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Abstract. We construct several pairwise-incomparable bounds on the projective dimensions of
edge ideals. Our bounds use combinatorial properties of the associated graphs. In particular, we
draw heavily from the topic of dominating sets. Through Hochster’s Formula, we recover and
strengthen existing results on the homological connectivity of graph independence complexes.

1. Introduction

Let G be a graph with independence complex ind(G) and fix a ground field k. A much-studied
question in combinatorial and algebraic graph theory is the following:

Question 1.1. What are non-trivial bounds on the biggest integer n such that H̃i(ind(G),k) = 0
for 0 ≤ i ≤ n?

Answers to the above question immediately give constraints on the homotopy type of the inde-
pendence complex. They can also be applied to various other problems, such as Hall type theorems
(see [4]). Thus, the question has drawn attention from many researchers (see, for instance, [2], [7],
[11], or [22], and references given therein). Usually, the tools in such work come from combinatorial
topology.

Let x1, . . . , xn correspond to the vertices of G and I ⊂ S = k[x1, . . . , xn] be the edge ideal
associated to G. Via the well-known Hochster’s Formula (Theorem 2.2), a related question is:

Question 1.2. What are (combinatorially constructed) bounds on the projective dimension of S/I?

Any upper bound for the projective dimension of a graph’s edge ideal provides a lower bound
for the first non-zero homology group of the graph’s independence complex. Going the other way,
an answer to Question 1.1 can also give information about 1.2 (see Theorem 5.1 of [11]). However,
the two questions are not equivalent.

In this paper we give various answers to Question 1.2. The consequent bounds we obtain on
independence complex homology typically recover or improve on what is known in the literature for
general graphs as well as several well-studied subclasses; for example chordal, generalized claw-free,
and finite subgraphs of integer lattices in any dimension (see Section 6). Our proofs are some-
times subtle but quite elementary, and follow an axiomatized inductive approach. Thus, our main
methods make the problem of proving certain bounds on the projective dimensions or homological
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connectivity of the independence complex of all graphs in a given class a rather mechanical task
(see Section 3, especially Theorems 3.1 and 3.3).

Most of our bounds make use of various graph domination parameters. Dominating sets in
graphs have received much attention from those working on questions in combinatorial algorithms,
optimization, and computer networks (see [19]). We believe that our results are the first to system-
atically relate domination parameters of a graph to its edge ideal’s projective dimension (although
the connection between domination parameters and independence complex homology has been
previously explored; see [22]).

In particular, our study leads to the introduction of edgewise-domination, a new graph domina-
tion parameter which works especially well with bounding projective dimension (see the beginning
of Section 4 for definition and see Theorem 4.3).

Our paper is organized as follows. We start by reviewing the necessary background in both
commutative algebra and graph theory. Section 3 is concerned with the technical background
and several key theorems we use in later sections. It also contains our first upper bounds for the
projective dimension of an edge ideal. These bounds use invariants such as the clique number of
a graph’s complement and the maximum degree of an edge. In Section 4, we relate the projective
dimension of a graph’s edge ideal to various domination parameters of the graph, and introduce
a new domination parameter called edgewise domination. In Section 5 we apply our methods
to situations when an exact formula for the projective dimension can be found. In particular, we
recover a known formula for the projective dimension of a chordal graph. Section 6 is concerned with
bounds on the homology of graph independence complexes. Using Hochster’s Formula as a bridge,
we manage to recover and/or strengthen many results on the connectivity of such complexes, and
we use edgewise domination to prove a new homological bound. We conclude with some examples
and a discussion of further research directions in Section 7.

2. Preliminaries and Background

2.1. Graph Theory. Most of our graph theory terminology is fairly standard (see [8]). All our
graphs are finite and simple (meaning they have no loops or parallel edges).

For a graph G, let V (G) denote its vertex set. We write (v, w) to denote an edge of G between
v and w (all our graphs are undirected, so the order of v and w is immaterial). If v is a vertex of
G, we let N(v) denote the set of its neighbors. For X ⊆ V (G), we set N(X) =

⋃
v∈X N(v).

If G is a graph and W ⊆ V (G), the induced subgraph G[W ] is the subgraph of G with vertex set
W , where (v, w) is an edge of G[W ] if and only if it is an edge of G and v, w ∈ W . For v ∈ V (G),
the star of v, written st(v), is the induced subgraph G[N(v) ∪ {v}]. We also write Gc for the
complement of G, the graph on the same vertex set as G where (v, w) is an edge of Gc whenever
it is not an edge of G. We also write Is(G) to denote the set of isolated vertices of G, and we let
G = G− Is(G).

We also write Km,n to denote the complete bipartite graph with m vertices on one side and n on
the other. Recall that K1,3 is known as the claw, and graphs with no induced subgraph isomorphic
to K1,3 are called claw-free.

Most of our proofs use (sometimes nested) induction; thus we are interested in classes of graphs
closed under deletion of vertices:

Definition 2.1. Let C be a class of graphs such that G − x is in C whenever G ∈ C and x is a
vertex of G. We call such a class hereditary.
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Note that, by definition, hereditary classes of graphs are closed under the removal of induced
subgraphs (such as stars of vertices). Most widely-studied classes of graphs arising in graph theory
are hereditary (such as claw-free graphs, perfect graphs, planar graphs, graphs not having a fixed
graph G as a minor, et cetera).

2.2. Algebraic Background. Fix a field k, and let S = k[x1, x2, . . . , xn] (as k is fixed throughout,
we suppress it from the notation). If G is a graph with vertex set V (G) = {x1, x2, . . . , xn}, the
edge ideal of G is the monomial ideal I(G) ⊆ S given by

I(G) = (xixj : (xi, xj) is an edge of G).

Edge ideals have been heavily studied (see [11], [15], [16], [24], and references given therein). We
say a subset W ⊆ V (G) is independent if no two vertices in W are adjacent (equivalently, G[W ]
has no edges). Closely related to the edge ideal I(G) of G is its independence complex, ind(G),
which is the simplicial complex on vertex set V (G) whose faces are the independent sets of G.

For any ideal I ⊆ S generated by squarefree monomials, the Stanley-Reisner complex of I is the
simplicial complex that contains the face F = {xi1 , xi2 , . . . , xik} whenever xi1xi2 · · ·xik /∈ I. Thus
the independence complex of a graph is the Stanley-Reisner complex of the associated edge ideal.

The projective dimension of S/I(G) is defined as the shortest length of a projective resolution of
S/I(G), though we encourage the reader to take Corollary 2.3 as the definition of both projective
dimension and regularity. The height of a prime ideal is the length of the longest chain of prime
ideals it contains, and the height of an arbitrary ideal is the minimum height of a prime ideal
containing it. Finally, the BigHeight of an ideal is the largest height of an associated prime of that
ideal (see, for instance, [12]).

For a graph G, we write pd(G) and reg(G) as shorthand for pd(S/I(G)) and reg(S/I(G)),
respectively.

Central to the link between commutative algebra and combinatorics is Hochster’s Formula, which
relates the Betti numbers of an ideal to its Stanley-Reisner complex (see, for instance, [23]). In our
case, we have the following.

Theorem 2.2 (Hochster’s Formula). Let ∆ be the Stanley-Reisner complex of a squarefree mono-
mial ideal I ⊆ S. For any multigraded Betti number βi,m where m is a squarefree monomial of
degree ≥ i− 1, we have

βi,m(I) = dimk(H̃degm−i−1(∆[m]),k),

where ∆[m] is the subcomplex of ∆ consisting of those faces whose vertices correspond to variables
occurring in m.

In particular, we are interested in the following specialization of Hochster’s Formula to simple
graphs and their independence complexes. Here and throughout, if ∆ is a complex, we write
H̃k(∆) = 0 to mean that the associated homology group has rank zero.

Corollary 2.3. Let G be a graph with vertex set V . Then pd(G) is the least integer i such that

H̃|W |−i−j−1
(

ind(G[W ])
)

= 0

for all j > 0 and W ⊆ V . Moreover, reg(G) is the greatest value of k so that

H̃k−1
(

ind(G[W ])
)
6= 0

for some subset W ⊆ V .
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3. General Formulas for Bounding Projective Dimension

This section contains the key technical process which we shall use for the rest of the paper. Our
first result provides a general framework for bounding the projective dimension of a graph’s edge
ideal.

Theorem 3.1. Let C be a hereditary class of graphs and let f : C → R be a function satisfying the
following conditions:

(1) f(G) ≤ |V (G)| when G is a collection of isolated vertices.
Furthermore, for any G ∈ C with at least one edge there exists a nonempty set of vertices
v1, v2, . . . , vk such that if we set Gi = G− v1 − v2 − · · · − vi for 0 ≤ i ≤ k (where G0 = G),
then:

(2) f(Gi − stGi vi+1) + 1 ≥ f(G) for 0 ≤ i ≤ k − 1.
(3) f(Gk) + | Is(Gk)| ≥ f(G).

Then for any graph G ∈ C
pd(G) ≤ |V (G)| − f(G).

Before proving Theorem 3.1, we need the following lemma, also used in [10], which will prove
invaluable in our work. In fact, all our upper bounds on pd(G) will follow from repeated use of
Lemma 3.2, which may be seen as an algebraic analogue of the long exact sequence in independence
complex homology relating ind(G), ind(G− x), and ind(G− (N(x) ∪ x)) for a graph G containing
a vertex x.

Lemma 3.2 (See, for instance, [10]). Let x be a vertex of a graph G. Then

pd(G) ≤ max{pd(G− stx) + deg x,pd(G− x) + 1}.

Proof. Consider the following exact sequence:

0→ S/(I(G) : x)→ S/I(G)→ S/(I(G), x)→ 0.

This gives us that pd(I(G)) ≤ max{pd(I(G) : x), pd(I(G), x)}. It is easily seen that (I(G) : x) is
the ideal generated by I(G− stx) along with the variables in N(x), whereas (I(G), x) is the ideal
generated by I(G − x) and x. Thus, pd(I(G) : x) = pd(I(G − stx)) + deg x and pd(I(G), x) =
pd(I(G− x)) + 1. �

Proof of Theorem 3.1. We will argue by contradiction. Suppose there is a counterexample G with
a minimal number of vertices. By condition (1), we know G has at least one edge. Let v1, v2, . . . , vk
be a set of vertices satisfying conditions (2) and (3). We will prove by induction on i that

pd(Gi) ≤ pd(Gi+1) + 1 (∗)
for 0 ≤ i ≤ k − 1.

We start with i = 0. By Lemma 3.2 we need to show that pd(G) > pd(G − st v1) + deg v1. If
this fails, then

pd(G) ≤ pd(G− st v1) + deg v1

≤ |V (G− st v1)| − f(G− st v1) + deg v1

= |V (G)| − deg v1 − 1− f(G− st v1) + deg v1

≤ |V (G)| − f(G).
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Now, suppose we have proven (∗) for 0 ≤ i ≤ j − 1. We argue just like above for the induction
step. By Lemma 3.2 we need to show that pd(G) > pd(Gj − stGj vj+1) + degGj

vj+1 + j. If this is
not true then,

pd(G) ≤ pd(Gj − stGj vj+1) + degGj
vj+1 + j

≤ |V (Gj − stGj vj+1)| − f(Gj − stGj vj+1) + degGj
vj+1 + j

= |V (G)| − j − degGj
vj+1 − 1− f(Gj − stGj vj+1) + degGj

vj+1 + j

≤ |V (G)| − f(G),

which contradicts our choice of G. Now that (∗) is established, it follows that pd(G) ≤ pd(Gk) +k.
But by condition (3):

pd(Gk) + k = pd(Gk) + k

≤ |V (Gk)| − f(Gk) + k

= |V (G)| − k − | Is(Gk)| − f(Gk) + k

≤ |V (G)| − f(G)

which again contradicts our choice of G, proving the theorem. �

The following consequence of Theorem 3.1 will also be rather helpful.

Theorem 3.3. Let C be a hereditary class of graphs and let h : C → R be a function satisfying the
following conditions.

(1) The function h is non-decreasing. That is, h(G− v) ≤ h(G) for any vertex v of G.
(2) For any G ∈ C there exists a vertex v so that the neighbors of v admit an ordering

v1, v2, . . . , vk satisfying the following property: if Gi = G−v1−v2−· · ·−vi, then i+di+1+1 ≤
h(G) for all i < k (where di+1 denotes the degree of vi+1 in Gi). Furthermore, h(G) ≥ k+1.

Then

pd(G) ≤ |V (G)|
(

1− 1

h(G)

)
.

Proof. Define a function f : C → R by f(G) = |V (G)|
h(G) . We claim that f satisfies the conditions of

Theorem 3.1. Condition 1 is immediately verified. For condition 2, fix i. Then

f(Gi − stGi vi+1) + 1 =
|V (G)| − i− di+1 − 1

h(Gi − stGi vi+1)
+ 1

≥ |V (G)| − i− di+1 − 1

h(G)
+ 1

=
|V (G)| − i− di+1 − 1 + h(G)

h(G)

≥ |V (G)|
h(G)

= f(G).
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Finally, for condition 3 of Theorem 3.1, note that Gk has at least one isolated vertex (namely,
v), meaning | Is(Gk)| ≥ 1. Thus, we have

f(Gk) + | Is(Gk)| ≥
|V (G)| − k − | Is(Gk)|

h(Gk)
+ Is(Gk)

≥ |V (G)| − k − | Is(Gk)|+ h(G)| Is(Gk)|
h(G)

≥ |V (G)| − k − | Is(Gk)|+ (k + 1)| Is(Gk)|
h(G)

≥ |V (G)| − k − | Is(Gk)|+ k + | Is(Gk)|
h(G)

=
|V (G)|
h(G)

= f(G),

completing the proof. �

Definition 3.4. For a graph G and a scalar α > 0, an edge (x, y) of G is called α-max if it
maximizes the quantity max{deg(x) + α deg(y),deg(y) + α deg(x)} among all edges of G.

Using Theorem 3.3, we can provide a bound for the projective dimension of a graph that has no
induced K1,m+1 as a subgraph. First, we need the following lemma.

Lemma 3.5. Let G be a graph such that G[W ] has at least one edge for any W ⊆ V (G) with
|W | = m (or, equivalently, dim(ind(G)) < m − 1). Then G contains a vertex of degree at least
|V (G)|
m−1 − 1.

Proof. Let d be the largest degree of a vertex in G, and let A ⊆ V (G) be an independent set of
largest possible cardinality. Say k = |A| (so that k < m). Then every vertex not contained in A
must be a neighbor of some vertex of A (otherwise, we could add this vertex to A, resulting in a
larger independent set). Thus,

k(d+ 1) ≥
∑
v∈A
| st(v)| ≥

∣∣∣∣ ⋃
v∈A

st(v)

∣∣∣∣ = |V (G)|,

so d+ 1 ≥ |V (G)|
k ≥ |V (G)|

m−1 . �

Theorem 3.6. Suppose G is a graph containing no induced K1,m+1, and let (x, y) be an
(
m−1
m

)
-max

edge, with d = deg(x) ≥ deg(y) = e. Then

pd(G) ≤ |V (G)|

(
1− 1

d+ m−1
m e+ 1

)
.

Proof. We use Theorem 3.3 with the function h(G) = d+ m−1
m e+ 1 where (x, y) is an

(
m−1
m

)
-max

edge of G with deg x = d and deg y = e. The function h is easily seen to be decreasing. Now let
{v1, v2, . . . , ve} be the neighbors of y. We reorder the neighbors of y as follows. Let ve be a vertex
of maximal degree in the induced subgraph G[{v1, v2, . . . , ve}], and in general let vi be a vertex of
maximal degree in the subgraph G[{v1, v2, . . . , vi}].

As in Theorem 3.3, let di+1 denote the degree of vi+1 in the induced subgraph Gi = G −
v1 − v2 − · · · − vi. We need to show that h(G) ≥ i + di+1 + 1 for all i < e. Fix some i, let
G′ = G[{v1, v2, . . . , vi+1}], and let S ⊆ {v1, v2, . . . , vi} be the set of non-neighbors of vi+1. Writing
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δ for the degree of vi+1 in G′, note that |S| = i − δ. Because G is K1,m+1-free, S cannot have an
independent set of sizem; if it did, thesem vertices, together with y and vi+1, would form an induced
K1,m+1. Thus, by Lemma 3.5, some vertex of S must have degree (in G′) at least |S|/(m− 1)− 1.
Because vi+1 was chosen as a maximal degree vertex of G′, we have δ ≥ |S|/(m − 1) − 1 =
(i− δ)/(m− 1)− 1⇒ δ ≥ (i−m+ 1)/m. Using the fact that i ≤ e− 1, we have

i+ di+1 + 1 = i+ deg(vi+1)− δ + 1

≤ i+ deg(vi+1)−
i−m+ 1

m
+ 1

= deg(vi+1) +
m− 1

m
i+

m− 1

m
+ 1

≤ deg(vi+1) +
m− 1

m
e+ 1.

Finally, because (vi+1, y) is an edge of G, the above quantity is ≤ h(G). That h(G) ≥ e + 1 is
immediate. �

Recall that, for ` ≥ 1, the Z` lattice is the infinite graph whose vertices are points in R` with
integer coordinates, where two vertices are connected by an edge whenever they are a unit distance
apart.

Theorem 3.7. Let G be a subgraph of the Z` lattice. Then pd(G) ≤ |V (G)|
(

1− 1
2`+1

)
.

Proof. We view each v ∈ V (G) as an `-tuple in Z`, and write vi to denote its ith coordinate.
Without loss, we may assume that min{v1 : v ∈ V } = 0 (otherwise, we can simply translate G
so that this is true). Similarly, restricting to those v ∈ V with first coordinate zero, we may also
assume that min{v2 : v ∈ V, v1 = 0} = 0. In general, we can assume that min{vi : v ∈ V, v1 =
v2 = · · · = vi−1 = 0} = 0 for all i. Thus, G contains no vertex whose first non-zero coordinate is
negative.

Now let v denote the origin (which, given the above assumptions, must be a vertex of G).

For any i let vi denote the vertex with vii = 1 and vji = 0 for j 6= i. Note that the set of
neighbors of v is contained in {v1, v2, . . . , v`}. Now fix i, and let w ∈ V be a neighbor of vi.
Then only one coordinate of w can differ from vi. If this coordinate is wj for j < i, then we can
only have wj = 1, since G contains no vertex whose first non-zero coordinate is negative. If w
differs from vi in the jth component for j ≥ i, then either wj = vj − 1 or wj = vj + 1. Thus,
deg(vi) ≤ i− 1 + 2(`− i+ 1) = 2`− i+ 1.

We apply Theorem 3.3 with h(G) = 2` + 1. List the neighbors of v : vi1 , vi2 , . . . , vik , where
i1 < i2 < · · · < ik. We write Gj for G−vi1−vi2−· · ·−vij . Then, for all j, we have j ≤ ij ≤ ij+1−1,
and so

j + degG(vij+1) + 1 ≤ ij + (2`− ij+1 + 1) + 1 ≤ (ij+1 − 1) + (2`− ij+1 + 1) + 1 = 2`+ 1 = h(G)

for all j. The function h(G) is easily seen to satisfy the other requirements of Theorem 3.3. �

Corollary 3.8. Suppose G is a graph with dim(ind(G)) < m. Then pd(G) satisfies the bound of
Theorem 3.6.
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Proof. Since ind(G) cannot contain an m-dimensional face, the induced graph G[W ] must contain
an edge for every subset of vertices W with |W | ≥ m + 1. Thus, G cannot contain an induced
K1,m+1, and so Theorem 3.6 applies. �

Corollary 3.9. For any graph G, we have

pd(G) ≤ |V (G)|

1− 1

d+ ω(Gc)−1
ω(Gc) e+ 1

 ,

where ω(Gc) is the clique number of Gc and d = deg(x) ≥ deg(y) = e for some
(
ω(Gc)−1
ω(Gc)

)
-max

edge (x, y).

Proof. Let m = ω(Gc). Then Gc[W ] cannot be complete for any W ⊆ V with |W | = m + 1,
meaning G[W ] has at least one edge for any such W , and we can apply Corollary 3.8. �

Example 3.10. As an example, let G = Kd,d. Then Gc is the disjoint union of two copies of Kd,

meaning ω(Gc) = d, and every edge is
(
d−1
d

)
-max. Using Corollary 3.9, we obtain

pd(G) ≤ 2d

(
1− 1

d+ d−1
d d+ 1

)
= 2d− 1,

so our bound is sharp in this case (see [20]).

Example 3.11. Let G = Kn. Then d = n − 1, and Gc is a collection of isolated vertices, thus
ω(Gc) = 1. Using Corollary 3.9 again, we have

pd(G) ≤ n

(
1− 1

(n− 1) + 1−1
1 (n− 1) + 1

)
= n− 1,

so our bound is sharp in this case as well (see [20]).

It is interesting to note that the clique number of the complement of a graph is also related to
the regularity of the graph via the following easy observation.

Observation 3.12. For any graph G, we have reg(G) ≤ ω(Gc).

Proof. The maximum cardinality of an independent set in G is equal to the maximum cardinality
of a clique in Gc, which is ω(Gc). Thus no induced subcomplex of ind(G) can have homology in a
dimension higher than ω(Gc)− 1. The observation then follows from Corollary 2.3. �

4. Domination Parameters and Projective Dimension

A central theme in this paper is the relationship between the projective dimension of a graph’s
edge ideal and various graph domination parameters. The subject of domination in graphs has
been well-studied, and is of special interest to those working in computer science and combinatorial
algorithms.

We first give a catalog of basic domination parameters. Let G be a graph, and recall that a
subset A ⊆ V (G) is dominating if every vertex of V (G) \A is a neighbor of some vertex in A (that
is, N(A) ∪A = V (G).
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(1) γ(G) = min{|A| : A ⊆ V (G) is a dominating set of G}.

(2) i(G) = min{|A| : A ⊆ V (G) is independent and a dominating set of G}.

If G is empty, we set γ(G) = i(G) = 0. For any subset A ⊆ V (G), we let γ0(A,G) denote
the minimal cardinality of a subset X ⊆ V (G) such that A ⊆ N(X) (note that we allow
A ∩X 6= ∅).

(3) γ0(G) = γ0(V (G), G). That is, γ0(G) is the least cardinality of a subset X ⊆ V (G) such
that every non-isolated vertex of G is adjacent to some v ∈ X. Such a set is called strongly
dominant.

(4) τ(G) = max{γ0(A,G) : A ⊆ V (G) is independent}.

We also introduce a new graph domination parameter, which we call edgewise domina-
tion. Note that this differs from the existing notion of edge-domination, which is not often
discussed in the literature, as it is equivalent to domination in the associated line graph.

(5) If E(G) is the set of edges of G, we say a subset E ⊆ E(G) is edgewise dominant if any
non-isolated vertex v ∈ G is adjacent to an endpoint of some edge e ∈ E. We define

ε(G) = min{|E| : E ⊆ E(G) is edgewise dominant}.

The following proposition compares the domination parameters. Part of this proposition is likely
well-known, but we include a proof as it seems to lack a convenient reference. See also Example
7.2.

Proposition 4.1. For any G, γ(G) ≤ i(G) and τ(G) ≤ γ(G). Furthermore ε(G) ≥ γ0(G)
2 .

Proof. The first inequality is obvious. Let X ⊆ V be a dominating set of G of minimal cardinality,
and let A ⊆ V be an independent set with τ(G) = γ0(A,G). Then A ⊆ (N(X)∪X), by definition.
If x ∈ A ∩X, then N(x) ∩ A = ∅ (otherwise A would not be independent). For each x ∈ X ∩ A,
replace x with one if its neighbors (which is possible since x ∈ V (G)), and call the resulting set X ′.
Then A ⊆ N(X ′). Since |X| ≥ |X ′| ≥ γ0(A,G), we have γ(G) = |X| ≥ |X ′| ≥ τ(G).

We now prove the last inequality. Let E(G) be the edge set of G, and let E ⊆ E(G) be an
edgewise-dominant set of G. If we let A be the set of vertices in edges of E, then A is easily seen

to be strongly dominant, meaning |E| ≥ |A|2 ≥
γ0(G)

2 . �

In this section we prove several bounds for the projective dimension of an arbitrary graph. Here
we state the amalgam of the results that follow.

Corollary 4.2. For any graph G,

|V (G)| − i(G) ≤ pd(G) ≤ |V (G)| −max{ε(G), τ(G)}.

Using the tools developed in Section 3, we now turn to bounding the projective dimensions of
graphs via various domination parameters. Our first two results of this section, Theorems 4.3 and
4.4, hold for all graphs.
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Theorem 4.3. For any graph G, we have

pd(G) ≤ |V (G)| − ε(G).

Proof. Define a function f by f(H) = ε(H) + | Is(H)|. We claim that f satisfies the conditions of
Theorem 3.1. It is easily seen to satisfy condition (1).

Now let v be a vertex of G, and let N(v) = {v1, . . . , vk} be its neighbors. Define Gi = G− v1 −
v2 − · · · − vi as in Theorem 3.1. Now let E be an edgewise-dominant set of edges of Gi − stGi vi+1

of minimum cardinality. Add to E one edge of G of the form (w,w′) for each w ∈ Is(Gi− stGi vi+1)
(where w′ is any neighbor of w in G), and add the edge (v, vi+1). The resulting set, which we call
E′, is easily seen to be edge dominant in G, meaning f(Gi − stGi vi+1) + 1 = ε(Gi − stGi vi+1) +
| Is(Gi − stGi vi+1)|+ 1 = |E′| ≥ ε(G) = f(G), and so condition (2) is satisfied.

Finally, note that v is isolated in Gk, and let E be an edgewise dominant set of Gk of minimum
cardinality. As above, let E′ denote E with the edge (v, v1) added, plus one edge of the form
(w,w′) for each w ∈ Is(Gk)− v. Then E′ is edgewise-dominant in G, meaning f(Gk) + | Is(Gk)| =
ε(Gk) + | Is(Gk)| = |E′| ≥ ε(G) = f(G). �

We can also prove a similar bound involving τ(G). While most of our proofs bounding projective
dimension use Theorem 3.1 or Theorem 3.3, the following theorem is best proved using only Lemma
3.2.

Theorem 4.4. Let G be a graph. Then

pd(G) ≤ |V (G)| − τ(G).

Proof. Let A ⊆ V (G) be an independent set witnessing τ(G). That is, γ0(A,G) = τ(G). Let
X ⊆ V (G) be such that A ⊆ N(X) and |X| = γ0(A,G). We use the two cases of Lemma 3.2.
Pick v ∈ X. Then v /∈ A, since A is independent and X is the smallest set which strongly
dominates A. First, suppose that pd(G) ≤ pd(G− st v) + deg v, and let B ⊆ A be the vertices of
A that are isolated by the removal of st v from G. Let Y be a set of vertices of G− st v realizing
γ0(A−B− st v,G− st v) (that is, A−B− st v ⊆ N(Y ) and |Y | = γ0(A−B− st v,G− st v)). Now
choose a neighbor in G of each b ∈ B, and let Z be the set of all these neighbors (so |Z| ≤ |B|).
Then A ⊆ N(Y ∪ Z ∪ v), so

γ0(A−B − st v,G− st v) = |Y | ≥ γ0(A,G)− |Z| − 1 ≥ γ0(A,G)− |B| − 1.

Thus, by induction on the number of vertices of G (the base case with two vertices and one edge
being trivial), we have

pd(G) ≤ pd(G− st v) + deg v

≤ (|V (G)| − |B| − 1)− τ(G− st v)

≤ (|V (G)| − |B| − 1)− γ0(A−B − st v,G− st v)

≤ (|V (G)| − |B| − 1)− (γ0(A,G)− |B| − 1) = |V (G)| − τ(G).

Thus, we can assume that pd(G) ≤ pd(G − v) + 1. We examine two subcases. First, suppose
that no vertices of A are isolated by the removal of v from G (that is, A is a subset of the
vertices of G− v). Then any subset Y of vertices of G− v which strongly dominates A in G− v
also strongly dominates A in G, so τ(G) = γ0(A,G) ≤ γ0(A,G− v) ≤ τ(G− v), and we have
pd(G) ≤ pd(G− v) + 1 ≤ (|V (G)| − 1)− τ(G− v) + 1 ≤ |V (G)| − τ(G).
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Finally, suppose some vertices of A are isolated in G − v, and let B ⊆ A be all such vertices.
We claim that γ0(A−B,G− v) ≥ γ0(A,G)− 1 (and thus τ(G− v) ≥ τ(G)− 1). Indeed, suppose
this were not the case. Then there would be some subset Y of the vertices of G− v such that
|Y | < γ0(A,G)−1 and A−B ⊆ N(Y ). But then, since the vertices of B are isolated by removing v
from G, we have B ⊆ N(v), and so A ⊆ N(Y ∪v), contradicting our choice of X since |Y ∪v| < |X|.
Thus,

pd(G) ≤ pd(G− v) + 1 ≤ (|V (G)| − |B| − 1)− τ(G− v) + 1

≤ (|V (G)| − 2)− (τ(G)− 1) + 1 = |V (G)| − τ(G). �

Recall that X ⊆ V (G) is a vertex cover of G if every edge of G contains at least one vertex
of X. As demonstrated by Theorem 4.3, dominating sets naturally arise in the study of the
projective dimensions of edge ideals. Before going further, we need two well-known observations
and a standard proposition, whose short proofs we include for completeness.

Observation 4.5. The maximum size of a minimal vertex cover of G equals BigHeight(I(G)).

Proof. Let P be a minimal vertex cover with maximal cardinality. Then P is an associated prime
of S/I, so

pd(S/I) ≥ pdSP
(S/I)P = dimSP = height(P ). �

Observation 4.6. A subset X ⊆ V (G) is a vertex cover if and only if V (G) \X is independent.
Moreover, V (G) \X is dominating if and only if X is minimal.

Proof. The first claim is immediate, since G[V (G)\X] contains no edges if and only if every edge of
G contains some vertex of X. For the second claim, suppose X is not minimal, meaning X − v is a
vertex cover for some v ∈ X. Then V (G)\ (X−v) would be independent, meaning N(v) ⊆ X. But
then st(v) ⊆ X, and V (G)\X is not dominating. Reversing this argument proves the converse. �

Proposition 4.7. For any graph G, we have

pd(G) ≥ |V (G)| − i(G).

Proof. Since i(G) is the smallest size of an independent dominating set, |V (G)| − i(G) is the
maximum size of a minimal vertex cover, meaning |V (G)|−i(G) = BigHeight(I(G)), by Observation
4.5. Since pd(I(G)) ≥ BigHeight(I(G)), Observation 4.6 applies. �

In [5], the authors show the following.

Theorem 4.8. Let G be a graph. Then i(G) + γ0(G) ≤ |V (G)|.

Proposition 4.7 then yields the next corollary.

Corollary 4.9. For any graph G without isolated vertices, we have

pd(G) ≥ γ0(G).

5. Chordal Graphs

We prove in this section strong bounds and even an exact formula on projective dimension for
any hereditary class of graphs satisfying a certain dominating set condition. We then observe that
chordal graphs satisfy this property, obtaining an equality (Corollary 5.6) for pd(G) when G is
chordal. Some of our results were inspired by those in [2] and [21].
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Theorem 5.1. Let f(G) be either γ(G) or i(G). Suppose G is a hereditary class of graphs such
that whenever G ∈ G has at least one edge, there is some vertex v of G with f(G) ≤ f(G − v).
Then for any G ∈ G,

pd(G) ≤ |V (G)| − f(G).

If f(G) is i(G), then for any G ∈ G, we have the equality

pd(G) = |V (G)| − i(G) = BigHeight(I(G)),

and S/I(G) is Cohen-Macaulay if and only if it is unmixed.

Proof. We just need to check the condition of Theorem 3.1 is satisfied for f(G). Set k = 1 and let
v1 be a vertex of G with f(G) ≤ f(G− v1). Note that f(G) ≤ f(G− st v1) + 1, since X ∪ {v1} is
a (independent) dominating set of G whenever X is a (independent) dominating set of G − st v1.
Writing G1 for G − v1 (as in Theorem 3.1), note that by definition Is(G1) is contained in any
dominating or independent dominating set of G1, meaning f(G1) + | Is(G1)| = f(G1). So, we have

f(G1) + | Is(G1)| = f(G1) = f(G− v1) ≥ f(G).

Thus, pd(G) ≤ |V (G)| − f(G). In the case when f(G) = i(G), Proposition 4.7 gives equality. For
the last claim, note that S/I(G) is unmixed if and only if height(I(G)) = BigHeight(I(G)). �

Remark 5.2. We note that the contrapositive of Theorem 5.1 may prove interesting. Indeed, if an
n-vertex graph G fails to satisfy the bound pd(G) ≤ n− f(G) (where f(G) is either γ(G) or i(G)),
then G must contain an induced subgraph G′ such that f(G′−v) = f(G′)−1 for all v ∈ V (G′) (it is
easy to see that f can decrease by at most 1 upon the removal of a vertex). That is, G′ is a so-called
domination-critical graph. Such graphs have been studied at length; see [18] and references therein.

Corollary 5.3. Let G be as in Theorem 5.1, choose G ∈ G, and let d be the maximal degree of a
vertex in G. Then

pd(G) ≤ |V (G)|
(

1− 1

d+ 1

)
.

Proof. For any dominating set A ⊆ V (G), note that at most d|A| vertices are adjacent to vertices
of A. Since every vertex in V \ A is adjacent to some vertex of A, it follows that G has at most

d|A| + |A| = |A|(d + 1) vertices. Thus, we can write |V (G)| ≤ (d + 1)γ(G) ⇒ γ(G) ≥ |V (G)|
d+1 . By

Theorem 5.1,

pd(G) ≤ |V (G)| − γ(G) ≤ |V (G)| − |V (G)|
d+ 1

= |V (G)|
(

1− 1

d+ 1

)
. �

Lemma 5.4. Suppose N(v) − w ⊆ N(w) and (v, w) is an edge. Then γ(G) ≤ γ(G − w) and
i(G) ≤ i(G− w).

Proof. Let X be a (independent) dominating set of G−w; It suffices to show that X dominates G.
Since v ∈ G−w, X either contains v or a neighbor of v. In the first case, since (v, w) is an edge of
G, X still dominates G. For the second case, note that any neighbor of v is a neighbor of w (since
N(v)− w ⊆ N(w)), and thus X must be a (independent) dominating set of G as well. �

Theorem 5.5 (Dirac). Let G be a chordal graph with at least one edge. Then there exists a vertex
v of G so that N(v) 6= ∅ and G[N(v)] is complete.
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Using Dirac’s Theorem and Theorem 5.1, we can recover a formula for the projective dimension
of a chordal graph.

Corollary 5.6. The class of chordal graphs satisfies the conditions of Theorem 5.1, and so

pd(G) = |V (G)| − i(G).

for any chordal graph G.

Proof. Let v be as in Theorem 5.5, and let w be any neighbor of v. Since G[N(v)] is complete, we
have N(v)− w ⊆ N(w), and so Lemma 5.4 applies. �

Remark 5.7. In fact, the above formula for projective dimension holds for all sequentially Cohen-
Macaulay graphs; this follows from Smith’s results on Cohen-Macaulay complexes [26] and a the-
orem of Francisco and Van Tuyl [15] which shows that chordal graphs are sequentially Cohen-
Macaulay [15]. For details, see [24, Theorem 3.33]. However, Theorem 5.1 can be applied to graphs
that are not sequentially Cohen-Macaulay, see the next Remark.

Remark 5.8. We note that there are hereditary classes of graphs satisfying the hypotheses of
Theorem 5.1 which properly contain the class of chordal graphs but are not contained in the class
of sequentially Cohen-Macaulay graphs. For instance, let Cn denote the n-vertex cycle. If n is
congruent to 0 or 2 mod 3, then γ(Cn) = γ(Cn − v) and i(Cn) = i(Cn − v) for any v ∈ V (Cn); see
Example 7.3. Since Cn − v is a tree (and therefore chordal), the following hereditary class satisfies
the hypotheses of Theorem 5.1:

G = {G : G is chordal or G = Cn for some n ≡ 0, 2 mod 3}.

By [15], Cn is not sequentially Cohen-Macaulay for n 6= 3, 5.
More generally, let G be a hereditary class of the type in Theorem 5.1, and let X be a set of graphs

G satisfying the following: for any G ∈ X, there is some v ∈ V (G) such that f(G) ≤ f(G− v), and
G− v ∈ G. Then G ∪X again satisfies the hypotheses of Theorem 5.1.

Remark 5.9. In looking for possible generalizations of Corollary 5.6, one may be tempted to ask
if the same equality holds for perfect graphs (as all chordal graphs are perfect). However, this is
easily seen to be false for the 4-cycle C4, as pd(C4) = 3, but n− i(G) = 4− 2 = 2.

Corollary 5.10. Let Pn denote the path on n vertices. Then

i(Pn) =
⌈n

3

⌉
and so pd(Pn) =

⌊
2n

3

⌋
.

Given Theorem 5.1, it makes sense to ask when a graph G satisfies i(G) = γ(G). A graph G is
called domination perfect if this equality holds for G and all its induced subgraphs. Such graphs
have been studied at length (see, for instance, [29]).

Corollary 5.11. Suppose G is a hereditary class of domination perfect graphs such that whenever
G ∈ G has at least one edge, there is some vertex v of G with γ(G) ≤ γ(G − v). Then for any
G ∈ G,

pd(G) = |V (G)| − γ(G) = |V (G)| − i(G).
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6. Homology and Connectivity of Independence Complexes

In this section we collect various corollaries on connectivity of independence complexes. All
the hard work has been done in the previous Sections. For the definitions of various domination
parameters, see Section 4.

As Hochster’s formula (Corollary 2.3) limits the possible non-zero homology of induced subcom-
plexes, the numerous bounds obtained earlier for the projective dimension of a graph also allow us
to detect vanishing homology. Indeed, if G is a graph and we set W = V (G) in Proposition 2.3, we
have the following.

Corollary 6.1. Let G be a graph. Then H̃k(ind(G)) = 0 whenever k < |V (G)| − pd(G)− 1.

As a first application of Corollary 6.1, we obtain the following general bound for the homology
of a graph independence complex by using Theorem 4.3.

Corollary 6.2. For any graph G, H̃k(ind(G)) = 0 whenever k < ε(G)− 1.

In [2], Aharoni, Berger, and Ziv show the following.

Theorem 6.3 ([2]). If G is chordal then H̃k(ind(G)) = 0 for k < γ(G)− 1.

In [28], Woodroofe proves the following strengthening of this result (chordal graphs are sequen-
tially Cohen-Macaulay; see [15]).

Theorem 6.4 ([28]). Let G be a sequentially Cohen-Macaulay graph. Then H̃k(ind(G)) = 0 for
k < i(G)− 1.

Using Corollary 6.1, we can recover this result in the case when G is chordal. See also Theorem
5.1 and Remark 5.8.

Corollary 6.5. If G is chordal, H̃k(ind(G)) = 0 for k < i(G)− 1.

Corollary 6.2 also allows us to recover a related result of Chudnovsky.

Corollary 6.6 ([9]). For any graph G, H̃k(ind(G)) = 0 whenever k < γ0(G)
2 − 1.

Proof. The result follows from Proposition 4.1 and Corollary 6.2. �

Theorem 4.4 allows us to prove the following, originally shown in [4] (albeit with different ter-
minology).

Corollary 6.7. For any graph G, H̃k(ind(G)) = 0 for k < τ(G)− 1.

In [7], Barmak proves the following two theorems.

Theorem 6.8 ([7]). Let G be a claw-free graph. Then ind(G) is
⌈
dim(ind(G))−3

2

⌉
-connected.

Theorem 6.9 ([7]). Let G be a graph with A ⊆ V (G), and suppose the distance between any two
vertices of A is at least 3. Then G is (|A| − 2)-connected.

The following Corollary shows that the homological analogue of Theorem 6.8 is actually a special
case of a more general phenomenon for graphs which are K1,m-free.
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Corollary 6.10. Let G be a K1,m-free graph. Then H̃k(ind(G)) = 0 for

k ≤
⌈

dim(ind(G))− 2m+ 3

m− 1

⌉
.

Proof. If G has any isolated vertices, ind(G) is contractible. Thus, we may assume G has no
isolated vertices. Let A be an independent set of vertices of G with maximal cardinality (so that
|A| = dim(ind(G))+1), and let X be a set dominating A with |X| = γ0(A,G) ≤ τ(G). If x ∈ X, the
number of elements in A that are neighbors of x cannot exceed m−1. Indeed, if x had m neighbors
in A, then these vertices together with x would form an induced K1,m (since A is independent).

Thus, we have |A| ≤ |X|(m − 1) ⇒ τ(G) ≥ |A|
m−1 , meaning τ(G) − 1 ≥

⌈
dim(ind(G))−m+2

m−1

⌉
. The

result now follows from Corollary 6.7. �

We also note that the homological version of Theorem 6.9 follows easily from our results.

Corollary 6.11. Let G be a connected graph and let A ⊆ V (G) be such that the distance between

any two members of A is at least 3. Then H̃k(ind(G)) = 0 for k ≤ |A| − 2.

Proof. The set A is independent since none of its members are distance 1 from each other. Now
let X be a set of vertices realizing γ0(A,G). If x ∈ X is adjacent to two vertices in A, then these
two vertices would be distance 2 from one another. Thus, τ(G) ≥ |X| = |A|, and so Theorem 4.4
completes the proof. �

Remark 6.12. Let ∆ be a simplicial complex. By the Hurewicz isomorphism (see, for instance,

[17]), ∆ is m-connected if and only if H̃k(∆) = 0 for all k ≤ m and π1(∆) = 0. Thus the results
in this section also show homotopic connectivity when the independence complex in question is
simply connected. Many graphs are known to have simply connected independence complexes,
such as graphs G with γ0(G) > 4 [27] and most claw-free graphs [13], thus our results give bounds
on the homotopic connectivity in those cases. In general, there is no algorithm to determine if a
given independence complex is simply connected [1], but see [6] and [25] for approaches that work
well in practice.

We close this section with the homological corollaries of Theorems 3.6 and 3.7, each of which
follows immediately from the application of 6.1. These results improve and generalize the bounds
on the homology of claw-free graphs [13] and subgraphs of the lattice Z2 [14].

Corollary 6.13. Let G be a graph containing no induced K1,m+1, and let (x, y) be an m−1
m -max

edge with deg(x) = d ≥ e = deg(y). Then H̃k(ind(G)) = 0 for

k <
|V (G)|

d+ m−1
m e+ 1

− 1.

Corollary 6.14. Let G be a subgraph of the lattice Z`. Then H̃k(ind(G)) = 0 for k < |V (G)|
2`+1 − 1.

7. Further Remarks

In this section we discuss some potential research directions stemming from our work and give
some relevant examples. The most natural next step is to give bounds on projective dimension of
monomial ideals in general. We expect some of our results to extend smoothly with the right notions
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of various domination parameters for clutters, and we will discuss this further in a forthcoming
manuscript. However, significant progress in this direction may require deeper insight; see the
concluding discussion of [10].

Another interesting question is whether the process used in Theorem 3.1 can be used to compute
the projective dimension.

Question 7.1. Let C be a class of graphs whose projective dimensions are independent of the chosen
ground field, and let F (G) be the maximum of all functions satisfying the conditions of Theorem
3.1 for graphs belonging to C. Is it then the case that pd(G) = |V (G)|−F (G) for any graph G ∈ C?

Note that a similar conjecture on connectivity of independence complexes was raised by Aharoni-
Berger-Ziv in [3] and disproved by Barmak in [1]. However, since projective dimension is clearly
computable, it is not clear to us that one can answer our question negatively in the same manner.

Given our two main theorems bounding projective dimension (Theorems 4.4 and 4.3), it makes
sense to juxtapose the two statistics ε(G) and τ(G).

Example 7.2. We note that neither of Theorems 4.4 nor 4.3 implies the other. To see this, we
construct two infinite families of connected graphs: For a graph G in the first family, ε(G) is roughly
twice τ(G), whereas the opposite is true for graphs in the second family. It should be noted that it is
not hard to come up with disconnected examples of this phenomenon: Indeed, note that ε(C5) = 2
and τ(C5) = 1, so that if we let G be the disjoint union of k copies of C5 we have ε(C5) = 2k and
τ(G) = k. Similarly, note that ε(P4) = 1 and τ(P4) = 2, so that if we let G be the disjoint union
of k copies of P4 we have ε(G) = k and τ(G) = 2k.

Let Qn denote the graph consisting of n copies of C5, connected in series with an edge between
each copy (see Figure 1). Then clearly ε(Qn) = 2n − 1 (choose each of the edges connecting the
pentagons, plus the bottom edge from each pentagon). Furthermore, any independent set in Qn
contains at most 2 vertices from each pentagon, and these two vertices can be dominated by one
vertex, giving τ(Qn) = n.

........

Figure 1. The graph Qn.

On the other hand, let Tn denote the path on 4n vertices v1, v2, . . . , v4n, with additional vertices
w1, w2, . . . , wn where, for each i, wi is connected to v4(i−1)+1 (see Figure 2). Then ε(Tn) = n (simply
take all edges of the form (v4k+1, v4k+2) for 0 ≤ k ≤ n− 1), yet τ(Tn) ≥ 2n, which can be seen by
considering the independent set {v4, v8, v16, . . . , v4n} ∪ {w1, w2, . . . , wn}.
Example 7.3. Let Pn denote the path on n vertices, and let Cn denote the n-vertex cycle. It is
known that both Cn and Pn are domination perfect, hence γ(G) = i(G) for G a cycle or path. In
the table below we give the domination parameters for cycles and paths.

Graph G i(G) = γ(G) ε(G) τ(G) pd(G)

Pn dn3 e dn4 e dn3 e b2n3 c
Cn dn3 e dn4 e bn3 c d2n−13 e
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Figure 2. The graph T2.

Remark 7.4. Given Theorem 5.1, it makes sense to ask when the bound pd(G) ≤ |V (G)| − γ(G)
holds for a graph G. Note that when G is domination perfect, pd(G) 6= |V (G)| − i(G) implies
pd(G) � |V (G)| − γ(G) (since i(G) = γ(G) and pd(G) ≥ |V (G)| − i(G)). Thus, it is not hard to
produce graphs for which the bound pd(G) ≤ |V (G)| − γ(G) fails. As γ(G) ≥ τ(G) (Proposition
4.1), it is tempting to ask if there is a combinatorial graph invariant (call it κ) such that τ(G) ≤
κ(G) ≤ γ(G) for all G, κ(G) = i(G) when G is chordal, and pd(G) ≤ |V (G)| − κ(G) for all graphs
G.
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