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Abstract. In an earlier work, the first author and Petsche solved an en-

ergy minimization problem for local fields and used the result to obtain lower
bounds on the height of algebraic numbers all whose conjugates lie in various

local fields, such as totally real and totally p-adic numbers. In this paper, we

extend these techniques and solve the corresponding minimization programs
for real intervals and p-adic discs, obtaining several new lower bounds for the

height of algebraic numbers all of whose conjugates lie in such sets.

1. Introduction

Let h denote the absolute logarithmic Weil height on algebraic numbers. It is
well-known that if an α ∈ Q satisfies some sort of prime ideal splitting conditions,
one can compute lower bounds on the height of the number. The first result of this
kind dates back to Schinzel [8], who proved that if α 6= 0,±1 is totally real, that is,
if the set of Galois conjugates of α lies entirely in R, then

h(α) ≥ 1

2
log

(
1 +
√

5

2

)
.

Bombieri and Zannier [2] proved a similar result for totally p-adic numbers, specif-
ically, if LS denotes the field of all numbers whose conjugates lie in the p-adic field
Qp for all p in a set S of non-archimedean rational primes, then

lim inf
α∈LS

h(α) ≥ 1

2

∑
p∈S

log p

p+ 1
.

(Bombieri and Zannier proved similar results for finite extensions of Qp, but for
simplicity we will first state all results for the moment in the totally p-adic setting.)

Using potential theoretic techniques on the Berkovich projective line, the first
author and Petsche [3] managed to improve on these results at the non-archimedean
places and to allow simultaneous p-adic and totally real splitting conditions. Specif-
ically, they proved [3, Theorem 3] that if S is a nonempty subset of rational primes,
and LS denotes the subfield of Q consisting of all those α ∈ Q such that α is totally
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p-adic for all primes p ∈ S, and α is totally real if ∞ ∈ S, then

(1) lim inf
α∈LS

h(α) ≥


1

2

∑
p∈S

p log p

p2 − 1
if ∞ 6∈ S

1

2

∑
p∈S
p-∞

p log p

p2 − 1
+

7ζ(3)

4π2
if ∞ ∈ S.

In this paper, we use similar potential theoretic techniques to extend the results
of the first author and Petsche to the case where all of the conjugates of a number
lie in a specific real or p-adic interval or ball, respectively.

Before stating our results, let us first set some notation. For L a local field with
a given absolute value |·| and µ a Borel measure on P1(L), we let

(2) Iδ(ν) =

∫∫
P1(L)×P1(L)

− log δ(x, y) dν(x) dν(y),

where δ : P1(L)× P1(L)→ R is the spherical metric defined by

δ(x, y) =
|x0y1 − y0x1|

max{|x0|, |x1|}max{|y0|, |y1|}

for x = (x0 : x1) and y = (y0 : y1) in P1(L). When L is a finite extension of Qp we
will take as the absolute value on L the unique extension of the p-adic absolute |·|p
to L, normalized so that |p|p = 1/p, and when L = R or L = C, we will take the
usual absolute value |·|∞ = |·|. Let us denote by

Vδ(Ep) = inf
ν
Iδ(ν)

this infimum over Borel probability measures supported on Ep, called the δ-Robin
constant of Ep. As was demonstrated in [3], for compact sets Ep ⊂ P1(Qp) there is
a unique measure µEp

, which minimizes the energy functional Iδ and is supported
on Ep, that is, for which Vδ(Ep) = Iδ(µEp

). We have the following result, which is
a scholium of Theorem 3 of [3]:

Theorem 1. Let S be a set of rational primes, and for each p ∈ S, let Lp/Qp be
a finite normal extension and Ep a closed subset of the projective line P1(Lp). Let

G = Gal(Q/Q) denote the absolute Galois group, and

AS = {α ∈ Q : Gα ⊂ Ep for every p ∈ S}.

Then

(3) lim inf
α∈AS

h(α) ≥ 1

2

∑
p∈S

Vδ(Ep),

where Vδ(Ep) is the δ-Robin constant as defined above. Further, if there exists a
sequence {αn}∞n=1 ⊂ AS such that the infimum above is attained, then for each p ∈
S, the probability measures on P1(Cp) distributed equally on each Galois conjugate
of αn must converge weakly to the unique δ-equilibrium measure of Ep.

We note that it is very easy to see, using Rumely’s Fekete-Szegő theorem with
splitting conditions [4, 5], that in many cases of interest AS is infinite, so that the
result above is non-trivial. In particular, if Ep = Qp for some finite prime p and
every other Ep contains at least a disc or interval, then AS is infinite.
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We will prove our main theorem in this paper by determining the value of Vδ(Ep)
for certain real intervals and p-adic discs of interest. Specifically, we prove the
following:

Theorem 2. Let E∞ = [−r, r]. The equilibrium measure is absolutely continuous
with respect to Lebesgue measure on [−r, r],

dµE∞
dx

(x) =


2 arcsin(1/r)

π2
√
r2 − x2

+
1

π2x
log

∣∣∣∣∣ (x+ 1)(r2 − x+
√
r2 − x2

√
r2 − 1)

(x− 1)(r2 + x+
√
r2 − x2

√
r2 − 1)

∣∣∣∣∣ if r ≥ 1,

1

π
√
r2 − x2

otherwise,

and the δ-Robin constant is given by

Vδ(E∞) =

log
2

r
+

2

π

∫ r

1

log x dx√
r2 − x2

+ 2

∫ r

1

log x dµE∞(x) if r ≥ 1,

r/2 otherwise.

The proof of Theorem 2 will be given in Section 2 below.

Theorem 3. Let Ep = pnZp for n ∈ Z. If n ≥ 0, then µp is the normalized Haar
measure of Ep as an additive group, while if n < 0, then µp can be written as a linear
combination of the normalized Haar measures of Zp and pkZ×p for −1 ≥ k ≥ n,
and

Vδ(Ep) =


n log p+

p log p

p− 1
if n ≥ 0,

p+ p2n

p2 − 1
log p if n < 0.

For n < 0 the expression of the δ-equilibrium measure µp as a combination of
the Haar measure of Zp and the Haar measures of the shells pkZ×p for k < 0 can
be computed explicitly. Those details, as well as a more general statement of the
above theorem for arbitrary finite extensions of Qp, can be found in Theorem 10 of
Section 3 below.

1.1. Example applications. In order to give an indication of the strength of these
results, we give here some example applications. We begin with an example inspired
by that from [3].

Example 4. Let S = {2,∞}, E2 = 2−1Z2 and E∞ = [−2, 2], so that AS is the set
of all numbers which are algebraic numbers that satisfy:

• All conjugates of α are real and lie in the interval [−2, 2].
• All conjugates of α have 2-adic absolute value at most 2.

It then follows from Theorem 1 that

lim inf
α∈AS

h(α) ≥ 1

2
Vδ(E∞) +

1

2
Vδ(2

−1Z2) = 0.239632 . . .+ 0.25993 . . . = 0.499562 . . .

This improves on the values one could obtain from [3, Theorem 3], which only uses
the fact that the elements of LS are totally real and totally 2-adic, and would have
allowed us to conclude that

lim inf
α∈AS

h(α) ≥ 7ζ(3)

4π2
+

1

2
· 2 log 2

22 − 1
= 0.231049 . . .+ 0.213139 . . . = 0.444188 . . .
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Both results are better than the p-adic bound of the Bombieri-Zannier at p = 2,
which would yield

lim inf
α∈AS

h(α) ≥ 1

2
· log 2

2 + 1
= 0.115525 . . .

and separate the bound of Schinzel for totally real numbers, which implies that

lim inf
α∈AS

h(α) ≥ 1

2
log

(
1 +
√

5

2

)
= 0.24061...

Example 5. Suppose αn is a sequence of distinct algebraic numbers for which the
conjugates of αn all lie in [−2, 2] for any archimedean place. If the αn are assumed
to be algebraic integers, then as is known that the αn must distribute at the real
place according to the logarithmic equilibrium distribution of [−2, 2], which is given
by

dµ(x) =
dx|[−2,2]

π
√

4− x2
.

It follows that

lim
n→∞

h(αn) =

∫ 2

−2

log+|x|
π
√

4− x2
dx = 0.323066 . . .

On the other hand, if the assumption that the αn are algebraic integers is dropped,
then previously, the best result that could be applied was Schinzel’s theorem for
totally real algebraic numbers [8]:

lim inf
n→∞

h(αn) ≥ 1

2
log

1 +
√

5

2
= 0.240606 . . .

It is worth noting that the archimedean contribution of our height bound for E∞ =
[−2, 2], 1

2Vδ([−2, 2]) = 0.239632 . . ., is smaller than Schinzel’s bound, however, as
the previous example illustrates, it possesses the advantage that it can be appplied
to non-integers and combined with p-adic splitting conditions to obtain stronger
bounds.

On the other hand, for non-integers, our result even at only the archimedean
place is highly non-trivial:

Example 6. Let S = {∞} and E∞ = [−1, 1], so that AS contains algebraic numbers
all of whose conjugates lie in [−1, 1]. Notice that AS cannot contain more than
finitely many algebraic integers, as the logarithmic capacity of [−1, 1] is strictly less
than 1 by the classical Fekete-Szegő theorem. It then follows from our theorem
that

lim inf
α∈AS

h(α) ≥ 1

2
Vδ([−1, 1]) = 0.346574 . . .

which substantially exceeds both bounds in the previous example.

Lastly, we note that we can generalize Theorem 1 to the case where we consider
conjguates of α to over a base number field K, and for a set S of places of K,
we choose for each v ∈ S a closed subset of the projective line P1(Lv) for a finite
normal extension Lv/Kv. This changes the statement of Theorem 1 trivially in
that the energies Vδ(Ev) are calculated as before, but each factor of Vδ(Ev) is now
weighted by Nv = [Kv : Qv]/[K : Q] as in the proof of [3, Theorem 9].
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2. Archimedean results

We will being by proving the results for the archimedean setting.

Proof of Theorem 2. We use the notation and terminology of Saff and Totik [7] in
this proof. Thus we deal with a logarithmic energy problem with the external field
Q(x) = log+ |x| on [−r, r], r ≥ 1.. Note that this external field can be written as
the negative of the logarithmic potential:

Q(x) =

∫
log |x− t| dτ(t) = −Uτ (x),

where dτ(eiθ) = dθ/(2π) is the Haar (equilibrium) measure on T. Consider the
balayage τ̂ of the measure τ from the domain Ω = C \ [−r, r] onto [−r, r], see
Section II.4 of [7]. It follows from Theorem 4.4 of [7, p. 115] that τ̂ is a unit
measure supported on [−r, r], whose potential satisfies

U τ̂ (x) +Q(x) = U τ̂ (x)− Uτ (x) =

∫
gΩ(t,∞) dτ(t), x ∈ [−r, r],

where gΩ(t,∞) is the Green function of Ω with pole at∞. Hence τ̂ is the equilibrium
measure of [−r, r] in the external field Q by Theorem 3.3 of [7, p. 44]. Thus the
support of µE∞ = τ̂ is [−r, r], and the above equation allows to find the measure
explicitly by using well known integral equation methods. In particular, Theorem
3.1 of [7, p. 221] states that if f ∈ C[−1, 1] is even and f ′(x)/

√
1− x2 ∈ Lp[−1, 1]

for some p ∈ (1, 2), then the integral equation

−
∫ 1

−1

g(t) log |x− t| dt = −f(x) + Cf , x ∈ [−1, 1],

has a solution of the form

g(t) = L[f ′](t) +
Bf

π
√

1− t2
, a.e. t ∈ (−1, 1),

where

L[f ′](t) =
2

π2
PV

∫ 1

0

√
1− t2 sf ′(s)√

1− s2(s2 − t2)
ds, a.e. t ∈ (−1, 1),

and

Bf = 1− 1

π

∫ 1

−1

sf ′(s)√
1− s2

ds.

Moreover, the constant Cf is uniquely determined by

Cf =
2

π

∫ 1

0

f(s)√
1− s2

ds+ log 2.

Scaling the problem from [−r, r] to [−1, 1] by the linear change of variable x = rt,
we apply the above stated result with f(t) := log+ |rt|, t ∈ [−1, 1]. It is immediate
to see that

Bf = 1− 2

π

∫ 1

1/r

ds√
1− s2

=
2

π
arcsin

1

r

and

Cf =
2

π

∫ 1

1/r

log(rs)√
1− s2

ds+ log 2 =
2

π

∫ r

1

log x dx√
r2 − x2

+ log 2.
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Thus it remains to evaluate L[f ′](t) explicitly, with

L[f ′](t) =
2

π2
PV

∫ 1

1/r

√
1− t2 ds√

1− s2(s2 − t2)
.

One can verify by direct differentiation that for any fixed t ∈ [−1, 1] \ {0}, the
function

Ft(s) =
1

π2t
log

∣∣∣∣∣ (s− t)(1 + st+
√

1− t2
√

1− s2)

(s+ t)(1− st+
√

1− t2
√

1− s2)

∣∣∣∣∣
satisfies

dFt
ds

(s) =
2

π2

√
1− t2√

1− s2(s2 − t2)
, s ∈ (−1, 1), s 6= t.

Since for t ∈ (−1/r.1/r) the integral defining L[f ′](t) becomes a regular integral
instead of principal value, we can evaluate it directly by using the antiderivative
Ft:

L[f ′](t) = Ft(1)− Ft(1/r) = −Ft(1/r), t ∈ (−1/r.1/r).

The values of L[f ′](t) for 1/r ≤ |t| < 1 are found by using the identity

PV

∫ 1

0

ds√
1− s2(s2 − t2)

= 0,

see the last equation on page 225 of [7]. Indeed, it gives that

L[f ′](t) =
2

π2
PV

∫ 1

1/r

√
1− t2 ds√

1− s2(s2 − t2)
= − 2

π2
PV

∫ 1/r

0

√
1− t2 ds√

1− s2(s2 − t2)

= Ft(0)− Ft(1/r) = −Ft(1/r), t ∈ (−1,−1/r] ∪ [1/r, 1).

Hence the solution of the equilibrium integral equation on [−1, 1] is given by

g(t) =
2 arcsin(1/r)

π2
√

1− t2
− 1

π2t
log

∣∣∣∣∣ (1/r − t)(1 + t/r +
√

1− t2
√

1− r−2)

(1/r + t)(1− t/r +
√

1− t2
√

1− r−2)

∣∣∣∣∣ .
Returning to the interval [−r, r] by letting x = rt, we obtain the equation

−
∫ r

−r
G(x) log |x− y| dx = − log+ |y|+ 2

π

∫ r

1

log x dx√
r2 − x2

+ log
2

r
, y ∈ [−r, r],

with

dµE∞
dx

(x) = G(x) =
2 arcsin(1/r)

π2
√
r2 − x2

+
1

π2x
log

∣∣∣∣∣ (x+ 1)(r2 − x+
√
r2 − x2

√
r2 − 1)

(x− 1)(r2 + x+
√
r2 − x2

√
r2 − 1)

∣∣∣∣∣ .
The δ-Robin constant is found from (1.14) of [7, p. 27] as

Vδ(E∞) = log
2

r
+

2

π

∫ r

1

log x dx√
r2 − x2

+

∫
log+ |x| dµE∞(x)

= log
2

r
+

2

π

∫ r

1

log x dx√
r2 − x2

+ 2

∫ r

1

G(x) log x dx. �
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3. p-adic results

Let K be a non-archimedean local field with absolute value |·|. Let OK denote
the ring of integers of K. In this section we compute the δ-equilibrium measure µn
of πnOK and its associated δ-Robin constant Vδ(π

nOK). For the basic results of
non-archimedean potential theory we refer the reader to [6, 1]. We begin by setting
our notation:

K our non-archimedean local field
OK the ring of integers of K, OK = {x ∈ K : |x| ≤ 1}
π a uniformizing parameter of K
q the order of the residue field OK/πOK
λk the unit Haar measure of πnOK as an additive group
νk the unit Haar measure of πnO×K as a multiplicative group

γ∞(E) the logarithmic capacity of a compact set E ⊂ K
We now state a few lemmas which we will need.

Lemma 7. The logarithmic equilibrium measure of πnOK is its unit Haar measure
µn and it has logarithmic capacity

(4) log γ∞(πnOK) = n log |π|+ log |π|
q − 1

Proof. The proof for n = 0 can be found in Rumely [6, Example 4.1.24], and the
general result follows by the scaling property for capacity. For the convenience
of the reader, we will reproduce it here. Let pµn(x) be the associated potential
function:

pµn
(x) =

∫
πnOK

log |x− y| dµn(y).

By translation invariance of µn, we see that pµn(x) = pµn(0) for every x ∈ πnOK .
It follows that µn is the equilibrium measure. Since the value of pµn

(x) must agree
with log γ∞(πnOK) quasi-everywhere on πnOK , and U is constant on the set, we
can evaluate it at any convenient point to determine the capacity. We compute:

log γ∞(πnOK) = pµn
(0) =

∫
πnOK

log |y| dµn(y)

=

∞∑
k=n

∫
πkO×K

log |y| dµn(y)

=

∞∑
k=n

log |πk| · µn(πkO×K)

=

∞∑
k=n

k log |π| · 1

qk−n
q − 1

q

= n log |π|+ log |π|
q − 1

. �

Lemma 8. The logarithmic equilibrium measure of πnO×K is νn and it has capacity

(5) log γ∞(πnO×K) = n log |π|+ q log |π|
(q − 1)2

.
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Proof. Let pνn(x) be the associated potential function:

pνn(x) =

∫
πnO×K

log |x− y| dνn(y).

By invariance of νn under multiplication by elements of absolute value 1, we see
that pνn(x) = pνn(πn) for every x ∈ πnO×K . It follows that νn is the equilibrium

measure. Since the value of pνn(x) must agree with log γ∞(πnO×K) quasi-everywhere

on πnO×K , and pνn is constant on the set, we can evaluate it at any convenient point
to determine the capacity. We will compute the potential pνn(πn). We note that
the Haar measure µn of the additive group πnOK is given by

µn =
1

q
µn+1 +

q − 1

q
νn

since µn+1 and νn have disjoint supports πn+1OK and πnO×K , respectively, whose
union is πnOK , and for each n, the Haar measure µn is characterized by the fact
that µn(α + πn+kOK) = 1/qk for each k ≥ 1 and α ∈ πnOK , and νn is similarly
characterized by the property that νn(α+πn+kOK) = 1

qk−1(q−1)
for each k ≥ 1 and

α ∈ πnO×K . We therefore write:

log γ∞(πnOK) = pµn(πn)

=
1

q

∫
πn+1OK

log |πn − y| dµn+1(y) +
q − 1

q

∫
πnO×K

log |πn − y| dνn(y)

=
1

q
log |πn|+ q − 1

q
pνn(πn).

Applying (4) from the previous lemma and solving for pνn(πn) gives the desired
result. �

Lemma 9. Let x, y ∈ K, |x| 6= |y|. Then

− log δ(x, y) =

{
log+ min{|x|, |y|} if max{|x|, |y|} ≥ 1

− log |x− y| if max{|x|, |y|} < 1.

Proof. Recall from the ultrametric property that |x| 6= |y| implies that |x − y| =
max{|x|, |y|}. Substituting this into the definition of δ(x, y) gives the desired result.

�

We are now ready to state and prove the main p-adic result.

Theorem 10. Let K be a non-archimedean field with absolute value |·|, residue
field of order q and uniformizing parameter π, as above, and let n ∈ Z. If n ≥ 0,
then the δ-equilibrium of πnOK is the additive Haar measure λn and it has energy

Vδ(π
nOK) = −n log |π| − log |π|

q − 1
.

If n < 0, then the δ-equilibrium measure of πnOK is given by

µn = c0λ0 + c−1ν−1 + · · ·+ cnνn

where the constants c0, c−1, . . . , cn ≥ 0 sum to 1 and are explicitly given by a linear
system, and the δ-Robin constant is

Vδ(π
nOk) = −q + q2n

q2 − 1
log |π|.
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It is interesting to note that as n→ −∞,

Vδ(π
nOK)→ Vδ(P1(K)) = − q

q2 − 1
log |π|,

which was computed in [3, Theorem 1]. (Note that log |π| < 0.)

Proof of Theorem 10. The case of n ≥ 0 follows immediately from Lemma 7 as
δ(x, y) = |x − y| in this case, so the δ-energy reduces to the usual logarithmic
energy with respect to infinity.

To see that the equilibrium measure µn must be defined as in the theorem state-
ment for some constants c0, c−1, . . . , cn, we note that the kernel − log δ(x, y) is
invariant under multiplication by elements α ∈ O×K , as δ(x, y) is PGL2(OK) invari-
ant, and thus by the uniqueness of the equilibrium measure, the measure in each
shell πkO×K for k ∈ Z must be a multiple of the Haar measure of πkO×K , which we
have denoted νk. Further, as OK is invariant by the translation x 7→ x + α, for
α ∈ OK , and δ is likewise invariant by OK-translations, again by the uniqueness of
the equilibrium measure, the measure in OK must be a multiple of the additive Haar
measure of OK , which we have denoted λ0. Thus µn = c0λ0 + c−1ν−1 + · · ·+ cnνn
for some constants ck, 0 ≥ k ≥ n, and these constants must be nonnegative as the
measures are disjointly supported and µn is a probability measure, establishing the
first claim.

We will now proceed to determine the values of the constants ck for which the
δ-potential

Uµn

δ (x) =

∫
πnOK

− log δ(x, y) dµn(y)

is constant on πnOK . Note that πnOK is compact in the Berkovich analytification
of the projective line minus the Gauss point. Since the δ-energy here coincides
on K with the logarithmic energy with respect to the Gauss point of the ambient
Berkovich projective line, it follows (by the same argument as in [3, Theorem 1(a)])
that there is a unique δ-equilibrium measure. Further, this measure is characterized
by the fact that the associated δ-potential function is constant quasi-everywhere on
πnOK (see [1, Theorem 6.18, Corollary 7.21]).

By explicitly evaluating the potential Uµn

δ (x) at x = 0, π−1, . . . , πn and equating
these values, we will arrive at the equations determining the ck coefficients, k =
0,−1, . . . , n. (In fact, again using the invariance of our kernel and measure under
multiplication x 7→ αx for α ∈ O×K , it follows that Uµn

δ will be constant on all of
πnOK .) As δ(0, y) = 1 for |y| > 1, we see that:

Uµn

δ (0) =

∫
πnOK

− log δ(0, y) dµn(y)

=

∫
OK

− log δ(0, y) dµn(y) =

∫
OK

− log |0− y| dµn(y)

= c0

∫
OK

− log |0− y| dλ0(y)

= −c0 log γ∞(OK) = − c0
q − 1

log |π|.

(6)

To compute Uµn

δ (πk) for k = −1, . . . , n, we first evaluate the integral separately

on the domains OK , and π`O×K for −1 ≥ ` ≥ n, whose disjoint union gives πnOK .
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First note that by Lemma 9, − log δ(πk, y) = 0 for |y| ≤ 1, so

(7)

∫
OK

− log δ(πk, y) dµn(y) = 0.

For the shells π`O×K satisfying 0 > ` > k, we apply Lemma 9 to obtain− log δ(πk, y) =

log |π`| for every y ∈ π`O×K , so that

(8)

∫
π`O×K

− log δ(πk, y) dµn(y) = c`

∫
π`O×K

log |π`| dν`(y) = `c` log |π|.

For πkO×K itself, we compute:

− log δ(πk, y) = 2 log |πk| − log |πk − y|,

and as µn|πkO×K
= ckνk we obtain:∫

πkO×K

− log δ(πk, y) dµn(y) = 2ck log |πk| − ck
∫
πkO×K

− log |πk − y| dνk(y)

= 2ck log |πk| − ck log γ∞(πkO×K)

= 2ck log |πk| − ck log |πk| − ckq

(q − 1)2
log |π|

= kck log |π| − qck
(q − 1)2

log |π|

(9)

where we used Lemma 8 to evaluate the integral on the right hand side. For the
shells π`O×K with 0 > k > ` ≥ n, we see that − log δ(πk, y) = log |πk|, and so

(10)

∫
π`O×K

− log δ(πk, y) dµn(y) = c`

∫
π`O×K

log |πk| dν`(y) = kc` log |π|.

Combining equations (7), (8), (9), and (10) we find that

(11) Uµn

δ (πk) =

(
− qck

(q − 1)2
+

−1∑
`=k

`c` +

k−1∑
`=n

kc`

)
log |π|.

Setting Uµn

δ (0) = Uµn

δ (πk) for k = −1, . . . , n then gives us n equations which,
combined with the condition that the total mass of the measure be 1, uniquely
determine the coefficients c0, . . . , cn (we cancel the common factors of log |π| on
each side):

(12) c0 + c−1 + · · ·+ cn = 1,

and

(13)
c0

q − 1
− qck

(q − 1)2
+

−1∑
`=k

`c` +

k−1∑
`=n

kc` = 0 for k = −1,−2, . . . , n.

To solve, we first begin by subtracting 1/(q − 1) times equation (12) from each
equation (13) to obtain for each k = −1,−2, . . . , n the new equation:

(14) − qck
(q − 1)2

+

−1∑
`=k

(
`− 1

q − 1

)
c` +

k−1∑
`=n

(
k − 1

q − 1

)
c` = − 1

q − 1
.
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Finally, for each k we multiply the above equation (14) by

(q − 1)2

qk−2n+1

−2(n−k)∑
i=0

(−q)i

and add all of the resulting equations to (12) to obtain

c0 = 1− 1

q
+

1

q2
− · · ·+ 1

q−2n
=
q + q2n

q + 1
.

Lastly, as Uµn

δ is constant on all of πnOK and must equal Vδ(π
nOK) quasi-everywhere,

we can compute the δ-Robin constant by evaluating at 0 using (6):

(15) Vδ(π
nOK) = Uµn

δ (0) = −q + q2n

q2 − 1
log |π|

for n < 0, which is the desired result. �
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