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Abstract

We study the asymptotic distribution of zeros for the random rational functions that
can be viewed as partial sums of a random Laurent series. If this series defines a random
analytic function in an annulus A, then the zeros accumulate on the boundary circles
of A, being equidistributed in the angular sense, with probability one. We also show
that the equidistribution phenomenon holds if the annulus of convergence degenerates
to a circle. Moreover, equidistribution of zeros still persists when the Laurent rational
functions diverge everywhere, which is new even in the deterministic case. All results
hold under two types of general conditions on random coefficients. The first condition
is that the random coefficients are non-trivial i.i.d. random variables with finite log+

moments. The second condition allows random variables that need not be independent
or identically distributed, but only requires certain uniform bounds on the tails of their
distributions.
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1 Introduction

Zeros of the polynomials Pn(z) =
∑n

k=0Akz
k with random coefficients have been extensively

studied since 1930s. The early history of this subject includes work of Bloch and Pólya,
Littlewood and Offord, Erdős and Offord, Rice, Kac, and many others; see, e.g., Bharucha-
Reid and Sambandham [9], and Farahmand [12]. It is well known that the bulk of zeros
for these polynomials accumulate near the unit circumference, being equidistributed in the
angular sense, under mild conditions on the probability distribution of the coefficients. Let
{Zk}nk=1 be the zeros of a polynomial Pn of degree n, and define the zero counting measure

τn =
1

n

n∑
k=1

δZk
.

The fact of equidistribution for the zeros of random polynomials is expressed via the weak
convergence of τn to the normalized arclength measure µT on the unit circumference T,
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where dµT(eit) := dt/(2π). Namely, we have that τn
w→ µT with probability 1 (abbreviated

as a.s. or almost surely). Ibragimov and Zaporozhets [16] proved that if the coefficients
are independent and identically distributed non-trivial random variables, then the condition
E[log+ |A0|] < ∞ is necessary and sufficient for τn

w→ µT almost surely. Here, E[X] denotes
the expectation of a random variable X, and X is called non-trivial if P(X = 0) < 1. Further
related results are found in papers of Kabluchko and Zaporozhets [17, 18], etc.

The study of asymptotic distribution of zeros for deterministic polynomials dates back to
early 1900s, including well known results of Jentzsch and Szegő, see Andrievskii and Blatt [1]
for an overview. In this paper, we use the knowledge accumulated in the study of zeros for
deterministic polynomials and rational functions. In particular, we apply the ideas of Edrei
[11] and their developments in [20] and [19] to study random Laurent rational functions.

We also mention a related and well developed topic of almost sure equidistribution of
zeros for random orthogonal polynomials. These questions were considered by Shiffman and
Zelditch [25]-[26], Bloom [5] and [6], Bloom and Shiffman [8], Bloom and Levenberg [7],
Bayraktar [3] and others. Bayraktar [4] recently studied zero distribution of the multivariate
random Laurent polynomials associated with a fixed Newton polytope. The author [21, 22]
also considered zero distribution for random polynomials spanned by general bases.

2 Zeros of Random Laurent Rational Functions

Let {ak}∞k=0 and {bk}∞k=1 be deterministic sequences of complex numbers such that

lim
k→∞
|ak|1/k = 1/R and lim

k→∞
|bk|1/k = r. (2.1)

We consider complex random variables {Ak}∞k=0 and {Bk}∞k=1 that satisfy the same conditions
as used by Ibragimov and Zaporozhets [16]:

{Ak}∞k=0 and {Bk}∞k=1 are i.i.d. with P(A0 = 0) < 1 and E[log+ |A0|] <∞. (2.2)

The main goal of this paper is the study of zeros for the random Laurent rational functions

Lm,n(z) =
m∑
k=0

Akakz
k +

n∑
k=1

Bkbkz
−k, m, n ∈ N. (2.3)

In particular, we establish the almost sure weak limits of normalized zero counting measures

τm,n =
1

m+ n

m+n∑
k=1

δZk
(2.4)

for such Laurent rational functions.

Let µs be the normalized angular measure dθ/(2π) on the circle {z ∈ C : |z| = s > 0}.
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Theorem 2.1. Suppose that the coefficients of the Laurent rational functions (2.3) satisfy
(2.1) and (2.2). If 0 < r < R < ∞ and limm,n→∞m/(m + n) = α along a sequence of

Laurent rational functions, then their zero counting measures satisfy τm,n
w→ αµR+(1−α)µr

as m,n→∞ with probability one.

A sequence of rational functions with m/n having a limit is often called a ray sequence.
We actually deal with two sequences {mj}∞j=0 and {nj}∞j=1 such that limj→∞mj/(mj +nj) =
α, but the index j will be suppressed in our paper to simplify the notation. This theorem is
an analog of earlier deterministic results on the zeros of partial sums of Laurent series due
to Edrei [11]. Our proof is based on the extensions of Edrei’s results to general Laurent-type
rational functions obtained in [20]. The sequence of Laurent rational functions considered
in Theorem 2.1 can also be viewed as a sequence of partial sums of random Laurent series
convergent in the annulus A := {z ∈ C : r < |z| < R} to a random analytic function. It
is possible to show along the lines of Ibragimov and Zaporozhets [16] that if E[log+ |A0|] =
∞, then the limiting measure for τm,n may be different from αµR + (1 − α)µr. In fact,
E[log+ |A0|] = ∞ holds if and only if lim supn→∞ |An|1/n = ∞ with probability one, see [2],
[16], etc. This leads to divergent power series (with radius of convergence equal to zero).
Zeros of divergent random power series were studied in [16] and [17], while the classical
deterministic case was considered by Rosenbloom [24] (cf. Theorem XVIII on pages 40–41),
and by Dilcher and Rubel [10].

We also have the following interesting companion for the above result, where two parts
of the limiting measure for the zeros of Laurent rational functions merge into one.

Theorem 2.2. If under the assumption of Theorem 2.1 we have r = R, then τm,n
w→ µR

with probability one.

The latter case is closely related to the zero distribution of random trigonometric poly-
nomials. It is clear that

Lm,n(eiθ) =
m∑
k=0

Akake
ikθ +

n∑
k=1

Bkbke
−ikθ = Tm,n(θ), m, n ∈ N,

are trigonometric polynomials in θ ∈ [0, 2π). For example, if ak = bk = 1 and A0 ∈ R, Ak =
Bk ∈ R for all k ∈ N, then

Ln,n(eiθ) = A0 + 2
n∑
k=1

Ak cos θ =: tn(θ), n ∈ N.

Thus the zeros of tn in [0, 2π) correspond to the zeros of Ln,n(z) on the unit circumference.
It was first proved by Dunnage (see [12] for history and further results) that random cosine
polynomials tn with real Gaussian coefficients have asymptotically 2n/

√
3 expected zeros on

[0, 2π). Hence the bulk of zeros of Ln,n(z) is equidistributed near T, while the mentioned
fraction of zeros is expected to lie exactly on T.

We remark that there is an overlap between Theorem 2.2 and Theorem 1.2 in [4].
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We now consider a degenerate case when the deterministic coefficients ak, bk satisfy (2.1)
with r > R. Our random Laurent rational functions diverge with probability one everywhere
in C under such assumptions. In fact, this case was not studied even for the zeros of partial
sums of the classical Laurent series. The random Laurent rational functions (2.3) reduce to
the partial sums of a standard Laurent series by setting Ak = 1 and Bk = 1 for all k with
probability one.

Theorem 2.3. Suppose that the coefficients of the Laurent rational functions (2.3) satisfy
(2.1) and (2.2). If r > R are finite and limm,n→∞m/(m + n) = α, then τm,n

w→ µρ as
m,n→∞ with probability one, where ρ = Rαr1−α.

It is of interest that zeros preserve very regular behavior despite divergent nature of
Laurent rational functions. But now the circle of accumulation for zeros depends on the
choice of a “ray sequence,” i.e., on the asymptotic proportion of positive and negative powers
in a particular sequence of Laurent rational functions.

We note that the conditions on random variables in (2.2) can be relaxed in several ways,
while all results of this section remain valid. Thus our proofs use joint independence of the
sequence {|Ak|}∞k=0, and separately joint independence of {|Bk|}∞k=1. Moreover, while both
{|Ak|}∞k=0 and {|Bk|}∞k=1 are required to be identically distributed, the common distributions
for these two sequences may be different.

Another kind of condition, preserving all our results as stated above, allow dependence
and different distributions for random variables. Let the distribution function of |Ak| be
defined by Fk(x) = P({|Ak| ≤ x}), x ∈ R. We can replace (2.2) with the following assump-
tions:

There is N ∈ N, a decreasing function f : [a,∞) → [0, 1], a > 1, and an increasing
function g : [0, b]→ [0, 1], 0 < b < 1, such that∫ ∞

a

f(x)

x
dx <∞ and 1− Fk(x) ≤ f(x), ∀x ∈ [a,∞), (2.5)

and ∫ b

0

g(x)

x
dx <∞ and Fk(x) ≤ g(x), ∀x ∈ [0, b], (2.6)

hold for all k ≥ N. We further assume that (2.5) and (2.6) also hold for the distribution
functions of the sequence {|Bk|}∞k=1.

If F (x) is the distribution function of |X|, where X is a complex random variable, then

E[log+ |X|] <∞ ⇔
∫ ∞
a

1− F (x)

x
dx <∞, a ≥ 0,

and

E[log− |X|] <∞ ⇔
∫ b

0

F (x)

x
dx <∞, b > 0,
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see, e.g., Theorem 12.3 of Gut [15, p. 76]. Hence when all random variables |Ak|, k =
0, 1, . . . , are identically distributed, one can state assumptions (2.5)-(2.6) in a more compact
equivalent form

E[| log |A0||] <∞. (2.7)

Theorem 2.4. Theorems 2.1, 2.2 and 2.3 remain valid if assumption (2.2) on the random
coefficients is replaced with (2.5) and (2.6).

3 Proofs

We need several facts about limiting behavior of random coefficients. The first result is well
known, and can be found in many papers, see [2], [16], [21], etc. We include its short proof
for convenience of the reader.

Lemma 3.1. If {Ak}∞k=0 are non-trivial, independent and identically distributed complex
random variables that satisfy E[log+ |A0|] <∞, then

lim sup
n→∞

|An|1/n = 1 a.s. (3.1)

and

lim sup
n→∞

(
max
0≤k≤n

|Ak|
)1/n

= 1 a.s. (3.2)

This follows from the Borel-Cantelli Lemmas stated below (see, e.g., [15, p. 96]) in a
standard way.

Borel-Cantelli Lemmas. Let {En}∞n=1 be a sequence of arbitrary events.
(i) If

∑∞
n=1 P(En) <∞ then P(En occurs infinitely often) = 0.

(ii) If events {En}∞n=1 are independent and
∑∞

n=1 P(En) =∞, then P(En i.o.) = 1.

Proof of Lemma 3.1. For any fixed ε > 0, define events En = {|An| ≥ eεn}, n ∈ N. Then

∞∑
n=1

P(En) =
∞∑
n=1

P({log+ |An| ≥ εn}) =
∞∑
n=1

P
({

1

ε
log+ |A0| ≥ n

})
≤ 1

ε
E[log+ |A0|] <∞.

Hence P(En occurs infinitely often) = 0 by the first Borel-Cantelli Lemma, so that the com-
plementary event Ecn must happen for all large n with probability 1. This means that
|An|1/n ≤ eε for all sufficiently large n ∈ N almost surely. We obtain that

lim sup
n→∞

|An|1/n ≤ eε a.s.,
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and since ε > 0 was arbitary, this shows that

lim sup
n→∞

|An|1/n ≤ 1 a.s. (3.3)

On the other hand, A0 is non-trivial, so there exists c > 0 such that P(|A0| > c) > 0.
Therefore

∞∑
n=1

P(|An| > c) =∞,

since An are i.i.d. random variables. Using the second Borel-Cantelli Lemma, it follows
that with probability one, there exist infinitely many n such that |An| > c. Combining this
with (3.3), we obtain (3.1). An elementary argument shows that (3.2) is a consequence of
(3.1).

The next lemma shows that the random coefficients cannot be “too small too often”
under our assumptions. The specific form given below appears in [23], but its roots are
found in [13]. Again, we provide a short proof for the sake of completeness.

Lemma 3.2. If {Ak}∞k=0 are non-trivial i.i.d. complex random variables, then there is b > 0
such that

lim inf
n→∞

(
max

n−b logn<k≤n
|Ak|

)1/n

≥ 1 a.s. (3.4)

Proof. We use a modified idea of Fernández [13] in this proof. Let αn ≤ n, n ∈ N, be a
sequence of natural numbers that will be specified later. Consider

Mn := max
n−αn<k≤n

|Ak|.

The statement

lim inf
n→∞

(Mn)1/n ≥ 1 a.s.

is equivalent to

P({Mn ≤ λn i.o.}) = 0

for all positive λ < 1. The latter would follow from the first Borel-Cantelli Lemma if we show
that

∞∑
n=1

P({Mn ≤ λn}) <∞

for all positive λ < 1. Since our variables {Ak}∞k=0 are i.i.d., we have

P({Mn ≤ λn}) = P({|A0| ≤ λn})αn .
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As A0 is non-trivial, we can find c > 0 and p ∈ (0, 1) such that P({|A0| ≤ c}) ≤ p. Hence for
any λ < 1 there is N = N(p, λ) ∈ N such that P({|A0| ≤ λn}) ≤ p for all n ≥ N. This gives

∞∑
n=1

P({Mn ≤ λn}) ≤
∞∑
n=1

pαn <∞,

provided pαn ≤ 1/n2 for large n. It suffices to take αn ≥ (−2/ log p) log n to satisfy the latter
condition.

Deterministic results for the asymptotic zero distribution of Laurent rational functions
go back to Edrei [11], and they were generalized in [19] and [20]. The coefficient conditions
employed in [19] are not applicable in the setting of Theorem 2.1, but they work well under
assumptions (2.5) and (2.6), see the proof of Theorem 2.4 below. Thus our proof of Theorem
2.1 rely on [20], where we combined and generalized ideas from the papers of Edrei [11] and
Grothmann [14]. It suffices for our current purposes to consider the special case of Theorem
1.1 from [20] given below.

Theorem 3.3. Consider an infinite sequence of Laurent rational functions

Lm,n(z) =
m∑
k=0

skz
k +

n∑
k=1

tkz
−k, m, n ∈ N,

such that both m,n→∞ and lim
m,n→∞

m

m+ n
= α along this sequence. Given 0 < r < R <∞,

let A := {z : r < |z| < R}, G := {z : |z| < r} and Ω := {z : |z| > R}. Suppose that the
sequence Lm,n converges to f 6≡ 0 locally uniformly in A. If there is a compact set S1 ⊂ Ω
such that

lim inf
m,n→∞

max
z∈S1

|Lm,n(z)|1/m

|z|
≥ 1

R
, (3.5)

and a compact set S2 ⊂ G such that

lim inf
m,n→∞

max
z∈S2

|z| |Lm,n(z)|1/n ≥ r, (3.6)

then the normalized zero counting measures of Lm,n satisfy τm,n
w→ αµR + (1 − α)µr as

m,n→∞.

Proof of Theorem 2.1. The strategy of this proof is to apply Theorem 3.3. We first show
that the random Laurent rational functions (2.3) converge uniformly on compact subsets of
the annulus A, with probability one, under our assumptions. Define

Pm(z) :=
m∑
k=0

Akakz
k and Qn(z) :=

n∑
k=1

Bkbkz
−k, (3.7)
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so that Lm,n(z) = Pm(z) +Qn(z). It follows from (2.1) and (3.1) that

lim sup
k→∞

|akAk|1/k = 1/R and lim sup
k→∞

|bkBk|1/k = r (3.8)

hold with probability one. Hence Pm represent the partial sums of a random series with
radius of convergence R, i.e., Pm converge almost surely to an analytic function g 6≡ 0 in
the disk {z : |z| < R}. Similarly, we obtain after the change of variable z → 1/z that Qn

converge almost surely to an analytic function h 6≡ 0 in the domain {z : |z| > r}. It follows
that Lm,n converge almost surely to an analytic function f = g + h 6≡ 0 in the annulus A.
Clearly, this convergence is locally uniform in A. We now show that (3.5) and (3.6) hold
for our random Laurent rational functions (2.3) with probability one. Assume for (3.5) that
S1 = {z : |z| = R′} with R′ > R, and use the standard integral representation for the
coefficients

akAk =
1

2πi

∫
|z|=R′

Lm,n(z) dz

zk+1
, k = 0, 1, 2, . . . .

It follows that

|akAk| ≤
max
|z|=R′

|Lm,n(z)|

(R′)k

and

max
|z|=R′

|Lm,n(z)|
|z|m

≥ (R′)k−m|akAk|, k = 0, 1, 2, . . . .

We choose b > 0 as in Lemma 3.2, and use the above inequality together with (3.4) and (2.1)
to obtain that

lim inf
m→∞

max
|z|=R′

|Lm,n(z)|1/m

|z|
≥ lim inf

m→∞
max

m−b logm<k≤m
(R′)k/m−1|akAk|1/m

=
1

R
lim inf
m→∞

max
m−b logm<k≤m

|Ak|1/m ≥
1

R

holds with probability one. A similar argument shows that (3.6) holds with probability one
for any set S2 = {z : |z| = r′} ⊂ G with r′ < r. Indeed, we have

|bkBk| ≤ (r′)k max
|z|=r′

|Lm,n(z)|, k ∈ N,

which gives as before that

lim inf
n→∞

max
|z|=r′

|z||Lm,n(z)|1/n ≥ lim inf
n→∞

max
n−b logn<k≤n

(r′)1−k/n|bkBk|1/n

= r lim inf
n→∞

max
n−b logn<k≤n

|Bk|1/n ≥ r.

Hence τm,n
w→ αµR + (1− α)µr with probability one by Theorem 3.3.
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We also need a companion of Theorem 3.3 for the case when r = R, i.e., when the
annulus A degenerates to a circumference. Let ‖ · ‖E denote the supremum norm on a set
E. Assumption (3.9) below replaces the corresponding assumption in Theorem 3.3 that
Lm,n → f 6≡ 0 locally uniformly in A.

Theorem 3.4. Consider an infinite sequence of Laurent rational functions

Lm,n(z) =
m∑
k=0

skz
k +

n∑
k=1

tkz
−k, m, n ∈ N,

such that both m,n→∞ and lim
m,n→∞

m

m+ n
= α along this sequence. For ρ ∈ (0,∞), define

E := {z : |z| = ρ}, G := {z : |z| < ρ} and Ω := {z : |z| > ρ}. Suppose that

lim sup
m,n→∞

‖Lm,n‖1/(m+n)
E ≤ 1. (3.9)

If there is a compact set S1 ⊂ Ω such that

lim inf
m,n→∞

max
z∈S1

|Lm,n(z)|1/m

|z|
≥ 1

ρ
, (3.10)

and a compact set S2 ⊂ G such that

lim inf
m,n→∞

max
z∈S2

|z| |Lm,n(z)|1/n ≥ ρ, (3.11)

then the normalized zero counting measures of Lm,n satisfy τm,n
w→ µρ as m,n → ∞, where

dµρ(ρe
iθ) = dθ/(2π).

We note that the coefficients sk and tk in Lm,n may depend on m and n, i.e., they may
be different in different Laurent rational functions. A proof of Theorem 3.4 is implicitly
contained in the proof of Theorem 1.1 from [20]. Since this result is not explicitly mentioned
in the literature, we sketch a proof based on Theorem 1.1 of [1, p. 50] for polynomials.

Proof. We first note that the change of variable z → z/ρ reduces this result to the case
ρ = 1. We provide the proof for the latter case, i.e., for E = T = {z : |z| = 1}. Let dm
be the exact degree of the polynomial part for Lm,n, so that sdm is the highest non-zero
coefficient. Denote the exact degree of the Laurent part for Lm,n by en, with ten 6= 0 being
the lowest coefficient. Consider the polynomials Pm,n(z) := zenLm,n(z) of the exact degree
dm + en ≤ m+ n, whose zeros coincide with the zeros of Lm,n(z). We apply Theorem 1.1 of
[1, p. 50] to this sequence of polynomials. Assumption (1.2) of Theorem 1.1 in [1] is identical
to our assumption (3.9). It follows from Lemma 4.1 of [20] and (3.9)-(3.11) that

lim
m,n→∞

dm
m

= lim
m,n→∞

en
n

= 1.
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Hence assumption (1.4) of Theorem 1.1 [1] is satisfied by our assumption (3.10) because

lim inf
m,n→∞

max
z∈S1

(
1

m+ n
log |Pm,n(z)| − log |z|

)
= lim inf

m,n→∞

m

m+ n
log max

z∈S1

|Lm,n(z)|1/m

|z|
≥ 0.

It remains to show that assumption (1.2) of Theorem 1.1 [1] holds, which translates into

lim
m,n→∞

τm,n(M) = 0

for any compact set M ⊂ G = {z : |z| < 1}. This follows from Lemma 1.6 of [1, p. 52]
applied to the polynomials Qm,n(z) := zdmLm,n(1/z) by using our assumptions (3.9) and
(3.11).

Proof of Theorem 2.2. We apply Theorem 3.4 to the random Laurent rational functions (2.3)
with ρ = R. Observe that

‖Lm,n‖E ≤
m∑
k=0

|Akak|Rk +
n∑
k=1

|Bkbk|R−k (3.12)

≤ (m+ 1) max
0≤k≤m

(
|ak|Rk

)
max
0≤k≤m

|Ak|+ n max
1≤k≤n

(
|bk|R−k

)
max
1≤k≤n

|Bk|.

Since R limm→∞ |am|1/m = R−1 limn→∞ |bn|1/n = 1, we have that

lim
m→∞

(
max
0≤k≤m

|ak|Rk

)1/m

= lim
n→∞

(
max
1≤k≤n

|bk|R−k
)1/n

= 1.

Applying these limits together with (3.2) and (3.12), we verify that (3.9) holds with proba-
bility one. We now need to show that (3.10) and (3.11) hold with probability one. This is
done in essentially the same way as in the proof of Theorem 2.1. Let S1 = {z : |z| = R′} ⊂ Ω
with R′ > R, and let S2 = {z : |z| = r′} ⊂ G with r′ < R. Then we have

max
|z|=R′

|Lm,n(z)|
|z|m

≥ (R′)k−m|akAk|, k = 0, 1, 2, . . . ,

and
max
|z|=r′

|Lm,n(z)| ≥ (r′)−k|bkBk|, k ∈ N.

Selecting b > 0 as in Lemma 3.2, and combining the above estimates with (3.4), we obtain
that

lim inf
m,n→∞

max
|z|=R′

|Lm,n(z)|1/m

|z|
≥ lim inf

m→∞
max

m−b logm<k≤m
(R′)k/m−1|akAk|1/m

=
1

R
lim inf
m→∞

max
m−b logm<k≤m

|Ak|1/m ≥
1

R
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and

lim inf
m,n→∞

max
|z|=r′

|z||Lm,n(z)|1/n ≥ lim inf
n→∞

max
n−b logn<k≤n

(r′)1−k/n|bkBk|1/n

= R lim inf
n→∞

max
n−b logn<k≤n

|Bk|1/n ≥ R

both hold with probability one. Hence τm,n
w→ µR with probability one by Theorem 3.4.

Proof of Theorem 2.3. We first assume that α ∈ (0, 1), and apply Theorem 3.4 to the random
Laurent rational functions

L̃m,n(z) =
( r
R

)α(α−1)(m+n)

Lm,n(z),

with E := {z : |z| = ρ = Rαr1−α}. Note that both the polynomial and the Laurent parts of
Lm,n(z) diverge in the annulus {z : R < |z| < r} as m,n→∞. The value of ρ is essentially
determined by matching the growth rates of the polynomial and the Laurent parts of Lm,n(z)
on E. It is clear that

‖Lm,n‖E ≤
m∑
k=0

|Akak|ρk +
n∑
k=1

|Bkbk|ρ−k (3.13)

≤ (m+ 1) max
0≤k≤m

(
|ak|ρk

)
max
0≤k≤m

|Ak|+ n max
1≤k≤n

(
|bk|ρ−k

)
max
1≤k≤n

|Bk|

=: pm,n + qm,n.

We use the following elementary inequality

lim sup
k→∞

(
max
1≤j≤k

|cj|
)1/lk

≤ max

(
lim sup
k→∞

|ck|1/lk , 1
)

that holds for any sequence of complex numbers {ck}∞k=1 and any sequence of natural numbers
{lk}∞k=1 increasing to infinity. Applying this inequality with ck = |ak|ρk and lm = 1/(m+n),
we obtain by (2.1) that

lim sup
m,n→∞

(
max
0≤k≤m

(
|ak|ρk

))1/(m+n)

≤ max

(
lim sup
m,n→∞

(|am|ρm)1/(m+n) , 1

)
= max

(
R−αρα, 1

)
= max

(
(R/r)α

2−α, 1
)

= (R/r)α
2−α.

It follows from the above inequality and (3.2) that

lim sup
m,n→∞

(
(r/R)α(α−1)(m+n) pm,n

)1/(m+n) ≤ (r/R)α(α−1)(R/r)α
2−α = 1
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with probability one. A similar argument shows that

lim sup
m,n→∞

(
max
0≤k≤n

(
|bk|ρ−k

))1/(m+n)

≤ max
(
r1−αρα−1, 1

)
= max

(
(R/r)α

2−α, 1
)

= (R/r)α
2−α,

and that

lim sup
m,n→∞

(
(r/R)α(α−1)(m+n) qm,n

)1/(m+n) ≤ 1 a.s.

Hence we verified by (3.13) that (3.9) holds for L̃m,n(z) with probability one.
We next show that (3.10) and (3.11) also hold for L̃m,n(z) with probability one. The idea

is the same as in the proofs of Theorems 2.1 and 2.2. Consider S1 = {z : |z| = R′} ⊂ Ω with
R′ > ρ, and S2 = {z : |z| = r′} ⊂ G with r′ < ρ. We again have

max
|z|=R′

|Lm,n(z)|
|z|m

≥ (R′)k−m|akAk|, k = 0, 1, 2, . . . ,

and
max
|z|=r′

|Lm,n(z)| ≥ (r′)−k|bkBk|, k ∈ N.

Choose b > 0 as in Lemma 3.2, and use the above estimates with (3.4) to obtain that

lim inf
m,n→∞

max
|z|=R′

|L̃m,n(z)|1/m

|z|
≥ lim inf

m,n→∞

( r
R

)α(α−1)(m+n)/m

max
m−b logm<k≤m

(R′)k/m−1|akAk|1/m

=
( r
R

)α−1 1

R
lim inf
m→∞

max
m−b logm<k≤m

|Ak|1/m ≥
1

Rαr1−α
=

1

ρ

and

lim inf
m,n→∞

max
|z|=r′

|z||L̃m,n(z)|1/n ≥ lim inf
m,n→∞

( r
R

)α(α−1)(m+n)/n

max
n−b logn<k≤n

(r′)1−k/n|bkBk|1/n

=
( r
R

)−α
r lim inf

n→∞
max

n−b logn<k≤n
|Bk|1/n ≥ Rαr1−α = ρ

both hold with probability one. Hence τm,n
w→ µρ with probability one by Theorem 3.4.

The proof is completed by considering the remaining cases α = 0 and α = 1. If α = 0
then we repeat the above proof by applying Theorem 3.4 to the random Laurent rational
functions

L̃m,n(z) =

(
R

r

)m
Lm,n(z).

For α = 1, one needs to apply Theorem 3.4 to the random Laurent rational functions

L̃m,n(z) =

(
R

r

)n
Lm,n(z).

12



Proof of Theorem 2.4. The proofs of analogs for Theorems 2.1, 2.2 and 2.3 under assump-
tions (2.5) and (2.6) are even more direct, because the random coefficients now satisfy

lim
m→∞

|Am|1/m = lim
m→∞

(
max
0≤k≤m

|Ak|
)1/m

= lim
n→∞

|Bn|1/n = lim
n→∞

(
max
0≤k≤n

|Bk|
)1/n

= 1 (3.14)

with probability one, see Lemma 4.2 in [21] or [22]. We immediately obtain that

lim
m→∞

|amAm|1/m = 1/R and lim
n→∞

|bnBn|1/n = r a.s. (3.15)

Since 0 < r < R < ∞ in the context of Theorem 2.1, (3.15) implies that the sequence
Lm,n converges to f 6≡ 0 locally uniformly in A = {z : r < |z| < R} with probability one.
Furthermore, the conclusion of our Theorem 2.1 now follows from Theorem 2.1 of [19] and
(3.15).

Theorems 2.2 and 2.3 follow from Theorem 2.6 of [19] and (3.14)-(3.15) in a routine way.
Indeed, one only needs to verify that (2.20) in Theorem 2.6 of [19] holds almost surely. But
that condition is identical to (3.9) in this paper, which is verified in the same fashion as in
our proofs of Theorems 2.2 and 2.3 by using (3.14)-(3.15).
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