈ GM , then Yv precedes Yu
• If u, v ∈ IM and u precedes v in the lex order, then Yu precedes Yv.

Finally, the fiber sink order on SI is the reverse lex order induced by the fiber sink
variable order.

Example 5.4. Let M = a2c3, N = b4c, and I = Borel(M,N). The graph on the
left in Figure 2 is the Hasse diagram of the Borel order on the minimal monomial
generators of I. The elements of GN are in the red circles, and the elements of GM
are in green boxes. The labels Y0, . . . , Y13 are the fiber sink variable order on these
generators, with Y0 = N first and Y13 = M last. Finally, the graph on the right is
~Γµ for the multidegree µ = a3b9c3, using the fiber sink order.

b4c

b5ab3c

ab4

a5

a4b

a4c a3b2

a3bc

a3c2

a2b3

a2b2c

a2bc2

a2c3 Y0

Y1Y2

Y3

Y4

Y5

Y6 Y7

Y8

Y9

Y10

Y11

Y12

Y13

M N

Hasse diagram for generators of I

Y 2
0 Y8

Y0Y1Y9

Y0Y2Y11 Y0Y3Y12

Y 3
2 Y1Y2Y12 Y1Y3Y13

The graph ~Γµ for µ = a3b9c3

Figure 2. The fiber sink order on SI , with I = Borel(a2c3, b4c).

Remark 5.5. The fiber sink variable order always begins with Y0 = N , continues
with the other elements of GN in antilex order, then takes the elements of GM in
lex order, ending with M . Heuristically, paths from N to M in the Hasse diagram
of the Borel order represent chains in the fiber sink variable order.

In fact, our arguments do not rely on the use of the lex order within GN and GM .
Any linear extension of the antiborel order on GN followed by any linear extension

of the Borel order on GM will yield the same unique sinks in every ~Γµ.

Remark 5.6. While we think of M and N as being incomparable in the Borel
order, this assumption is not actually necessary. In the degenerate case where M
and N are comparable, then I = Borel(M) or I = Borel(N) is a principal Borel
ideal, and consequently many orders on the toric ideal of a principal Borel ideal
can occur as the fiber sink order. For example, setting M = ad yields the antilex
order on the generators of I, and setting N = ad yields the lex order.
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Remark 5.7. We could have dualized everything in the creation of the fiber sink
order. If we started with the antilex order on GM and ended with the lex order on
GN , and then induced the lex instead of the reverse lex order on the Y variables,
our graphs would end up having unique sources instead of sinks. But apart from
the change in language all our subsequent arguments would go through without
modification.

Now we study the sinks in the graphs ~Γµ. Observe from Figure 2 that movement
along the directed edges always consists of replacing a low-indexed variable with a
lower index, and replacing a high-indexed variable with a higher index. Thus there
are two possible heuristics, depending on which of these we view as a goal, and
which we view as incidental.

Definition 5.8. Write Y = Yw1 . . . Ywk , with Yw1 first and Ywk last in the fiber
sink variable order. We say Y has type N if every wi ∈ GN . We say Y has type M
if wk ∈ GM . (So every Y has type M or N , but not both.) If Y has type N then a
type N replacement of Y is the monomial resulting from applying a reverse Borel
move to Yw1

and the corresponding Borel move to one of the other variables. (That
is, we replace Yw1 with YRBi↗j(w1) and replace some other Yw` with YBi↖j(w`)

, while

leaving any other factors untouched.) Similarly, if Y has type M then a type M
replacement of Y is the monomial resulting from applying a reverse Borel move to
Ywk and the corresponding Borel move to one of the other variables.

The following lemma motivates the choice of reverse lex order on the Y variables
in the fiber sink order.

Lemma 5.9. Fix a multidegree µ divisible by both M and N , and suppose Y ∈ Sµ.
If Y has type N and YN does not divide Y , then a type N replacement is possible.
If Y has type M and YM does not divide Y , then a type M replacement is possible.
In either case, the replacement is later than Y in the fiber sink order.

Proof. We suppose Y has type M but is not divisible by YM , and prove the con-
clusions of the lemma. (The argument for type N is identical.)

Write Y = Yw1
. . . Ywk with Ywk last in the fiber sink variable order. By as-

sumption, wk 6= M , but wk ∈ Borel(M), so by Lemma 5.1 there exists a reverse
Borel move RBi↗

j such that = RBi↗
j(wk) is contained in Borel(M) and divides

µ. Write wk =
∏
xa`` ; it follows that x

aj+1
j divides µ and in particular xj divides

one of the other wr. Now we can perform the Borel move Bi↖j on wr, and the
result will be contained in I. So the monomial

Y ′ = YRBi↗j(wk)YBi↖j(wr)

∏
s6=r,k

Yws

is a type M replacement of Y and is in the fiber Sµ. In particular, this replacement
is possible. Finally, observe that Y ′ is divisible by YRBi↗j(wk), which comes after
Ywk in the fiber sink variable order. Since Ywk is the last variable dividing Y and
the fiber sink order is reverse lex, we conclude that Y ′ comes after Y in the fiber
sink order. �

Corollary 5.10. Suppose I = Borel(M,N) and fix a multidegree µ divisible by

both M and N . Then every sink of type M in ~Γµ is divisible by YM , and every sink

of type N is divisible by YN . Furthermore, every sink in ~Γµ has the form YMZM ,

where ZM is a sink in ~Γ µ
M

, or YNZN , where ZN is a sink in ~Γ µ
N

.
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Proof. The first claim is immediate from Lemma 5.9. For the second claim, observe

that the subgraph of ~Γµ containing YM is isomorphic to ~Γ µ
M

. �

Corollary 5.10 suggests an algorithm to find the sinks of ~Γµ: If there are mono-

mials of type M , find the sinks of ~Γ µ
M

(after replacing M and N by M ′ and N ′ as

in Corollary 5.2 if necessary), and multiply by YM . If there are monomials of type

N , multiply the sinks of ~Γ µ
N

by YN .

To prove that every ~Γµ has a unique sink, it suffices to remove the choice between
types M and N .

Proposition 5.11. Suppose I = Borel(M,N) and fix a multidegree µ divisible by

both M and N . Then either every sink in ~Γµ has type M , or every sink has type
N .

Proof. Suppose that ~Γµ has a sink of type N . We will show that in fact it has no
monomials of type M .

To that end, suppose that Y = Yn1
. . . Ynt is a sink, so µ = n1 . . . nt with each

ni ∈ GN . Without loss of generality, we may assume that nt is the last of these
factors in the fiber sink order, i.e., first in the lex order. Since nt /∈ Borel(M), there
must be an index j with

σj(nt) > σj(M).

Let j be the maximal such index. Since nt ∈ Borel(N), we have σj(M) < σj(nt) ≤
σj(N). Moreover, observe that σj(nt) > σj+1(nt), since otherwise we would have
σj+1(nt) = σj(nt) > σj(M) ≥ σj+1(M), contradicting the maximality of j. Thus
xj divides nt.

The key ingredient in our proof is that, for any s 6= t, we have

σj(ns) = σj(N).

Indeed, suppose otherwise. Then, as ns ∈ Borel(N), we would have σj(ns) <
σj(N). By Lemma 2.17 there would then exist an i < j such that

xj
xi
ns ∈ Borel(N).

Meanwhile, since xj divides nt, we also have Bi↖j(nt) = xi
xj
nt ∈ Borel(N). But

then replacing ns with RBi↗
j(ns) and nt with w = Bi↖j(nt) creates a new element

Y ′ ∈ Sµ. Now Yw comes after Ynt in the fiber sink variable order, and Ynt is the
last variable dividing Y , so Y ′ comes after Y in the fiber sink order. Thus, the
directed edge from Y to Y ′ contradicts the assumption that Y is a sink.

We now prove that Sµ has no elements of type M . Indeed, suppose we can write

µ = m ·
∏t−1
k=1 wk with m ∈ GM and each wk ∈ Borel(I). We have

σj(µ) = σj(m) +

t−1∑
k=1

σj(wk) =

t∑
s=1

σj(ns) = σj(nt) +

t−1∑
k=1

σj(ns).

As m ∈ Borel(M), we must have σj(m) ≤ σj(M) < σj(nt). Consequently,

t−1∑
k=1

σj(wk) >

t−1∑
s=1

σj(ns) = (t− 1)σj(N).

By the pigeonhole principle, this means σj(wk) > σj(N) for some k. Immediately,
we have wk 6∈ Borel(N), so wk ∈ Borel(M). But then we have σj(wk) ≤ σj(M) <
σj(nt) ≤ σj(N), a contradiction.
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Thus, the existence of a sink of type N prevents the existence of any elements
of type M , as desired. �

Putting all this together, we conclude that the toric ideal of a two-Borel ideal is
Koszul.

Theorem 5.12. Let I = Borel(M,N) be a two-Borel ideal. Then T (I) has a
quadratic Gröbner basis in the fiber sink order. In particular, the toric ring K[I] is
Koszul.

Proof. By Proposition 4.5, it suffices to show that every nonempty ~Γµ has a unique

sink. If µ = 1, then ~Γµ consists of a single point and there is nothing to prove.
Otherwise, we induct on divisibility.

By Corollary 5.2, we may if necessary replace M and N with M ′ and N ′, the
lex-last elements of Borel(M) and Borel(N) dividing µ.

By Proposition 5.11, either every sink has type M or every sink has type N . In

the first case, every sink has the form YMZM , where ZM is a sink of ~Γ µ
M

. In the

second case, every sink has the form YNZN , where ZN is a sink of ~Γ µ
N

. Inductively,

both ~Γ µ
M

and ~Γ µ
N

have unique sinks. Consequently, in either case, ~Γµ has a unique
sink. �

6. Concluding Remarks

We now make the connection between Koszulness of the toric ring K[I] and
Koszulness of the Rees algebra RI . The following result, due to Herzog, Hibi, and
Vladoiu, allows a straightforward relationship.

Theorem 6.1. [10, Theorem 5.1] Let I be a Borel ideal minimally generated by
{w1, . . . , wk}, with Rees ideal R(I) as in Definition 3.5. Let < be any term order on
K[Yw1

, . . . , Ywk ] and let <R be the elimination order on R defined by xαY β < xγY δ

whenever either xα <lex x
γ or xα = xγ and Y β < Y δ in K[Yw1

, . . . , Ywk ]. Suppose
G<(T (I)) is a Gröbner basis for the toric ideal T (I) in K[Yw1

, . . . , Ywk ] with respect
to <. Then

{xjYwt − xiYwu : xjwt = xiwu} ∪ G<(T (I))

is a Gröbner basis for the Rees ideal R(I) with respect to <S in S.

Theorem 6.1 completes the proof that the Rees ideal of a two-Borel ideal is
Koszul.

Corollary 6.2. The Rees algebra of a two-Borel ideal is Koszul.

Proof. Let I be a two-Borel ideal. By Theorem 5.12, the toric ideal T (I) has a
quadratic Gröbner basis. By Theorem 6.1, the Rees ideal of I has a quadratic
Grobner basis, and in particular is Koszul. �

We close with some questions for future research.

Question 6.3. If I is a two-Borel ideal, is the toric ring K[I] Cohen-Macaulay?

Question 6.4. Let I1, . . . , Ik be ideals in a polynomial ring, where each Ij is either
a principal Borel ideal or a two-Borel ideal. Is the multi-Rees algebra RI1,...,Ik
(see [3]) Koszul? What about Cohen-Macaulay or normal?
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