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Preface

What is a typical linearly ordered set? Many mathematicians think of
the real line when they picture a linear ordering. However, the real numbers
with their usual ordering is not typical. The topology and order structure of
linearly ordered sets can be quite different than that of the reals. The goal
of this paper is to give an introduction to many interesting linear orderings
which is accessible to all mathematicians, including advanced undergradu-
ates.

Much of the material I present is not original research. However, I am
bringing together existing mathematics in a new way. I introduce five dif-
ferent types of linear orderings, and, when possible, I relate them to each
other. For example, in the first chapter, I examine both the order structure
and the topology of the countable ordinals. As a linearly ordered set, it has
many properties worth exploring. Even more important, however, is utilizing
the set as a tool for constructing or investigating other linear orderings. For
example, in Chapter 3, I use the ordinals to index the levels of trees.

Although most of the mathematics in this paper is already known, some
of it is not widely published. Therefore, another goal of this paper is to record
some of this knowledge in an organized manner. The ultrafilter orderings of
Chapter 4 are known to most logicians, but not much has been published on
them. Therefore, a lot of this material I had to discover for myself, although
it is likely that most of it is already known.

While pulling together these ideas, at times I was able to expand on what
was known, and to answer some natural questions which arose. For example,
I explore the result of applying the tree construction of section 3.1 to the real
numbers. I also give some new characterizations for ultrafilters in Chapters
4 and 5.

Overall, the goal of this paper is expository: to tie together different
ideas, and to present them in a complete, thorough, and clear manner. I
view this thesis not as a technical paper, merely presenting the ideas, but as
an instructional paper, explaining the material in clear detail.



Chapter 1: The Countable Ordinals

The purpose of this chapter is to give an introduction to a strange linearly
ordered set – an uncountable well-ordered set with the property that each
element has only a countable number of predecessors. This important set
is usually called the set of countable ordinals, which we will denote Ω. It
will be useful for indexing various uncountable sets throughout this paper.
Understanding this set will prove critical for determining the cardinality of
sets and for developing cardinal arithmetic. Therefore, taking the time to
examine Ω carefully will prove invaluable for our examination of other linear
orderings and tree constructions.

It is not immediately obvious that an uncountable well-ordered set could
exist. In fact, it seems somewhat counter-intuitive. After all, well-ordering
gives a natural sense of counting. Take the whole space, pick its least element.
Look at what’s left, and take its least element. At first glance, it seems
that continuing this process “forever” will give us a countable set. That
assumption, however, is false.

To prove that Ω exists, we use Zorn’s Lemma. In order to understand
Zorn’s Lemma, we need some definitions.

1.0.1 Definition: A set (P,≤) is a partially ordered set (poset), provided
that:

1) for every x ∈ P , x ≤ x
2) for every x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z
3) for every x, y ∈ P , if x ≤ y and y ≤ x, then x = y.

The set is linearly ordered if it has the additional property that for every
distinct x, y ∈ P , either x < y or y < x, but not both.

The set is well-ordered if every nonempty set has a first element.

1.0.2 Definition: A maximal point in a partially ordered set (poset) (P,≤)
is a point m such that no x ∈ P satisfies m < x.

1.0.3 Definition: A poset (P, ≤) is inductive provided each chain (linearly
ordered subset) in P has an upper bound that belongs to P.

The logicians give us the following lemma, which is logically equivalent to
the Axiom of Choice, and we will accept it without proof.

1.0.4 Zorn’s Lemma: Any nonempty, inductive poset has a maximal ele-
ment.
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1.0.5 Theorem: Any nonempty set X can be well ordered.

Proof: Let P ={(S,≤) : S ⊆ X and ≤ is a well-ordering of S}. Define
(S1,≤1) ≺ (S2,≤2) to mean that S1 is an initial segment of S2 and ≤2

extends ≤1. The set P is nonempty because you can fix any x ∈ X, let
S1 = {x}, and define ≤1 as x ≤1 x. Now we must show that P is inductive.
Let C ⊆ P be any chain. Let SC = ∪{S : S ∈ C}, and for every x, y ∈ SC
let x ≤C y if x ≤n y for some ordering Sn in the chain. Because C is a
chain, ≤C is well defined, and it is a well-ordering. Thus, (SC ,≤C) is an
upper bound of C. Therfore, P is inductive. Thus by Zorn’s lemma, P has
a maximal element, (S0,≤0). We claim that S0 = X because if there is a
p ∈ X with p /∈ S0, define S1 = S0 ∪ {p} and define ≤1 to extend ≤0 with
p ≥1 s for every s ∈ S0. Then (S1,≤1) would be in P , and S0 would not be

maximal. Therefore, S0 = X, so X has the well ordering ≤0.

We know that uncountable sets exist (for example, the set of real numbers),
and now we know that every set can be well-ordered. Therefore, there exists
an uncountable well-ordered set.

1.0.6 Proposition: There is an uncountable well ordered set Ω such that for
each α ∈ Ω, {β ∈ Ω : β < α} is countable, i.e. every element has countably
many predecessors.

Proof: Let S be any uncountable well ordered set with first element 0. Let
T = {α ∈ S : [0, α) is uncountable}. If T = ∅, let Ω = S. Otherwise, let ω1

be the first element of T, and let Ω = [0, ω1).

It is interesting to note that the particular uncountable well ordered set used
in the proof of 1.0.6 does not matter. A Zorn’s Lemma argument shows that
if the construction of 1.0.6 is applied to another uncountable well ordered set
Ŝ to produce Ω̂, then Ω̂ will be order isomorphic to Ω.

What does this set Ω look like? Traditionally, the first element of Ω is called
0, and the first element greater than 0 is 1, followed by 2, etc. If α ∈ Ω,
the immediate successor of α is the first element of {β ∈ Ω : α < β}, which
exists because Ω is well ordered and {β ∈ Ω : α < β} is nonempty (since Ω
is uncountable). The immediate successor of α is denoted α + 1.

Many elements of Ω obviously have finitely many predecessors (e.g. 1, 2, 3,
etc.), but it can also be shown that some elements must have infinitely many
predecessors.
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1.0.7 Proposition: Some element of Ω has infinitely many predecessors.

Proof: Suppose, for contradiction, that every element α ∈ Ω has a finite
number of predecesors. Fix any α ∈ Ω, and choose any γ ∈ Ω with γ > α.
Then {β ∈ Ω : β < γ} is finite, so γ = α + k for some integer k. Thus,
{γ ∈ Ω : α < γ} = {α + k : k is a positive integer}, so the set is countable.
Therefore, Ω = {β ∈ Ω : α ≥ β} ∪ {γ ∈ Ω : α < γ}, but Ω is uncountable

and {β ∈ Ω : α ≥ β} ∪ {γ ∈ Ω : α < γ} is countable.

So, Ω has an element with infinitely many predecessors. We will call the first
such element ω.

1.0.8 Proposition: ω is not the immediate successor of any α ∈ Ω.

Proof: For contradiction, suppose ω is the immediate successor of some α ∈
Ω, so α + 1 = ω. The set {β ∈ Ω : β ≤ α} is finite because ω is the first
element with infinitely many predecessors. But {β ∈ Ω : β ≤ α} is the set

of predecessors of ω, and ω has infinitely many predecessors.

We can think of Ω as beginning with 0, 1, 2, 3, ..., and then ω, ω+ 1, ω+ 2, ...,
with ω + ω at the top of this list. The list continues with (ω + ω) + 1, (ω +
ω) + 2, ..., all followed by ω + ω + ω. This continues forever. For notational
convenience, we create an element at the top of Ω called ω1, so we can write
Ω = [0, ω1).

Sometimes an ordinal κ is used to refer to the set [0, κ). We will often use
this notation in subsequent chapters. Context makes it clear whether κ refers
to the ordinal or the interval of ordinals less than κ.

1.0.9 Proposition: A subset S ⊆ Ω is uncountable if and only if for each
α ∈ Ω, there exists a β ∈ S with α < β.

Proof: Suppose S is uncountable and, for contradiction, there exists α ∈ Ω
such that for every β ∈ S, β ≤ α. But {γ ∈ Ω : γ ≤ α} is countable, and
S ⊆ {γ ∈ Ω : γ ≤ α}, so S is countable. Contradiction.

Conversely, suppose that for each α ∈ Ω, there exists a β ∈ S with α < β.
For contradiction, assume S is countable. Since S ⊆ Ω, {γ ∈ Ω : γ < β} is
countable for every β ∈ S. Thus, ∪β∈S{γ ∈ Ω : γ < β} is countable. Since
Ω is uncountable, there exists α ∈ Ω such that α /∈ ∪β∈S{γ ∈ Ω : γ < β}, so

there is no β ∈ S with α < β. Contradiction.

Note that the uncountable subsets of Ω are precisely the unbounded subsets
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of Ω, the sets that have points arbitarily far to the right in the interval [0, ω1).

1.0.10 Proposition: There cannot exist an infinite strictly decreasing se-
qence in Ω.

Proof: Suppose a strictly decreasing sequence {αn : n ≥ 1} exists. Because Ω
is well-ordered, {αn : n ≥ 1} has a first element, call it β. For some positive
integer k, β = αk, so for every l > k, αl < β. But β is the least element of

{αn : n ≥ 1}. Contradiction.

1.1 The Topology of Ω

Ω has a natural open interval topology T with respect to its linear order.
The point 0 is isolated, and since every element has an immediate successor,
basic open neighborhoods of a point β ∈ Ω are of the form (α, β] = (α, β).
Let B be the collection of all basic open neighborhoods.

The following lemma will be useful for proving the convergence of nonde-
creasing sequences in Ω.

1.1.1 Lemma: Any nondecreasing sequence 〈αn〉 ⊆ Ω converges to its least
upper bound.

Proof: Let b = lub{αnk : nk ≥ 1}, which exists because the sequence is
countable, so it has an upper bound, and Ω is well-ordered, so b is the least
element of the set of upper bounds. For any open set U with b ∈ U , there
exists x, y ∈ Ω with b ∈ (x, y) ⊆ U because (x, y) is a basic neighborhood of
b. There must exist an αn0 > x because x < b = lub{αn : n ≥ 1}. For every
m > n0, αm ≥ αn0 > x, so αm ∈ (x, y) ⊆ U . So for any open set around b,

αn is eventually in that set. Therefore, < αn > converges to b.

1.1.2 Proposition: Any sequence of points of Ω has a convergent subse-
quence.

Proof: Let 〈αn〉 be any sequence of points in Ω. If there exists a constant
subsequence, we’re done, so assume no constant subsequence exists. Since
any infinite linearly ordered set has a strictly monotonic sequence, and since
Ω has no strictly decreasing sequence, there must be a strictly increasing

subsequence of 〈αn〉. By the lemma above, this subsequence converges.

1.1.3 Theorem: Ω is first countable.
Proof: We want to show that there is a countable neighborhood base about
each point in Ω. For every α ∈ Ω, let Bα = {(γ, α] : γ < α}. Since
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{γ ∈ Ω : γ < α} is countable, Bα is countable. Clearly, Bα is a neighborhood

base at α. Therefore, Ω is first countable.

1.1.4 Theorem: Ω is countably compact.
Proof: Let U = ∪{Un : n ≥ 1} be any countable open cover of Ω. We
must show that U has a finite subcover. Suppose, for contradiction, that
U has no finite subcover. Pick any c1 ∈ U1. Since U1 6= Ω, there exists
c2 ∈ Ω \ U1. For any integer n, ∪{Ui : 1 ≤ i ≤ n} 6= Ω, so there exists
cn+1 ∈ Ω \ ∪{Ui : 1 ≤ i ≤ n}. Thus, {cn : n ≥ 1} is an infinite sequence,
so it has a subsequence 〈cnk〉 which converges to some d ∈ Ω. There exists
an N such that d ∈ UN , since U is an open cover. But since 〈cnk〉 converges
to d, 〈cnk〉 is eventually in UN . This is a contradiction because 〈cnk〉 is not

eventually in any element of the open cover U .

1.1.5 Remark: The proof above shows, more generally, that any space will
be countably compact provided each sequence has a convergent subsequence.

1.1.6 Theorem: Ω is not Lindelöf.

Proof: Let U = {[0, α+ 1) : α ∈ Ω}. For any U ∈ U , U is countable because
{β ∈ Ω : β < α + 1} is countable. Since Ω is uncountable, and each U ∈ U
is countable, U must be uncountable. Similarly, every subcover V of U must

also be uncountable. Therefore, Ω is not Lindelöf.

1.1.7 Corollary: Ω is not second countable, compact, or metrizable.

Proof: Second countable implies Lindelöf, but Ω is not Lindelöf. Therefore,
Ω is not second countable. Compact implies Lindelöf, and Ω is not Lindelöf,
so Ω is not compact. In a metric space, compactness is equivalent to seqential
compactness, the property that every sequence has a convergent subsequence.
Ω is not compact, but it is sequentially compact (by Proposition 1.2.2 above).

Therefore, Ω cannot be a metric space.

1.2 Limit Ordinals of Ω

Many elements of Ω have immediate predecessors. The immediate prede-
cessor of 1 is 0, and the immediate predecessor of 2 is 1. We know that at least
one element, namely ω, has no immediate predecessor. The set L = {λ : λ
has no immediate predecessor in Ω} is called the set of limit ordinals.
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1.2.1 Proposition: The set L = {λ : λ has no immediate predecessor in Ω}
is a closed set in Ω.

Proof: To show that L is closed, we will show that Ω \ L is open. For every
p ∈ Ω \ L, p has an immediate predecessor, call it p − 1. Then (p − 1, p] is
an open set, and (p− 1, p] = {p}. Thus, (p− 1, p] ⊆ Ω \ L. Therefore, Ω \ L
is open, so L is closed.

1.2.2 Proposition: The set L = {λ : λ has no immediate predecessor in Ω}
is an uncountable set.

Proof: Suppose that L is countable. Let L0 = L ∪ {0}, a countable set. For
every α ∈ Ω \ L0, α = λ + k for some λ ∈ L0 and some integer k. Let
L1 = {λ + 1 : λ ∈ L0}, and for every integer k, let Lk = {λ + k : λ ∈ L0}.
For k ≥ 0, L0 and Lk have the same cardinality because there is a one-to-
one onto function f : L0 → Lk defined f(x) = x + k. Therefore each Lk is
countable, so ∪{Lk : k ≥ 0} is countable. But ∪{Lk : k ≥ 0} = Ω, and Ω is

uncountable. Contradiction.

1.3 Closed Uncountable Subsets of Ω

In this section, we will examine closed uncountable subsets of Ω. Recall that
every uncountable set in Ω is unbounded. For this reason, closed uncountable
subsets are often called closed unbounded sets (abbreviated cub).

1.3.1 Proposition: If C and D are two uncountable closed subsets of Ω,
then C ∩D 6= ∅.
Proof: To prove this proposition, we will construct interlaced sequences in
C and D. Let c1 be the least element of C. Let d1 be the least element
of {d ∈ D : d > c1}, a nonempty set because D is uncountable. Let cn be
the least element of {c ∈ C : c > dn−1}, and let dn be the least element of
{d ∈ D : d > cn}, which exist because C and D are both uncountable. Since
{cn, dn : n ≥ 1} is countable, there exists β ∈ Ω such that x ≤ β for every
x ∈ {cn, dn : n ≥ 1}. So {β ∈ Ω : β ≥ cn, dn for every n ≥ 1} is nonempty.
Therefore, it has a least element, call it γ. Then γ = lub{cn : n ≥ 1} =
lub{dn : n ≥ 1}. Thus, 〈cn〉 and 〈dn〉 converge to γ. But C and D are closed,
so they contain their limit points. Since γ is a limit point of C and D, we

have γ ∈ C and γ ∈ D, so C ∩D 6= ∅.

1.3.2 Proposition: If C and D are two uncountable closed subsets of Ω,
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then C ∩D is an uncountable closed subset of Ω.

Proof: Since C and D are closed, C ∩ D is closed. By the proposition
above, C ∩ D 6= ∅. Suppose, for contradiction, that C ∩ D is finite. Let
γ be the greatest element of C ∩ D. Consider C1 = C ∩ [γ + 1, ω1) and
D1 = D∩[γ+1, ω1). These are uncountable closed sets in Ω, and C1∩D1 = ∅,
contradicting the previous proposition.

The following proposition follows by induction.

1.3.3 Proposition: If C1, C2,..., Cn are uncountable closed subsets of Ω,
then C1 ∩ C2 ∩ ... ∩ Cn is an uncountable closed subset of Ω.

It is natural to explore next the intersection of infinitely many uncountable
closeds subsets of Ω.

1.3.4 Proposition: If C1, C2, ... are uncountable closed subsets of Ω, then
∩{Cn : n ≥ 1} is an uncountable closed subset of Ω.

Proof: Recall that the intersection of any family of closed sets is also closed.
To show that ∩{Cn : n ≥ 1} is uncountable, we will show that for any α ∈ Ω,
some β ∈ ∩{Cn : n ≥ 1} has β > α. Fix any α ∈ Ω. Again we will use the
notion of interlaced sequences to find an element of ∩{Cn : n ≥ 1} which is
greater than α.

We may assume that Cn ⊇ Cn+1 for each n because if it is not, then replace
Cn by C ′n = ∩{Cj : a ≤ j ≤ n}, which is also an uncountable closed set.

Fix any α < ω1. Choose any c1 ∈ C1 ∩ [α, ω1), and recursively choose
cn+1 ∈ Cn+1 ∩ (cn, ω1). This is possible because Cm is a closed uncountable
set for every m. Then α ≤ c1 < c2 < c3 < .... Let d = sup{cn : n ≥ 1}. We
know that α < d, and the sequence 〈cn〉 → d. Fix any integer N . Because
{cn : n ≥ N} ⊆ CN and CN is closed, d ∈ CN . Hence, d ∈ ∩{CN : N ≥ 1},
and d > α, so ∩{CN : N ≥ 1} is a closed uncountable set.

1.4 Stationary Sets

Recall that the uncountable subsets of Ω are exactly the subsets that have
points arbitrarily far to the right in [0, ω1). In this section, we will introduce
a special kind of uncountable subset, called a stationary set.

1.4.1 Definition: A subset S ⊆ Ω is called stationary if for every uncount-
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able closed subset C ⊆ Ω, S ∩ C 6= ∅.
Clearly, if S contains an uncountable closed set, then S is stationary (see
1.3.1). Mary Ellen Rudin showed that that a special kind stationary set
exists in Ω. The proof given here is an expanded version of Rudin’s proof in
[3].

1.4.2 Theorem: In Ω, there exists a stationary set which contains no un-
countable closed set.

Proof: Consider the following types of subsets which obviously exist in Ω.
(1) sets which contain some uncountable closed set,
(2) sets which are disjoint from some uncountable closed set.

We want to show that the following type of subset exists in Ω:
(3) sets which intersect every uncountable closed set but which
contain no uncountable closed set.

Because |Ω| ≤ |IR|, there is a one-to-one function f of Ω onto a subset of the
real line IR. For each positive integer n, let Gn be a countable collection of
intervals with length less than 1/n such that Gn covers IR. We will show that
for some n, there exists G ∈ Gn such that f−1[G] is a type 3 set.

For contradiction, suppose there is no n and G ∈ Gn such that f−1[G] is a
type 3 set.

Fix any positive integer n. Suppose, for contradiction, that for every G ∈ Gn,
f−1[G] is type 2. Thus, f−1[G] ⊆ Ω\CG for some uncountable closed set CG.
So CG ⊆ Ω \ f−1[G]. Therefore, ∩{CG : G ∈ Gn} ⊆ ∩{Ω \ f−1[G] : G ∈ Gn},
which implies that ∩{CG : G ∈ Gn} ⊆ Ω \ ∪{f−1[G] : G ∈ Gn}. But
Ω \ ∪{f−1[G] : G ∈ Gn} is empty because Gn covers IR, and ∩{CG : G ∈ Gn}
is an uncountable closed set because it is the intersection of countably many
uncountable closed sets. This is a contradiction, so there does exist a G ∈ Gn
such that f−1[G] is not type 2. Since we have assumed that no such set is
type 3, f−1[G] must be type 1.

For every n, fix Gn ∈ Gn such that f−1[Gn] is type 1. There exists Kn ⊆
f−1[Gn] where Kn is an uncountable closed set. Let L = ∩{Kn : n ≥ 1},
which is also an uncountable closed set. Choose any α, β ∈ L with α 6=
β. Because f is a one-to-one function, f(α) 6= f(β). Thus, for every n,
{f(α), f(β)} ⊆ f [Kn] ⊆ Gn. So ∩{Gn : n ≥ 1} has at least two elements.
But as n increases, the diameter of Gn goes to zero, so either ∩{Gn : n ≥ 1}

8



is empty or it contains exactly one point. This contradicts our assumption

that for every n and G ∈ Gn, f−1[G] is not type 3.

1.4.3 Definition: A set S is called bistationary if both S and Ω \ S are
stationary.

1.4.4 Theorem: Type 3 subsets of Ω are bistationary.

Proof: We know type 3 sets are stationary, so we need to examine Ω \ S.
Suppose Ω \ S is not stationary, then there exists an uncountable closed set
C with C ∩ (Ω \ S) 6= ∅. But then C must be contained in S, and S is type

3. Contradiction.

Now will prove some general results about stationary sets.

1.4.5 Theorem: Any stationary set S must be uncountable.

Proof: Suppose S is a countable stationary set. Let C be any uncountable
closed set. There exists γ ∈ C with γ > β for every β ∈ S because C is
uncountable while S is countable. The set C ∩ [γ, ω1) is also an uncountable
closed set. But every element of C ∩ [γ, ω1) is greater than or equal to γ,
and γ > β for every β ∈ S. Therefore, S ∩ (C ∩ [γ, ω1)) = ∅. This is a

contradiction because S is stationary.

1.4.6 Theorem: If S = ∪{Sn : n ≥ 1} is stationary, then at least one of
the sets Sn is stationary.

Proof: Suppose S = ∪{Sn : n ≥ 1} is a stationary set such that for every
n, Sn is not stationary. For each n, there exists an uncountable closed set
Cn with Sn ∩ Cn = ∅. The set ∩{Cn : n ≥ 1} is also an uncountable closed
set. For every n, since ∩{Cn : n ≥ 1} ⊆ Cn, Sn ∩ (∩{Cn : n ≥ 1}) = ∅.
Therefore, (∪{Sn : n ≥ 1}) ∩ (∩{Cn : n ≥ 1}) = ∅. But this is impossible

because S = ∪{Sn : n ≥ 1} is stationary.
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Chapter 2: Lexicographic Orderings

When many mathematicians think of a typical linearly ordered set, they
think of a straight line like the real numbers or even the ordinal space ω. The
purpose of this chapter is to introduce some linearly ordered sets which are
not naturally pictured as a straight line. We will explore some topological
properties of these sets, and discover that they are topologically different
from the real line.

2.0.1 Definition: Let κ be a fixed ordinal number. Let F be the set of all
functions f : [0, κ) → IR. For distinct f, g ∈ F , define f � g to mean that
either f = g or f(α) < g(α) where α is the first ordinal at which f and g
disagree. The relation � is called the lexicographic ordering.

2.0.2 Lemma: The relation � is a linear ordering of the set F .

Proof: The reflexive property is immediate from the definition. Suppose
f ≺ g and g ≺ h for f, g, h ∈ F . Then f(α1) < g(α1) where α1 is the
first ordinal at which f and g disagree, and g(α2) < h(α2) where α2 is the
first ordinal at which g and h disagree. Without loss of generality, suppose
α1 ≤ α2. Then g(α1) ≤ h(α1) and f(α1) < g(α1), so f(α1) < h(α1) and α1

is the first ordinal at which f and h disagree. Therefore, f ≺ h.

Finally, we must check anti-symmetry. Fix any f, g ∈ F with f 6= g. Let
α be the first ordinal at which f and g disagree. Either f(α) < g(α) or
g(α) < f(α), but not both, since < is a linear order. So f ≺ g or g ≺ f , but

not both.

Note that ≺ would still be a linear order if any linearly ordered set was used
in place of IR in the definiton of F .

Let us examine how the lexicographic ordering works for the simplest example
of κ = 2. Then F is the set of functions f : [0, 2) → IR, so every f can be
identified by the ordered pair (f(0), f(1)) ∈ IR2. In this case, (a, b) ≺ (c, d)
if and only if a < c, or a = c and b < d.

We will now examine some lexicographically ordered spaces (with κ = 2) and
their topological structure.
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2.1 The Lexicographic Square

2.1.1 Definition: Points of the lexicographic square X are ordered pairs
(x, y) with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Endow X with the lexicographic
ordering and its associated open interval topology.

2.1.2 Theorem: The space X is first countable, i.e., each point has a count-
able neighborhood base.

Proof: Fix any z ∈ X, and let z = (xz, yz) for xz, yz ∈ [0, 1]. If z = (0, 0),
let Bz = {[(0, 0), (0, 1/n)) : n ∈ ZZ+}. For any open set U with z ∈ U , there
exists b ∈ X with z ∈ [0, b) ⊆ U , so there exists a positive integer n with
[(0, 0), (0, 1/n)) ⊆ [0, b) ⊆ U . Thus, Bz is a countable neighborhood base.
Similarly, if z = (1, 1), let Bz = {((1, 1−1/n), (1, 1)] : n ∈ ZZ+}. If z = (xz, 0)
for xz 6= 0, let Bz = {((xz − 1/n, 1), (xz, 1/n)] : n ∈ ZZ+}. If z = (xz, yz) for
xz 6= 0 and yz 6= 0, let Bz = {((xz, yz − 1/n), (xz, yz + 1/n)) : n ∈ ZZ+}. In
any of these cases, if U is an open set with z ∈ U , and z ∈ (a, b) ⊂ U for
a, b ∈ X, there exists (x, y) ∈ Bz with z ∈ (x, y) ⊆ (a, b) ⊆ U . So each Bz is

a countable neighborhood base.

2.1.3 Theorem: The space X is not separable.

Proof: Let D be any dense subset of X. We want to show that D must be
uncountable. For every z ∈ [0, 1], let Uz = ((z, 0), (z, 1)). Then Uz is an
open set. Fix any z1, z2 ∈ [0, 1] with z1 6= z2. Then Uz1 ∩ Uz2 = ∅. For any
z ∈ [0, 1], Uz ∩D 6= ∅ because D is dense, so D contains at least one element
of Uz for every z ∈ [0, 1]. These elements must be distinct since the Uz are

disjoint. Therefore, D is uncountable since [0, 1] is uncountable.

2.1.4 Theorem: The space X is sequentially compact.

Proof: Let 〈an〉 be any sequence of points in X, and for each n, let an =
(xn, yn). Since X is a linearly ordered set, 〈an〉 has a monotonic subse-
quence 〈ank〉. Choosing a subsequence if necessary, assume 〈an〉 is mono-
tonic. Suppose 〈an〉 is non-decreasing (the other case being analogous). If
〈xn〉 is eventually constant at some zx ∈ [0, 1], choose N0 such that 〈xn〉
is constant for n ≥ N0. Let zy =lub{yn : n ≥ N0}, which exists because
{yn : n ≥ N0} is a subset of [0, 1]. Then (zx, zy) is the least upper bound
of the sequence, and 〈an〉 converges to (zx, zy). If 〈xn〉 is not eventually
constant, let m =lub{xn : n ≥ 1}, which exists because {xn : n ≥ 1} is
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bounded above by 1. We must show that (m, 0) is the least upper bound
of 〈an〉. First, we will prove it is an upper bound. Suppose there is some
(xN , yN) ∈ 〈an〉 such that (xN , yN) > (m, 0). Since m is the least upper
bound of 〈xn〉 and (xN , yN) > (m, 0), then xN = m. But 〈an〉 is increasing,
so, for every n > N , xn = xN , which contradicts our assumption that 〈xn〉
is not eventually constant. Thus, (m, 0) is an upper bound of 〈an〉. To show
that it is the least upper bound, suppose there exists (x, y) < (m, 0) which
is also an upper bound of 〈an〉. Since m is the least upper bound of 〈xn〉,
and 〈xn〉 is not eventually constant, we know that x = m. But then y < 0,
which is impossible. Thus, (m, 0) is the least upper bound of 〈an〉, so 〈an〉
converges to m.

2.1.5 Theorem: X is not a metric space.

Proof: For contradiction, suppose X is a metric space. Since X is not sep-
arable, it is not second countable and not Lindelöf. Since it is not Lindelöf,
it is not compact. However, in a metric space, compactness and sequential

compactness are equivalent, and X is sequentially compact.

2.2 The Double Arrow

2.2.1 Definition: The points of Y , called the double arrow, are all pos-
sible ordered pairs (x, i) where x ∈ IR and i ∈ {0, 1}, and Y carries the
lexicographic ordering and usual open interval topology.

2.2.2 Theorem: Y is separable.

Proof: Let D = {(q, i) : q ∈ Q and i ∈ {0, 1}}. We want to show that
D is dense. Fix any open set U . Fix (x, 0) ∈ U (the case for (x, 1) ∈ U
is analogous). There is a basic open set V = ((y, i), (x, 1)) with (x, 0) ∈
V ⊆ U . Then y < x, so choose some rational q with y < q < x. Thus,
(q, 0) ∈ D ∩ V ⊂ D ∩ U . Since D ∩ U 6= ∅ for every open set U , the set D is

dense.

2.2.3 Theorem: Y is not second countable.

Proof: Let B be any base for Y . We want to show that B is uncountable.
For any nonzero x ∈ IR, examine the nonempty open set ((0, 0), (x, 1)) =
((0, 0), (x, 0)]. There exists B(x) ∈ B with (x, 0) ∈ B(x) ⊆ ((0, 0), (x, 0)],
so B(x) = (bx, (x, 0)] for some bx ∈ ((0, 0), (x, 0)). For every y, z ∈ IR with
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y 6= z, By 6= Bz because (y, 0) 6= (z, 0). Therefore, B : IR→ B is one-to-one.

Since IR is uncountable, so is B. Therefore, Y has no countable base.

2.2.4 Theorem: Y is not a metric space.

Proof: Y is not second countable, but it is separable. In a metric space,

these two are equivalent, so Y is not a metric space.

2.3 A Lexicographic Ordering with κ = ω

In this section, we will let κ = ω and consider the space F of all functions
from [0, ω) into the set ZZ of all integers. There are two natural topologies
of F , the lexicographic open interval topology L and the product topology
P . Using the two lemmas below, we will show that these two topologies are
equivalent.

The basic open sets of the product topology P have the form P = {f0} ×
{f1} × ...× {fn} × ZZ× ZZ× ... where fi are any integers. The set P consists
of all g ∈ F with the property that g(i) = fi for 0 ≤ i ≤ n (note that there
is no restriciton on g(i) for i > n).

2.3.1 Lemma: P ⊆ L.

Proof: We will prove that P ⊆ L by showing that if P is a basic open set in
the topology P and f ∈ P , then there exist u, v ∈ F such that f ∈ (u, v) ⊆ P .
Let P = {f0} × {f1} × ... × {fn} × ZZ × ZZ × ... for some integers fi, and fix
any f ∈ P . Let u ∈ F be any function with u(i) = fi for 0 ≤ i ≤ n, and
u(n + 1) = f(n + 1) − 1. Since n + 1 is the first ordinal at which u and f
disagree, and u(n + 1) < f(n + 1), u ≺ f . Let v ∈ F be any function with
v(i) = fi for 0 ≤ i ≤ n, and v(n + 1) = f(n + 1) + 1, so f ≺ v. Therefore,
f ∈ (u, v).

All that remains is to show that (u, v) ⊆ P . Fix any g ∈ (u, v). Since
u(i) = fi = v(i) for 0 ≤ i ≤ n, and u ≺ g ≺ v, g(i) = fi for 0 ≤ i ≤ n.
Therefore, g ∈ P for every g ∈ (u, v). So f ∈ (u, v) ⊆ P . Thus, for any
U ∈ P and for any f ∈ U , there exists P basic open set in P with f ∈ P ⊆ U ,
and there exists (u, v) ∈ L with f ∈ (u, v) ⊂ P ⊂ U , so U ∈ L. So P ⊆ L.

2.3.2 Lemma: L ⊆ P.

Proof: Here we will show that every basic neighborhood of L contains a basic
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neighborhood of P . Let (u, v) be any basic open set in L, and let f be an
element of (u, v). For any g, h ∈ F , let n(g, h) =min{i ∈ ZZ+ : g(i) 6= h(i)}.
Let P1 = {f(0)} × {f(1)} × ... × {f(n(u, f) − 1)} × ZZ × ZZ × .... It is clear
that f ∈ P1. For every p ∈ P1, u ≺ p because p(i) = f(i) = u(i) for
0 ≤ i ≤ n(u, f) − 1 and p(n(u, f)) = f(n(u, f)) > u(n(u, f)). Therefore,
P1 ⊆ (u,→).

Let P2 = {f(0)}×{f(1)}×...×{f(n(v, f)−1)}×ZZ×ZZ×.... Note that f ∈ P2.
For every p ∈ P2, p ≺ v because p(i) = f(i) = v(i) for 0 ≤ i ≤ n(v, f) − 1
and p(n(v, f)) = f(n(v, f)) < v(n(v, f)). Therefore, P2 ⊆ (←, v).

Since P1 ⊆ (u,→) and P2 ⊆ (←, v), P1 ∩ P2 ⊆ (u, v). Since P1, P2 are
the basic sets and f ∈ P1 ∩ P2, there exists a basic open set P ∈ P with
f ∈ P ⊆ P1 ∩P2 ⊆ (u, v). Therefore, for any (u, v) ∈ L and f ∈ (u, v), there

is a basic open set P ∈ P with f ∈ P ⊆ (u, v), so L ⊆ P .

Therefore, we have shown that P ⊆ L and L ⊆ P . So P = L; the lexico-
graphic order topology is equivalent to the product topology. We will use
this knowledge to learn about the lexicographic product space (F,L).

2.3.3 Theorem: The topological space (F,L) is metric space.

Proof: The set F of all functions f : [0, ω) → ZZ can be viewed as the
set of functions f : [0, ω) → ∪n≥0Zn : f(n) ∈ Zn for every n ∈ [0, ω)}
for each Zn = ZZ. Thus, F = Π{Zn : n ∈ [0, ω)}. Since the product of
countably many metric spaces is also a metric space, and ZZ is a metric space,
Π{Zn : n ∈ [0, ω)} = ZZ× ZZ× ... is a metric space with its product topology.

Since L is equivalent to the product topology, (F,L) is a metric space.

2.3.4 Theorem: The space (F,L) is separable.

Proof: We will show that the countable collection B = {{i0} × {i1} × ... ×
{in} × ZZ × ZZ × ..., for ij ∈ ZZ and n < ω, is a base for (F,L) = (F,P). Let
U be open in (F,P) and f ∈ U . There is a basic open set B = B0 × B1 ×
...× Bn × ZZ× ZZ× ... with f ∈ B ⊆ U . Then f(i) ∈ Bi for 1 ≤ i ≤ n. Then
{f(0)}×{f(1)}×...×{f(n)}×ZZ×ZZ×... ⊆ B0×B1×...×Bn×ZZ×ZZ×... ⊆ U .

Thus, B is a countable base for (F,P) = (F,L).
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Chapter 3: Trees and Lines

In this chapter, we will examine partially ordered sets called trees. We
will study methods for constructing trees from lines and constructing lines
from trees. Much of the material in this section is based on [1].

3.0.1 Definition: A tree is a partially ordered set (poset) 〈T,≤〉 such that
for every x ∈ T , the set {y ∈ T : y < x} is well ordered by ≤.

We must consider the following definitions before we begin our study of trees.
Let T be any tree.

3.0.2 Definition: For x ∈ T , the height of x, denoted ht(x), is the cardinal-
ity of {y ∈ T : y < x}. The α’th level of T is the set Tα = {x ∈ T : ht(x) =
α}. The successors of x ∈ T are T x = {y ∈ T : x ≤ y}.

3.0.3 Definition: A chain is a linearly ordered subset of T . A branch is a
chain which is ≤-closed (i.e. if x is in the branch, and y ≤ x, then y is in
the branch). An antichain is a set of pairwise incomparable elements of T .

Note that a branch may, or may not, have a largest point, so we will define
the height of a branch b to be sup{h(x) : x ∈ b}.

We will also define a special kind of tree.

3.0.5 Definition: A Souslin tree is a tree with cardinality ω1 such that every
chain and antichain is countable.

3.0.6 Definition: A tree T of height ω1 is normal if:
(i) there is a unique least point, called the root of T,
(ii) each point has successors at each greater level < ω1,
(iii) each point x has at least two immediate successors,
(iv) for any limit ordinal β, each branch with height β has at most one

immediate successor, and
(v) each level Tν is countable.
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3.1 The Souslin Problem

The material in this section is a representation of material from [1].

There are many different “tree to line” and “line to tree” constructions. The
motivation behind one of them is the Souslin problem. First we must set the
stage for these constructions by introducing the Souslin hypothesis.

3.1.1 Definition: A linearly ordered set S is densely ordered if a, b ∈ S
and a < b implies (a, b) 6= ∅. A linearly ordered set S is complete if each
nonempty subset that is bounded above has a least upper bound in S. A set
S is an ordered continuum if S is densely ordered, complete, and has no
endpoints.

It is known that every separable ordered continuum S is order isomorphic
to IR with the usual ordering. In 1920, M. Souslin asked whether the same
result could be attained if separability was replaced by the following weaker
assumption [4].

3.1.2 The Souslin property: Every family of pairwise disjoint open inter-
vals in S is countable.

3.1.3 Souslin’s hypothesis: Every ordered continuum with the Souslin
property is order isomorphic to IR.

Souslin’s hypothesis is equivalent to the statement “every ordered continuum
with the Souslin property is separable.”

3.1.4 Definition: An ordered continuum is a Souslin line if it has the
Souslin property, but it is not separable.

Note that the existence of a Souslin line is equivalent to the negation of
Souslin’s hypothesis. A Souslin line exists if and only if Souslin’s hypothesis
is false. This problem was studied for 50 years before being “solved.” It
is now known that it is impossible to prove or disprove Souslin’s hypothesis
under the normal axioms of set theory (ZFC). However, what is relevant here
is the connection between a Souslin line and a Souslin tree. We will use the
following lemmas in our construction.
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3.1.5 Lemma: If a tree T has the property that every non-maximal point
has at least two immediate successors, and T has no uncountable antichains,
then T has no uncountable chains.

Proof: Suppose C ⊆ T is an uncountable chain. For any bα ∈ C, let bα+1

be the successor of bα that is in C, and let b̂α+1 be a successor of bα that is
not in C. We will show that, for any α, β < ω1 with α < β, b̂α+1 and b̂β+1

are incomparable. First note that it is impossible for b̂β+1 ≤ b̂α+1 because
it would imply β + 1 ≤ α + 1. For contradiction, consider the other case
that b̂α+1 ≤ b̂β+1. Since bβ and bα+1 are in C, bα+1 is a predecessor (or equal

to) bβ. Since bβ is a predecessor of b̂β+1, bα+1 is a predecessor of b̂β+1. But

because b̂α+1 ≤ b̂β+1, b̂α+1 is a predecessor of b̂β+1. But it is impossible for

both bα+1 and b̂α+1 to be predecessors of b̂β+1 because they lie in the same

level α + 1 and are distinct, so they are not comparable. Therefore, b̂α+1

and b̂β+1 are incomparable, so an uncountable chain leads to an uncountable

antichain.

The next series of lemmas will show that, given any Souslin tree, one can
construct a normal Souslin tree.

3.1.6 Lemma: Let T be any Souslin tree. Then there exists a T ′ ⊂ T such
that

1) T’ is a Souslin tree, and
2) for each x ∈ T ′, the set {y ∈ T ′ : x ≤ y} is uncountable.

Proof: For each α < ω1, some x ∈ level α of T has the property that
|T x| = ω1. Otherwise, we could write T = {x : ht(x) < α} ∪ (∪{T x :
ht(x) = α}) ∪ Tα, showing that the uncountable set T is a countable union
of countable sets, and that is impossible.

Let T ′ = {x : |T x| = ω1}. Note that T ′ is a Souslin tree because it is
uncoutable, but it has no uncountable chains or antichains. Fix x ∈ T ′.
Because T x is uncountable, for each α > ht(x), some point yα ∈ T x ∩ Tα has
|T yα| = ω1, so yα ∈ T ′. But then {yα : ht(x) < α < ω1} ⊆ {y ∈ T ′ : x ≤ y}
showing that (T ′)x is uncountable for each x ∈ T ′. Therefore, T ′ is a Souslin
tree with the property that for each x ∈ T ′, the set {y ∈ T ′ : x ≤ y} is

uncountable.
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3.1.7 Lemma Let T be a Souslin tree in which each element has ω1 succes-
sors. Then there is a T ′ ⊆ T such that

1) T ′ is Souslin,
2) if x ∈ T ′ has level α in T ′, then x has at least two successors at level
α + 1 of T ′, and
3) each x ∈ T ′ has |(T ′)x| = ω1.

Proof: Denote the root of T by 0. Fix x ∈ T . Because |T x| = ω1 and each
level of T is countable, T x ∩ Tα 6= ∅ for each α < ω1. If some x ∈ T had
|T x ∩ Tα| = 1 for each α > ht(x), then T x would be an uncountable chain
in T . Hence for each x ∈ T , there is some ordinal λ(x) > ht(x) such that
|T x ∩ Tλ(x)| ≥ 2.

Let µ(0) = λ(0). The set ∪{Tα : 0 ≤ α < λ(0)} is countable, so the ordinal
µ(1) = sup{λ(x) : x ∈ ∪{Tα : 0 ≤ α < λ(0)}} is countable. Observe that
each x ∈ ∪{Tα : 0 ≤ α < λ(0)} has at least two successors at level µ(1). The
set ∪{Tα : 0 ≤ α < µ(1)} is countable, so that µ(2) = sup{λ(x) : x ∈ ∪{Tα :
0 ≤ α < µ(1)}} is countable. Observe that each element of ∪{Tα : 0 ≤ α <
µ(1)} has at least two successors at level µ(2). For induction, suppose γ < ω1

and for each α < γ, we have found µ(α) such that if α < β < γ, then
a) µ(α) < µ(β), and
b) each point of ∪{Tδ : 0 ≤ δ < µ(α)} has at least two successors at level
µ(β) of T .

The set ∪{Tδ : 0 ≤ δ < µ(α) for some α < γ} is countable, so the ordinal
µ(α) = sup{λ(x) : x ∈ ∪{Tδ : 0 ≤ δ < µ(α) for some α < γ}} is countable,
and for each α < γ, if x ∈ ∪{Tδ : 0 ≤ δ < µ(α)}, then x has at least two
successors at level µ(γ).

This recursion produces a strictly increasing transfinite sequence {µ(α) : 0 ≤
α < ω1} with the property that each x belonging to level µ(α) of T has
at least two successors at level µ(α + 1) of T , and hence has at least two
successors at level µ(β) of T whenever β > α.

Define a new tree T ′ = ∪{Tµ(α) : 0 ≤ α < ω1} ∪ {0}, and order T ′ by
restricting the order of T to its subset. Then the 0th level of T ′ is the same
as the 0th level of T , the first level of T ′ is the µ(1)-level of T , etc. If
x ∈ T ′, then x has at least two successors that belong to level ht(x) + 1 of
T ′. Furthermore, T ′ is uncountable and contains no uncountable chains or
antichains, so T ′ is Souslin.
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Fix any x ∈ T ′. Then the level of x in T is µ(α) for some α < ω1. For each
β > α, x has a successor in level µ(β) of T , which is a subset of T ′. Thus x
has successors in uncountably many levels of T ′, so x has uncountably many

successors in T ′.

We will use the following definition in our next lemma.

3.1.8 Definition: Let L be a chain of any tree T . If ht(L) = λ is a limit
ordinal, we will say that L is continuable in T if for some x ∈ Tλ, L ⊆ {y ∈
T : y ≤ x}.

3.1.9 Lemma: Suppose T is a Souslin tree such that every x ∈ T has
uncountably many successors, and each x ∈ T has at least two successors at
level ht(x) + 1. Then there exists a T ′ ⊂ T such that

1) T ′ is a Souslin tree,
2) for each x ∈ T ′, the set {y ∈ T ′ : x ≤ y} is uncountable,
3) each x ∈ T ′ has at least two successors at level ht(x) + 1 of T ′

where ht(x) is the height of x in T ′, and
4) if b is a branch of T ′ with height λ where λ is limit ordinal, and if b is
countinuable in T ′, then there is exactly one x ∈ T ′ with b ⊆ {y ∈ T ′ :
y ≤ x}.

Proof: Suppose b is a branch of T with limit ordinal height λ. For each
continuable λ-branch b of T , let T (λ, b) = {x ∈ Tλ : b ∪ {x} is a chain}.
Observe that if b, c are distinct continuable λ-branches of T , then T (λ, b) ∩
T (λ, c) = ∅. For each continuable λ-branch b of T , choose a point xb ∈
T (λ, b). Let T ′ = {xb : b is a continuable λ-branch of T where λ < ω1 is a
limit ordinal}, and let T ′ inherit its ordering from T .

Claim 1: For each xb ∈ T ′, the set (T ′)xb = {xc ∈ T ′ : xb ≤ xc} is uncount-
able.
Proof: Fix xb and let λ be the height of xb in T . Because xb has uncountably
many successors in T , for each limit ordinal µ > λ, there is a point y(xb, µ) ∈
Tµ with xb < y(xb, µ). Then c(µ) = {z ∈ T : z < y(xb, µ)} is a branch
of T and is continuable in T because y(xb, µ) ∈ T . Hence xc(µ) exists and
belongs to T ′. Observe that the set of predecessors of xc(µ) in T is precisely
the set c(µ), and becuase xb < y(xb, µ), we know that xb ∈ c(µ). Hence,
xb < xc(µ) so that xc(µ) ∈ (T ′)xb . Observe that if µ < ν are both limit
ordinals greater than the height of xb in T , then xc(µ) and xc(ν) belong to
different levels of T and are therefore distinct. Hence (T ′)xb contains the
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uncountable set {xc(µ) : µ > height of xb in T and µ is a limit ordinal}, so
(T ′)xb is uncountable.

Claim 2: If xb ∈ T ′ and the height of xb in T ′ is α, then there are elements
xc 6= xd in T ′ with xb < xc and xb < xd such that α + 1 is the height of xc
and xd in T ′.
Proof: Let λ be the level of xb in T . We know that xb has at least two
successors in level λ+ 1, say u and v. We also know that u has a successor y
at level µ = λ+ω, and v has a successor z at level µ. Let c = {w ∈ T : w < y},
and let d = {w ∈ T : w < z}. Then c and d are distinct branches of T , each
with height µ, and each continuable in T . Therefore, xc and xd are distinct
members of T ′ with height α+ 1 in T ′, and xb < xc and xb < xd. Therefore,
each xb ∈ T ′ has at least two successors in T ′ at the next level.

Claim 3: If b is any continuable λ-branch of T ′, where λ is a limit ordinal,
then b has exactly one continuation in T ′.
Proof: Let d = {w ∈ T : for some x ∈ b, w ≤ x}. Then d is a branch of T
whose height is some limit ordinal µ. It two distinct points xb and xc of T ′

were both continuations of b, then xb and xc would both be continuations of
the µ-branch d belonging to Tµ, and that is impossible because of the way
the points of T ′ were chosen. Therefore, each continuable λ-branch of T ′ has

exactly one continuation in T ′.

3.1.10 Lemma: Every Souslin tree has a subset which is a normal Souslin
tree.

Proof: Follows from Lemmas 3.1.6, 3.1.7, and 3.1.9.

3.1.11 Theorem: There exists a Souslin line if and only if there exists a
Souslin tree.

Proof: First we will prove that a Souslin line gives rise to a Souslin tree.
Suppose S is a Souslin line, i.e. every family of pairwise disjoint open intervals
of S is countable, but S is not separable. We will repeatedly apply the
following construction: let D be a countable subset of S. Since S is not
separable, D is not dense, so S \ D 6= ∅ where D denotes the closure of
D. Since D is closed, S \ D is open, so S \ D is the union of a nonempty
collection I(D) of pairwise disjoint open intervals. The collection I(D) is
countable since S has the Souslin property.

Next, we recursively define countable sets Dα and Iα. Let D0 consist of any
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fixed point from S. By induction, assume Dβ is defined for β < α, and set
Iα = I(∪β<αDβ). Let Dα consist of one point from each interval in Iα. Let
T = ∪α<ω1Iα and partially order T by reverse inclusion (so ≤ means ⊇). We
want to show that 〈T,⊇〉 is a Souslin tree.

Every antichain in T is just a family of pairwise disjoint open intervals in S,
so the antichain is countable since S has the Souslin property. The tree T also
has the property that each nonmaximal point x has at least two immediate
successors. Therefore, by Lemma 3.1.5, an uncountable chain implies an
uncountable antichain. But every antichain is countable, so every chain is
countable. The tree T must have uncountably many levels because, if it did
not, some countable level, say Iα, of T would be empty. Thus, ∪β<αDβ = S,
but that is impossible because ∪β<αDβ is countable and S is not separable.
Therefore, the cardinality of T is ω1. So T is a Souslin tree.

Next we need to show that the existence of a Souslin tree implies the existence
of a Souslin line. By Lemmas 3.1.7 and 3.1.9, if there exists a Souslin tree,
then there exists a normal Souslin tree. Suppose 〈T,≤〉 is a normal Souslin
tree. We can assume it satisfies the property that every point in T has ω
immediate successors, because we can form such a tree from a normal Souslin
tree by throwing out all nodes not on limit ordinal levels.

Claim 1: For α > 0, there is a linear ordering ≤α of Tα of order type of the
rationals satisfying the following property: for ordinals α and β, if α < β,
and if x, y ∈ Tβ and x′, y′ ∈ Tα with x′ < x and y′ < y and x′ <α y

′, then
x <β y.

Proof: Since every element of T has ω immediate successors, each level higher
than T0 is countably infinite. Give T1 an arbitrary ordering of order type of
the rationals. At level T2, if a, b ∈ T2 have distinct predecessors a′, b′ ∈ T1,
respectively, and a′ <1 b

′, then let a <2 b. For all a, b ∈ T2 which have
the same predecessor in T1, arbitrarily order them with order type of the
rationals, which is possible because there are ω successors of each element of
T1. Then <2 is a linear ordering.

Suppose β < ω1 and we have defined orderings <α of Lα for each α < β in
such a way that the compatibility restrictions in the claim hold. If β is not
a limit ordinal, then β = α+ 1 for some α and we proceed to define Tβ from
Tα just as we defined T2 from T1. If β is a limit ordinal, then each a ∈ Lβ is
the unique successor of the branch {y ∈ T : y < a}. Hence if a 6= b belong
to Tβ then there is some α < β such that some a′ 6= b′ ∈ Tα have a′ < a
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and b′ < b. Then either a′ <α b
′ or b′ <α a

′, and we define the relation <β

between a and b to be the same as the relation <α between a′ and b′. So <β

is a linear ordering, and <β is of order type of rationals.

Let S be the set of maximal branches of T , which exist by Zorn’s Lemma.
When b is a branch of T , let bα be the point in b at height α. Order S by ≤
as follows: let b, d be distinct points of S. Then there is an α with bα 6= dα.
Choose the least such α. Then for all β < α, we have bβ = dβ, and because
level α of the tree is linearly ordered by <α, either bα <α dα or vice versa. If
bα <α dα, define b < d in S. Otherwise, define d < b in S. Note that S is
densely ordered because the ordering of Tα for every α < ω1 is of order type
of the rationals.

We will now show that S has the Souslin property. For every x ∈ T , let
Ix = {b ∈ S : x ∈ b}.
Claim 2: For every x ∈ T , Ix is open in (S,≤).

Proof: Fix any x ∈ T , and fix α ∈ ω1 such that x ∈ Tα. Let β = α + 1.
Choose any b ∈ Ix, and consider bβ. Since x has ω immediate successors at
level β, and the level has order type of the rationals, there exists aβ, cβ ∈ Tβ
with aβ <β bβ <β cβ, and x < aβ and x < cβ in 〈T,≤〉. By Zorn’s Lemma,
there exist maximal branches a, c ∈ Ix with aβ ∈ a and cβ ∈ c. Since
x = aα = bα = cα, a, b, and c agree at every level less than α (otherwise,
some element of the tree would have two immediate predecessors). So β is
the first level at which a, b, c disagree, so a < b < c in (S,≤). Therefore,
b ∈ (a, c) ⊆ Ix, so Ix is open.

Claim 3: For any open interval J in the set (S,<), there exists xJ ∈ T such
that IxJ ⊆ J .

Proof: Choose b < d in J . For α the first ordinal with bα 6= dα and bβ = dβ
for every β < α, fix any xJ ∈ Tα such that bα <α xJ <α dα. Such an xJ
exists because Tα is ordered like the rationals. Every y ∈ IxJ has yα = xJ ,
so by the compatibility property of the ordering of levels, bγ <γ yγ at every
level γ where b and y disagree. Similarly, yγ <γ dγ at every level γ where
y and d disagree. We will now show that bγ = yγ = dγ for every γ < α.
If yγ < bγ = dγ, then by the compatibility property, yα < bα, but that
is impossible. Similarly, if yγ > bγ = dγ, then by compatibility, yα > dα.
Therefore, α is the first level at which b, y, and d disagree. Therefore,
b < y < d in (S,<). Therefore, IxJ ⊂ J .
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We must show that when open intervals K and L in (S,≤) are disjoint, xK
and xL are incomparable in T . If xK ≤ xL in T , then there would exist
a branch b0 containing xK and xL, so b0 ∈ IxK and b0 ∈ IxL . But this is
impossible since K and L are disjoint, so xK and xL are incomparable in T .
Therefore, if there exists an uncountable family of disjoint open intervals in
(S,≤), then there exists an uncountable collection of incomparable elements
in T , i.e. an uncountable antichain. Since a Souslin tree has no uncountable
antichain, every family of disjoint open intervals in (S,≤) must be countable.

All that remains is to show that S is not separable. Suppose there exists
countable dense set D ⊆ S. Let α = sup{ht(b) : b ∈ D}. We know that
α < ω1 because there are no uncountable chains in S. So if we take x ∈
Tα, Ix contains an open interval disjoint from D, which is impossible since
D is dense. Therefore, S is not separable. So S is a densely ordered set
with the Souslin property which is not order isomorphic to IR since it is not

separable.

3.2 Applying the Line-to-Tree Construction to IR

Following the basic steps of the line-to-tree construction of the proof of The-
orem 1.2.7, one can create a tree from the real line. What would this tree
look like? Since the real line is separable, at some level α ≤ ω1, it seems that
Iα = I(∪β<αDβ) may be the empty set because ∪β<αDβ could be dense, so
IR \ ∪β<αDβ = ∅. In fact, we will prove that any tree resulting from this
construction will be countable. We will make use of the following lemma.

3.2.1 Lemma: Suppose {xα : α < ω1} is a set of real numbers such that if
α < β < ω1, then xα ≤ xβ. Then there is an α < ω1 such that xα = xβ for
each α ≤ β < ω1.

Proof: If not, one can recursively define ordinals αβ for β < ω1 such that if
β < γ < ω1, then xαβ < xαγ . Then the collection {(xαβ , xαβ+1

) : β < ω1} is
an uncountable pairwise disjoint collection of open intervals in IR. But that

is impossible because IR is separable.
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3.2.2 Theorem: Suppose the tree T consists of open intervals of IR, partially
ordered by reverse inclusion, and has the property that for each I, J ∈ T ,
either I and J are comparable in the ordering of T , or else I ∩ J = ∅. Then
T is countable.

Proof: For contradiction, suppose T is uncountable. For each rational num-
ber q, let T (q) = {J ∈ T : q ∈ J}. Since the rationals are dense, T =
∪{T (q) : q ∈ IQ}. Thus, for some q0 ∈ IQ, T (q0) must be uncountable.

Because q0 ∈ I ∩ J for each I, J ∈ T (q0), the property that overlapping
intervals are comparable implies that I ⊆ J or J ⊆ I for each I, J ∈ T (q0).
Therefore, T (q0) is a chain. Let α0 be the first level of the tree such that
T (q0) ∩ Tα0 6= ∅, i.e. the first level which T (q0) intersects. Let J(α0) be
the member of T (q0) ∩ Tα0 6= ∅, which is unique because otherwise two
elements of T (q0) would be on the same level, and thus not comparable.
Recursively choose ordinals αβ and intervals J(αβ) ∈ T (q0) ∩ Tαβ so that
αβ < αγ whenever β < γ. Then J(αγ) ⊂ J(αβ) and J(αγ) 6= J(αβ) whenever
β < γ < ω1. For each αβ, let l(αβ) be the left endpoint of J(αβ), and let r(αβ)
be the right endpoint of J(αβ). Thus, β < γ < ω1 implies that l(αβ) ≤ l(αγ)
and r(αβ) ≥ r(αγ). By the lemma above, there exists β1 such that γ ≥ β1
implies l(αβ1) = l(αγ). Analogously, there exists β2 such that γ ≥ β2 implies
r(αβ2) = r(αγ). So for any δ, γ ≥max(β1, β2), (l(αδ), r(αδ)) = (l(αγ), r(αγ)),
i.e. J(αδ) = J(αγ) for all δ, γ ≥max(β1, β2). Therefore, T (q0) = {Jα : α <

ω1} is countable, which contradicts our assumption.
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Chapter 4: Ultrafilter Orderings

In this chapter, we will define a special collection of sets called an ul-
trafilter. This construction will then be used to define and linearly order
equivalence classes on the set of functions from ω to ω (denoted ωω). We will
then study the properties of this linearly ordered set.

4.1 Filters and Ultrafilters

4.1.1 Definition: A filter on a set X is a nonempty collection F of subsets
of X satisfying

a) ∅ /∈ F
b) if A,B ∈ F , then A ∩B ∈ F
c) if A ⊂ B and A ∈ F , then B ∈ F .

Let us consider an example of a filter. For any infinite set X, the collection
{S ⊆ X : S is co-finite} is a filter on X. It is obvious that this collection has
properties a) and b). Property c) follows because if A ⊂ B and A ∈ F , then
(X \ A) is finite and (X \B) ⊆ (X \ A). Thus, (X \B) is finite, so B ∈ F .

Next we will prove, using Zorn’s Lemma, that a maximal filter exists.

4.1.2 Theorem: Given any filter F on a set X, there is a filter U on X
such that

a) F ⊆ U
b) no filter on X strictly contains U .

Proof: Let P = {W : W is a filter and F ⊆ W}. Order P by inclusion.
We want to use Zorn’s Lemma to prove that P has a maximal element. The
collection P is nonempty because F ∈ P . Let C ⊆ P be any chain. Let
W0 = ∪{W : W ∈ C}. The set W0 is an upper bound of C, and W0 ∈ P .
Therefore, P is inductive. Thus, by Zorn’s Lemma, P has a maximal element,

which is the filter U above.

4.1.3 Definition: An ultrafilter on X is any maximal filter on X.

We have some easy ways to recognize ultrafilters. The following theorem
states properties which characterize ultrafilters. We will present two addi-
tional characterizations in 4.3 and 5.5.

25



4.1.4 Theorem: Let F be a filter on X. The following are equivalent:
1) F is an ultrafilter
2) if A ⊆ X and A /∈ F , then for some B ∈ F , A ∩B = ∅
3) if A1 ∪ A2 ∈ F , then A1 ∈ F or A2 ∈ F
4) if A ⊆ X, then either A ∈ F or (X − A) ∈ F .

Proof: First, we will show 1)⇒ 2).
Let U be an ultrafilter. Fix any A ⊆ X with A /∈ U . Suppose for contradic-
tion that for every B ∈ U , A ∩ B 6= ∅. For each B ∈ U , let CB = A ∩ B.
Consider V = U ∪ {CB : B ∈ U}. Let W be the collection of all sets which
contain an element of V .

We will show that W is a filter. First we will show that the intersection of
two elements in W is also in W . Since W is the collection of sets containing
an element of V , we just need to show that the intersection of two elements
elements D,E ∈ V is also in V . Obviously, if D,E ∈ U , then D ∩ E ∈ V .
If D ∈ U and E = CB0 for some B0 ∈ U , then D ∩ E = D ∩ CB0 =
D ∩ (A ∩ B0) = A ∩ (B0 ∩ D). But B0 ∩ D ∈ U , so A ∩ (B0 ∩ D) =
CB0∩D ∈ V . Similarly, if D = CB1 and E = CB2 for some B1, B2 ∈ U , then
D ∩ E = (A ∩ B1) ∩ (A ∩ B2) = A ∩ (B1 ∩ B2). But (B1 ∩ B2) ∈ U , so
D ∩ E = CB1∩B2 ∈ V .

Clearly, every set which contains an element of W is also in W . Therefore
W is a filter. But this contradicts the maximality of U because A ∈ W \ U .
Thus 1)⇒ 2).

Next we will show 2)⇒ 3).
Suppose that A1∪A2 ∈ U and A1 /∈ U . There exists B ∈ U with A1∩B = ∅.
Since A1∪A2 ∈ U , we know that B∩(A1∪A2) ∈ U . Therefore, B∩(A1∪A2) =
(B ∩ A1) ∪ (B ∩ A2) = B ∩ A2 ∈ U . But (B ∩ A2) ⊂ A2, so A2 ∈ U . Thus,
2)⇒ 3).

To show 3)⇒ 4), note that X ∈ F since X contains an element of the filter.
Since X = A ∪ (X \ A), either A ∈ F or (X − A) ∈ F .

Finally, we will show 4)⇒ 1).
Suppose G is a filter strictly containing F . Let G ∈ G \F . Since G /∈ F and
F has property 4), X \G ∈ F . But F ⊂ G, X \G ∈ G. This is a contraction
because G and X \ G cannot both be in a filter (since their intersection is

empty).

4.1.5 Corollary: Suppose U is an ultrafilter. If A1 and A2 are disjoint and
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A1 ∪ A2 ∈ U , then exactly one of them is in U . If B1 ∪ B2 ∪ ... ∪ Bn ∈ U ,
then some Bi is in U .

Proof: The statements follow directly from property 3) above.

As an example of an ultrafilter, consider {S ⊆ X : p ∈ S} for some infinite
set X and some p ∈ X. This collection is clearly a filter, and it satisfies
property 4) above, so it is an ultrafilter.

4.1.6 Corollary: If U is an ultrafilter on X, then ∩{S : S ∈ U} has at most
one point.

Proof: Suppose ∩{S : S ∈ U} has more than one point. Let x1, x2 be distinct
points in ∩{S : S ∈ U}. For every S ∈ U , {x1, x2} ⊆ S. Therefore, {x1} /∈ U
and {x2} /∈ U . By property 3 of the previous theorem, {x1, x2} /∈ U . But
this implies that X \ {x1, x2} ∈ U , which is impossible because {x1, x2} is a

subset of each member of U . Contradiction.

Corollary 4.1.6 suggests that we define two types of ultrafilers, one with
empty intersection and one with intersection consisting of a single point.

4.1.7 Definition: A fixed ultrafilter is an ultrafilter U with ∩{S : S ∈ U}
consisting of a single point.

4.1.8 Definition: A free ultrafilter is an ultrafilter U with ∩{S : S ∈ U} = ∅.

Our previous example of {S ⊆ X : p ∈ S} for some infinite set X is clearly
a fixed ultrafilter.

Finding an example of a free ultrafilter is not as straightfoward. Consider
the sets [0, ω), [1, ω), [2, ω), ..., and consider the filter generated by these sets
(i.e. the collection of all sets containing one of the intervals). As in 4.1.2, use
Zorn’s Lemma to extend it to an ultrafilter. This ultrafilter contains [0, ω),
[1, ω), [2, ω), ..., so the intersection of all members of this ultrafilter must be
empty.

4.1.9 Theorem: Let X be any set. Then X is infinite if and only if there
is a free ultrafilter on X.

Proof: Suppose X is infinite. Let U = {co-finite subsets of X}. Note that U
is a filter. Apply Theorem 4.1.2 to find an ultrafilter W containing U . The
set U has empty intersection, so W is an ultrafilter with empty intersection.
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Thus, there is a free ultrafilter on X.

Conversely, suppose X is any set and U is an free ultrafilter on X. For
contradiction, assume X is finite. Since X is finite, U is finite (because U ⊆
power set of X). So ∩{U : U ∈ U} is a finite intersection of members of U ,
so ∩{U : U ∈ U} ∈ U . But ∩{U : U ∈ U} = ∅ and ∅ /∈ U . Therefore, X

must be infinite.

4.2 Equivalence Classes on ωω

In this section, we will use a free ultrafilter to define equivalence classes
on ωω, and then define a linear ordering on the family of equivalence classes.

Throughout this section, we let U be a free ultrafilter on ω.

4.2.1 Definition: Let f, g be functions from ω to ω. Define f ≡ g to mean
{x ∈ ω : f(x) = g(x)} ∈ U .

In other words, we will say that two functions are equivalent if they agree on
some member of the ultrafilter.

4.2.2 Proposition: The relation ≡ is an equivalence relation on ωω.

Proof: The relation is obviously reflexive and symmetric, so only transitivity
needs to be checked. Let f, g, h be elements of ωω. Suppose f ≡ g and g ≡ h,
then {x ∈ ω : f(x) = g(x)} ∈ U , and {x ∈ ω : g(x) = h(x)} ∈ U . Since U is
a filter, {x ∈ ω : f(x) = g(x)} ∩ {x ∈ ω : g(x) = h(x)} = {x ∈ ω : f(x) =
g(x) = h(x)} ∈ U . Thus, {x ∈ ω : f(x) = h(x)} ∈ U because it contains

{x ∈ ω : f(x) = g(x) = h(x)}. Therefore, f ≡ h.

4.2.3 Notation: We will denote the equivalence class to which f belongs by
[f ].

4.2.4 Definition: Let Ψ = {[f ] : f ∈ ωω}.

4.2.5 Definition: For [f ], [g] ∈ Ψ, define [f ] ≺ [g] to mean that {x ∈ ω :
f(x) < g(x)} ∈ U .

4.2.6 Lemma: The relation ≺ is well defined, i.e. if f ≡ f ′ and g ≡ g′ and
{x ∈ ω : f(x) < g(x)} ∈ U , then {x ∈ ω : f ′(x) < g′(x)} ∈ U .

Proof: Since f ≡ f ′ and g ≡ g′, {x ∈ ω : f(x) = f ′(x)} ∈ U and {x ∈ ω :
g(x) = g′(x)} ∈ U . Since {x ∈ ω : f(x) < g(x)} ∈ U , we know {x ∈ ω :
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f(x) < g(x)} ∩ {x ∈ ω : f(x) = f ′(x)} = {x ∈ ω : f(x) = f ′(x) < g(x)} ∈ U .
So {x ∈ ω : f ′(x) < g(x)} ∈ U since it contains {x ∈ ω : f(x) = f ′(x) <
g(x)}. Similarly, since g ≡ g′, the set {x ∈ ω : f ′(x) < g(x)} ∩ {x ∈ ω :
g(x) = g′(x)} ∈ U . So {x ∈ ω : f ′(x) < g(x) = g′(x)} ∈ U , and thus

{x ∈ ω : f ′(x) < g′(x)} ∈ U .

We will write [f ] � [g] to mean either [f ] ≺ [g] or [f ] = [g].

4.2.7 Lemma: � is a linear ordering.

Proof: The reflexive property is automatically satisfied. Suppose [f ] ≺ [g]
and [g] ≺ [h]. Then {x ∈ ω : f(x) < g(x)} ∩ {x ∈ ω : g(x) < h(x)} = {x ∈
ω : f(x) < g(x) < h(x)} ∈ U . Thus, {x ∈ ω : f(x) < h(x)} ∈ U , since it
contains {x ∈ ω : f(x) < g(x) < h(x)} ∈ U . Therefore, [f ] ≺ [h], so ≺ is
transitive.

Suppose [f ], [g] ∈ Ψ. We want that either [f ] ≺ [g] or [g] � [f ], but not both.
The set {x ∈ ω : f(x) < g(x)} ∪ {x ∈ ω : g(x) ≤ f(x)} = ω. Since U is an
ultrafilter, exactly one of {x ∈ ω : f(x) < g(x)} and {x ∈ ω : g(x) ≤ f(x)}
is in U , by 4.1.4.

Now that we have defined a linear ordering on Ψ, we can consider the struc-
ture of the linearly ordered space.

4.2.8 Theorem: Every [f ] ∈ Ψ has an immediate successor.

Proof: Fix any [f ] ∈ Ψ and any U0 ∈ U . Let g(x) = f(x) + 1 for every
x ∈ U0, and let g(x) = 0 for every x /∈ U0. Since f(x) < g(x) on a member
of the ultrafilter, [f ] ≺ [g]. If there exists [h] ∈ Ψ with [f ] ≺ [h] ≺ [g], then
{x ∈ ω : f(x) < h(x)} ∈ U , and {x ∈ ω : h(x) < g(x)} ∈ U . Therefore,
{x ∈ ω : f(x) < h(x) < g(x)} ∈ U , so {x ∈ ω : f(x) < h(x) < g(x)}∩U0 6= ∅.
Thus, there exists an x ∈ U0 with f(x) < h(x) < g(x). But there is no α ∈ ω
with f(x) < α < g(x) because g(x) = f(x) + 1 for x ∈ U0.

4.2.9 Notation: For any α ∈ ω, let α denote the function that is constantly
α.

4.2.10 Theorem: Every [f ] ∈ Ψ \ {0} has an immediate predecessor.

Proof: Fix any [f ] 6= [0]. Then there is some U ∈ U with f(x) 6= 0 for every
x ∈ U . (Such a U exists because f is not equal to 0 on any element of the
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ultrafilter. For example, ω \ {x ∈ ω : f(x) = 0} ∈ U since {x ∈ ω : f(x) =
0} /∈ U .) Let g(x) = f(x)− 1 for every x ∈ U , and let g(x) = 0 for every x /∈
U . Since g(x) < f(x) on a member of the ultrafilter, [g] ≺ [f ]. Suppose there
exists [h] ∈ Ψ with [g] ≺ [h] ≺ [f ], then {x ∈ ω : g(x) < h(x) < f(x)} ∈ U .
Thus, {x ∈ ω : g(x) < h(x) < f(x)} ∩ U 6= ∅, so there exists x ∈ U with
g(x) < h(x) < f(x). But, as in 4.2.8, there is no α ∈ ω with g(x) < α < f(x)

for x ∈ U . Therefore, [g] is the immediate predecessor of [f ].

4.2.11 Theorem: The set Ψ is uncountable.

Proof: Choose any sequence of Un ∈ U with Un+1 ⊂ Un and ∩{Un : n ≥
1} = ∅, e.g., Un = ω \ {0, 1, ..., n}. Suppose Ψ is countable. Call its elements
[f1], [f2], [f3], .... For every x ∈ U1 \ U2, let g(x) = f1(x) + 1, and for every
x ∈ U2 \ U3, let g(x) = max{f1(x), f2(x)} + 1. For any integer n and
x ∈ Un \Un+1, let g(x) = max{f1(x), f2(x), ..., fn(x)}+ 1. For x ∈ ω \U1, let
g(x) = 0. Note that we have defined g at every x ∈ ω because ∩n≥1Un = ∅.
Thus, f1 < g on U1, f2 < g on U2, ..., so [fn] ≺ [g] for every n ≥ 1. Then

[g] ∈ Ψ \ {[fn] : n ≥ 1}, a contradiction.

Note that the proof above also shows that Ψ has uncountable cofinality.
For any countable subset of Ψ, there is an element of Ψ greater than every
element of that subset.

Together, Theorems 4.2.8 and 4.2.10 show that Ψ has the discrete metric
topology. Thus, this linearly ordered space is not interesting topologically.
However, it appears that Ψ may have an interesting order structure nonethe-
less. We will begin investigating the order structure of Ψ by determining the
number of predecessors of each element.

In order to examine the number of predecessors of elements of Ψ, we will use
the notion of essentially bounded and essentially unbounded.

4.2.12 Definition: A function f ∈ ωω is essentially unbounded if it is
unbounded on every member of the ultrafilter. Otherwise, f is essentially
bounded.

4.2.13 Lemma: If f ∈ ωω is essentially bounded, then [f ] has finitely many
predecessors.

Proof: It is easy to see that for any n ∈ ω, [n] has finitely many predecessors
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(because its immediate predecessor is [n− 1], preceded by [n− 2], etc). We
will show that for every essentially bounded function f , [f ] = [n] for some
n ∈ ω. Choose U0 ∈ U such that f is bounded on U0. Since {f(x) : x ∈
U0} ⊆ ω and is bounded, it has a greatest element, call it m. Note that
{x ∈ U0 : f(x) = m} ∪ {x ∈ U0 : f(x) = m− 1} ∪ ...∪ {x ∈ U0 : f(x) = 0} =
U0 ∈ U , so {x ∈ U0 : f(x) = n} ∈ U for some n ≤ m by Corollary 4.1.5.

Therefore, [f ] = [n] for some n ∈ ω.

4.2.14 Lemma: If f is essentially unbounded, then [f ] has uncountably
many predecessors.

Proof: For every n ≥ 1, let Un = {x ∈ ω : f(x) > n}. Note that Un+1 ⊆ Un.
Each Un ∈ U because if not, {x ∈ ω : f(x) ≤ n} ∈ U for some n. That is
impossible because f is essentially unbounded. Let [g1], [g2], ... be countably
many predecessors of [f ]. We will find a predecessor [h] of [f ] that is not
among the [gn]. For every x ∈ U1 \U2, choose h(x) < f(x) and h(x) 6= g1(x).
Such a choice for h(x) is possible because x ∈ U1, so f(x) ≥ 2. For every
x ∈ U2 \U3, choose h(x) ∈ {0, 1, ..., f(x)− 1} \ {g1(x), g2(x)}. For any n and
any x ∈ Un \Un+1, choose h(x) ∈ {0, 1, ..., f(x)−1}\{g1(x), g2(x), ..., gn(x)}.
Such a choice is possible because for x ∈ Un, the set {0, 1, ..., f(x)−1} has at
least n + 1 elements. To complete the definition of h, let h(x) = 0 for every
x /∈ U1. We know that h 6= gi on Ui for any i ≥ 1, and h < f on U1. Thus,
[h] 6= [gi] for any i, but [h] ≺ [f ]. So, for any countable set of predecessors
of [f ], one can find another predecessor of [f ] not in that set. Therefore, [f ]

has uncountably many predecessors.

Thus there are two kinds of elements of Ψ: essentially bounded, which have
finitely many predecessors, and essentially unbounded, which have uncount-
ably many predecessors. We can visualize this property of Ψ by considering
the lexicographic product

({0} × (ZZ+ ∪ {0})) ∪ (IP+ × ZZ),

where ZZ denotes the set integers, ZZ+ denotes the set of positive integers, and
IP+ denotes the set of positive irrationals. Elements of ({0} × (ZZ+ ∪ {0}))
have finitely many predecessors, and elements of IP+ × ZZ have uncountably
many predecessors. Every element of ({0} × (ZZ+ ∪ {0})) ∪ (IP+ × ZZ) has
an immediate successor, and every element except (0, 0) has an immediate
predecessor.

31



We do not know whether Ψ is order isomorphic to the set described above,
or to a set like it. In other words, is there a subset S ⊆ (0,∞) such that Ψ
is order isomorphic to the lexicographic product

({0} × (ZZ+ ∪ {0})) ∪ (S × ZZ)?

4.3 A New Characterization of Ultrafilters

It is also possible to consider an ordering defined by a filter rather than an
ultrafilter. If F is a filter, we can define an equivalence relation on ωω just as
in 4.2.1, and an order � on the set of all those equivalence classes, just as in
4.2.5. Starting with only a filter, we obtain a partial order. As we proved in
this chapter, if the filter is a maximal filter, then the partial order is linear.
The converse is also true.

4.3.1 Theorem: Let F be a free filter on ω and let ≡ be the equivalence
relation on ωω defined by f ≡ g if {x ∈ ω : f(x) = g(x)} ∈ F . Let Φ be
the set of equivalence classes [f ] defined by ≡. Define [f ] ≺ [g] to mean that
{x ∈ ω : f(x) < g(x)} ∈ F . Then ≺ is a partial ordering of Φ and ≺ is a
linear order if and only if F is an ultrafilter.

Proof: Section 4.2 shows that if F is an ultrafilter, then ≺ is a linear ordering.
We prove the converse. Fix A ⊆ ω. We will show that either A ∈ F or
ω \ A ∈ F , and then apply 4.1.4.

For any B ⊆ ω, define χB : ω → ω by χB(x) = 1 if x ∈ B and χB(x) = 0
if x ∈ ω \ B. Consider the functions χA and χω\A. Since ≺ is a linear
ordering, either χA ≺ χω\A or vice versa. If χA ≺ χω\A, then the set {x ∈
ω : χA(x) < χω\A(x)} belongs to F . But {x ∈ ω : χA(x) < χω\A(x)} =
{x ∈ ω : χA(x) = 0 and χω\A(x) = 1} = ω \ A. If χω\A ≺ χA, then the set
{x ∈ ω : χω\A(x) < χA(x)} belongs to F . But {x ∈ ω : χω\A(x) < χA(x)} =
{x ∈ ω : χω\A(x) = 0 and χA(x) = 1} = A. Thus, either A ∈ F or ω\A ∈ F ,

so F is an ultrafilter.

Therefore, we can add the following characterization of ultrafilter to Theorem
4.1.4.

5) The order ≺ defined by F is linear.
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Chapter 5: Nonarchimedean Fields

In this chapter, we will use ultrafilters to give an example of an ordered
field with some interesting properties which distinguish it from usual fields
like the real numbers.

Let IRω be the set of all functions from [0, ω) to the field IR of real numbers.
Define operations on IRω pointwise, so for every f, g ∈ IRω and for every
x ∈ ω,

(f + g)(x) = f(x) + g(x), and
(f ∗ g)(x) = f(x) ∗ g(x).

Note that (IRω,+, ∗) is a ring with unity. A basic result of ring theory says
that every ring with unity has a maximal ideal (the proof is straightforward
using Zorn’s Lemma). We will examine one maximal ideal of IRω.

5.1 A Maximal Ideal and Quotient Ring

5.1.1 Lemma: Fix any free ultrafilter U on ω. Let M = {f ∈ IRω : z(f) ∈
U}, where z(f) = {x ∈ ω : f(x) = 0}. Then M is a maximal ideal of IRω.

Proof: First we will show that M is an ideal. The set M is closed under +.
For any f, g ∈ M , z(f), z(g) ∈ U , so z(f) ∩ z(g) ∈ U . Since z(f) ∩ z(g) ⊆
z(f + g), f + g ∈ M . The set M is also closed under multiplication by any
element of IRω. For any g ∈ IRω and for any f ∈ M , z(g ∗ f) = {x ∈ ω :
g(x)∗f(x) = 0}. We know that z(f) ∈ U and z(f) ⊆ z(g∗f), so z(g∗f) ∈ U ,
so g ∗ f ∈M . Therefore, M is an ideal.

Now we must show that M is maximal. Let N be ideal with M ⊂ N and
M 6= N . Fix any f ∈ N \M . Since f /∈ M , z(f) /∈ U , so ω \ z(f) ∈ U .
Let g(x) = 1 for every x ∈ z(f), and let g(x) = 0 for every x ∈ ω \ z(f).
Note that g ∈ M ⊆ N . Let h(x) = (f(x))−1 for every x ∈ ω \ z(f), and let
h(x) = 0 for every x ∈ z(f). For every x ∈ ω, h(x) ∗ f(x) + g(x) = 1. Since
f, g ∈ N and N is ideal, 1 ∈ N . Therefore, N = IRω, so M is a maximal

ideal.

Since M is a maximal ideal, the quotient ring Rω/M is a field. We will denote
the elements of IRω/M by {x + M} = {x + m : m ∈ M}, the cosets of M .
We will say that x ≡ y if {x+M} = {y +M}, i.e. if x− y ∈M .
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5.1.2 Lemma: Let π : IRω → IRω/M be the natural projection, given by
π(x) = {x+M}. Then

a) if r 6= s in IR, then r 6= s in IRω, and π(r) 6= π(s) in IRω/M
b) the cardinality of IRω/M is 2ω.
c) the subset {{r +M} : r ∈ IR} of IRω/M is a subfield of IRω/M ,
and is field isomorphic to IR.
d) the subset {{r +M} : r ∈ IR of IRω/M} is a proper subset of IRω/M .

Proof: a) If r 6= s in IR, r and s are distinct functions in IRω. Thus, r− s = t
for some t ∈ IR, t 6= 0. So z(r − s) = ∅ /∈ U , so r − s /∈ M . Therefore,
{r +M} 6= {s+M}, so π(r) 6= π(s).

b) The cardinality of IRω/M is less than or equal to the cardinality of
IRω because IRω/M is a collection of equivalence classes of IRω, and the
cardinality of IRω is (2ω)ω = 2ω∗ω = 2ω. So |IRω/M | ≤ 2ω. By part a) above,
|IRω/M | ≥ |IR| = 2ω. Thus, |IRω/M | = 2ω.

c) The natural projection π(r) = {r+M} gives an isomorphism between
the subfield {{r +M} : r ∈ IR} of IRω/M and IR.

d) Consider f ∈ IRω given by f(x) = x for every x ∈ ω. We will show
that for any r ∈ IR, {f + M} 6= {r + M}. If {f + M} = {r + M}, then
f = r +m for some m ∈M . Since m = f − r and f(x) = x for every x ∈ ω,
z(m) = {r}. But U is a free ultrafilter, so {r} /∈ U , so m /∈ M . Therefore,
for any r ∈ IR, {f +M} 6= {r+M}, so {{r+M} : r ∈ IR} is a proper subset

of IRω/M .

5.2 An Ordering on IRω/M

5.2.1 Definition: For f, g ∈ IRω, {f+M} � {g+M} if there exists p ∈ IRω

with p(x) ≥ 0 for all x ∈ ω, and {g +M} = {f +M}+ {p+M}.
Note that this definition is equivalent to “{f +M} � {g+M} if there exists
p ∈ IRω with p(x) ≥ 0 for all x ∈ ω, and g − (f + p) ∈M .”

5.2.2 Lemma: The order � is well defined.

Proof: Suppose for f, g ∈ IRω, there exists p ∈ IRω with p(x) ≥ 0 for every
x ∈ ω, and g−(f+p) ∈M . Suppose f ′ ≡ f and g′ ≡ f , then f ′−f ∈M and
g′−g ∈M . So (g′−g)−(f ′−f) = m1 for some m1 ∈M , so (g′−f ′)+(f−g) =
m1. But g − (f + p) = m2 for some m2 ∈ M , so −(m2 + p) = (f − g), so
(g′− f ′)− (m2 + p) = m1. Thus, g′− f ′− p = m1 +m2, so g′− (f ′+ p) ∈M ,
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so g′ ≡ f ′ + p.

5.2.3 Lemma: � is a linear ordering on IRω/M .

Proof: The reflexive property is satisfied because f − f = 0 ∈ M . Suppose
{f +M} � {g+M} and {g+M} � {h+M}. Then there exists pf , pg ∈ IRω

with pf (x), pg(x) ≥ 0 for every x ∈ ω, and g−(f+pf ) ∈M , and h−(g+ph) ∈
M . Thus, g− (f +pf )+h− (g+ph) = h− (f +(pf +ph)) ∈M . Since pf and
ph are always greater than or equal to zero, then (pf + ph) is always greater
than or equal to zero. Therefore, {h+M} � {f +M}.
To show the antisymmetric property, we will show that for any g ∈ IRω, either
{g+M} � {0 +M}, or {0 +M} � {g+M}, but not both. This is sufficient
to prove the antisymmetric property because if {(f − g) + M} � {0 + M},
then {f +M} � {g +M}.
Consider U0 = {j ∈ ω : g(j) ≥ 0}. If U0 ∈ U , then let p(x) = g(x) for every
x ∈ U0, and let p(x) = 0 for every x /∈ U0. Then p(x) ≥ 0 for every x ∈ ω,
and g − (0 + p) ∈ M , so {0 + M} � {g + M}. If U0 /∈ U , then ω \ U0 ∈ U ,
so {j ∈ ω : g(x) < 0} ∈ U . So let p(x) = −g(x) for every x ∈ ω \ U0, and let
p(x) = 0 otherwise. Thus, p(x) ≥ 0 for every x ∈ ω, and 0− (g+ p) ∈M , so

{g +M} � {0 +M}.

5.2.4 Lemma: The linear ordering � on IRω/M is compatible with the field
operations of IRω/M , i.e.

a) if {f+M} � {g+M}, then {f+M}+{h+M} � {g+M}+{h+M}
for any h ∈ IRω.
b) if {0 +M} � {f +M} and {0 +M} � {g +M}, then
{0 +M} � {f +M} ∗ {g +M}.

Proof: a) Suppose {f + M} � {g + M}. Then there exists l ∈ IRω/M with
l(x) ≥ 0 for every x ∈ ω and g − (f + l) ∈M . Thus, (g + h)− (f + h+ l) =
g − (f + l) ∈M , so {(f + h) +M} � {(g + h) +M}.

b) Suppose {0 + M} � {f + M} and {0 + M} � {g + M}. Then there
exists h ∈ IRω with h(x) ≥ 0 for every x ∈ ω, and f − (0 + h) ∈M . Since M
is an ideal, g ∗ [f − (0 + h)] = gf − (0 + gh) ∈ M . So z(fg − gh) ∈ U . Let
U0 = z(fg − gh) ∈ U . Since {0 +M} � {g +M}, there exists some U1 ∈ U
with g(x) ≥ 0 for every x ∈ U1. Let k be the function defined by k(x) = gh(x)
for every x ∈ U0 ∩ U1, and k(x) = 0 otherwise. For every x ∈ U0 ∩ U1,
[fg − (0 + k)](x) = 0. So U0 ∩ U1 ⊆ z(fg − (0 + k)), so z(fg − (0 + k)) ∈ U .
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Therefore, fg − (0 + k) ∈M , so {0 +M} � {f +M} ∗ {g +M}.

5.3 A Nonarchimedean Field

In this section, we show that the linearly ordered field IRω/M is very different
from the familiar field IR. First we show that IRω/M is not isomorphic to
any subfield of IR.

5.3.1 Theorem: For any subfield S ⊆ IR, there is no field isomorphism
f : IRω/M → S.

Proof: The subfield {{r + M} : r ∈ IR} is isomorphic to IR. Let g(r) =
{r+M} be the isomorphism from IR into IRω/M . Suppose, for contradiction,
that there exists a field isomorphism f : IRω/M → S for some S ⊆ IR. Then
f ◦ g : IR→ IR is a field isomorphism with f ◦ g[IR] ⊂ IR. We will show that
f ◦g[IR] 6= IR. Define i(x) = x for every x ∈ IR. We know {i+M} 6= {r+M}
for any r ∈ IR, so f({i+M}) /∈ f [g[IR]]. But f({i+M}) ∈ IR, so f◦g[IR] 6= IR.
Therefore, f ◦ g : IR → IR is a field isomorphism with f ◦ g[IR] ⊂ IR and

f ◦ g[IR] 6= IR. But this is impossible because of the following lemma.

5.3.2 Lemma: The only field isomorphism h : IR → S for S ⊆ IR is
h(x) = x.

Proof: First we will show that h(n) = n for every positive integer n. Since
h is one-to-one, h(1) 6= 0, so h(1) = 1. For any positive integer n, h(n) =
h(1 + 1 + ...+ 1︸ ︷︷ ︸

n times

) = h(1) + h(1) + ...+ h(1)︸ ︷︷ ︸
n times

= 1 + 1 + ...+ 1︸ ︷︷ ︸
n times

= n. For any

negative integer −n, h(−n) = h(−1)∗h(n) = −1∗n = −n. For every integer
n, 1 = h(n ∗ (1/n)) = h(n) ∗ h(1/n), so h(1/n) = 1/n. For each rational
m/n, h(m/n) = h(m ∗ 1/n) = h(m) ∗ h(1/n) = m ∗ (1/n).

Next we will show that if x > 0, then h(x) > 0. Fix any x > 0. There
exists y with y2 = x, so h(x) = h(y2) = [h(y)]2, so h(x) ≥ 0. Then h is
order preserving. Thus, for any x and rational p, q with p < x < q, we
get p = h(p) < h(x) < h(q) = q. So if h(x) < x, choose a rational p with
h(x) < p < x. But since h is order preserving, p = h(p) < h(x), so h(x) could
not be less than x. Analogously, h(x) cannot be greater than x. Therefore,

for any x, h(x) = x.

We have concluded that IRω/M is not isomorphic to any subset of the real
numbers. We will now explore some special properties of IRω/M which dis-
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tinguish it from IR.

The following is a familiar property of the real numbers.

5.3.3 Definition: The archimedean property of the real numbers is: for each
x ∈ IR, some positive integer n has x < n. In other words, for each x ∈ IR
with x > 0, there exists a positive integer n with 0 < 1/n < x.

We will now show that IRω/M does not have an analogous property.

5.3.4 Theorem: There exists {i + M} ∈ IRω/M with {n + M} � {i + M}
for every positive integer n. There exists some {j + M} ∈ IRω/M with
{0 +M} ≺ {j +M} ≺ {1/n+M} for each n.

Proof: Let i(x) = x for every x ∈ IR. Suppose there exists a positive integer
n with {i + M} � {n + M}. Then there exists p ∈ IRω with p(x) ≥ 0 for
every x ∈ IR, and n − (i + p) ∈ M . Let U0 = z(n − (i + p)) ∈ U . For every
x ∈ U0, n − (i(x) + p(x)) = 0, so p(x) = n − i(x) = n − x. Since p(x) ≥ 0,
n > x for every x ∈ U0, so U0 is finite. But U0 ∈ U , and no member of a free
ultrafilter is finite. Therefore, {n+M} � {i+M} for every positive integer

n. Similarly, for j = 1/i, {0 +M} ≺ {j +M} ≺ {1/n+M} for every n.

In other words, there exists elements of IRω/M which are “infinitely large”
or “infinitetesimal (infinitely small)” elements. Such a field is said to be
nonarchimedean.

5.4 An η1-set

In this section, we show that the nonarchimedean field IRω/M is an η1-set.
Throughout the section we will use [f ] to denote {f +M}.

5.4.1 Definition: A linearly ordered set (X,<) is an η1-set if, given any
countable sets A,B ⊂ X with a < b for every a ∈ A and b ∈ B, there exists
an x ∈ X with A ⊂ (←, x) and B ⊂ (x,→).

It is easy to see that IR is not an η1-set. Consider A = {−1/n : n ∈ ZZ+}∪{0},
and B = {1/n : n ∈ ZZ+}. If there were an x ∈ IR strictly between A and B,
then x would be less than 1/n for every positive integer n. No such x exists
in IR. However, we will show that IRω/M is an η1-set. The remaining proofs
in this section are taken from [2].
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First we need to prove the following lemmas.

5.4.2 Lemma: Suppose f, g ∈ IRω have the property that [f ] ≺ [g] in IRω/M .
Then there is a g′ ∈ IRω such that

a) [g′] = [g]
b) f(x) ≤ g′(x) for each x ∈ ω.

Proof: To say [f ] ≺ [g] in IRω/M means that there is a function p ∈ IRω with
p(x) ≥ 0 for all x ∈ ω and [f + p] = [g]. Hence there is a member U0 ∈ U
with f(x) + p(x)− g(x) = 0 for all x ∈ U0. Define g′(x) = f(x) + p(x) for all
x ∈ ω. Then g′(x)− g(x) = 0 for all x ∈ U0 so that [g′] = [g]. Also note that

p(x) ≥ 0 for all x ∈ ω yields f(x) ≤ f(x) + p(x) = g′(x) as required.

5.4.3 Lemma For any function g, h ∈ IRω, if f(x) =max(g(x), h(x)) for
each x ∈ ω, then [f ] =max([g], [h]).

Proof: Without loss of generality, assume [g] ≺ [h] in IRω/M . Then there is
some U0 ∈ U such that g(x) < h(x) for each x ∈ U0. Then f(x) = h(x) for

each x ∈ U0, so [f ] = [h].

5.4.4 Lemma: For any functions g, h ∈ IRω, if f(x) =min(g(x), h(x)) for
each x ∈ ω, then [f ] =min([g], [h]).

Proof: Analogous to Lemma 5.4.3 above.

5.4.5 Lemma: Suppose f(x) ≤ h(x) for all x ∈ ω, and suppose g ∈ IRω has
[f ] ≺ [g] ≺ [h] in IRω. Then there is some g′ ∈ IRω with

a) f(x) ≤ g′(x) ≤ h(x) for all x ∈ ω, and
b) [g′] = [g].

Proof: Following [2, Lemma 13.5], we define g′(x) =min(max(f(x), g(x)), h(x))
for each x ∈ ω. We claim that for each x ∈ ω, we have f(x) ≤ g′(x).
Fix x ∈ ω. If g′(x) = h(x), then the assumption f(x) ≤ h(x) implies
f(x) ≤ g′(x). If g′(x) =max(f(x), g(x)), then f(x) ≤ g′(x). Next we
claim g′(x) ≤ h(x) for each x ∈ ω. If g′(x) = h(x) there is nothing to
prove. If g′(x) =max(f(x), g(x)), then max(f(x), g(x)) must be less than
or equal to h(x), so g′(x) ≤ h(x). Finally, we claim that [g′] = [g]. This
is true because, by Lemma 5.4.4, [g′] =min([max(f, g)], [h]), and by Lemma
5.4.3, [max(f, g)] =max([f ], [g]). But we know that [f ] ≺ [g] ≺ [h], so
max([f ], [g]) = [g], and min([g], [h]) = [g]. Therefore, [g′] = [g], as required.
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5.4.6 Lemma: Let C be any countable subset of IRω. For each g ∈ C, there
is a g′ ∈ IRω such that

a) [g′] = [g] in IRω, and
b) if g1, g2 ∈ C have [g1] ≺ [g2] in IRω/M , then g′1(x) ≤ g′2(x)
for each x ∈ ω.

Proof: Index the countable set C = {gn : n ≥ 1}. Let g′1 = g1. Consider g2.
If [g2] = [g1], let g′2 = g2. If [g2] 6= [g1], then apply Lemma 5.4.2 to find g′2.
Suppose n ≥ 3 and suppose for j < n we have chosen g′j in such a way that
a) and b) hold when applied to members of {g1, g2, ..., gn−1}. Consider gn.
There are four cases:

i) if [gn] = [gj] for some j < n, let g′n = g′j,

ii) if [gn] ≺ [gj] where [gj] =min{[g1], ..., [gn−1]}, then apply Lemma 5.4.3 to
find g′n with g′n(x) ≤ g′j(x) for all x,

iii) if [gn] ≺ [gj] where [gj] is the largest of [g1], ..., [gn−1] in the linearly
ordered set IRω/M , apply Lemma 5.4.4 to find g′n.

iv) if none of the above cases hold, then [gn] lies between two members of
{[g1], ..., [gn−1]}. Let [gi] and [gj] be the closest neighbors of [gn] in that set
with [gi] ≺ [gn] ≺ [gj]. Use Lemma 5.4.5 to choose g′n with [g′n] = [gn] and
g′i(x) ≤ g′n(x) ≤ g′j(x) for each x ∈ ω.

This induction constructs g′n for each n in such a way that a) and b) are

satisfied.

5.4.7 Lemma: Suppose A and B are countable subsets of IRω/M with the
property that [f ] ≺ [g] for each [f ] ∈ A and [g] ∈ B. Then there is a function
h ∈ IRω such that for every [f ] ∈ A and [g] ∈ B, we have [f ] � [h] � [g].

Proof: Because A is a countable linearly ordered set, we may choose [fn] ∈ A
with the property that [f1] ≺ [f2] ≺ [f3] ≺ ..., and for every [f ] ∈ A some
[fn] has [f ] � [fn]. Similarly, we may choose [gn] ∈ B with [gn+1] � [g]
for all n, and such that for any [g] ∈ B, we have [gn] ≺ [g] for some n.
Then use Lemma 5.4.6 to choose functions f ′n, g

′
n ∈ IRω such that [f ′n] = [fn],

[g′n] = [gn] and fm(x) ≤ fm+1(x) ≤ gn+1(x) ≤ gn(x) for every x ∈ ω. For
each fixed x ∈ ω, we define h(x) = sup{fn(x) : n ≥ 1}, which exists because
〈fn(x)〉 is an increasing sequence of real numbers bounded by g1(x). Then
fm(x) ≤ h(x) ≤ gn(x) for each m,n ≥ 1 and each x ∈ ω so that for each
m,n ≥ 1 we have [fn] � [h] � [gn]. For any [f ] ∈ A and [g] ∈ B, we can find
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m,n ≥ 1 with [f ] � [fm] � [h] � [gn] � [g] as required.

5.4.8 Lemma: Suppose B is a countable subset of IRω/M with the property
that [0] ≺ [g] for each [g] ∈ B. Then there is a function h ∈ IRω such that

a) [0] ≺ [h], and
b) [h] ≺ [g] for each [g] ∈ B.

Proof: As in the proof of Lemma 5.4.7, we may choose a monotonic decreasing
sequence 〈gn〉 ⊆ B with the property that for each [g] ∈ B, some [gn] has
[gn] � [g].

Because U is a free ultrafilter on ω, we may choose sets Un ∈ U with U0 = ω,
Un+1 ⊂ Un, and ∩{Un : n ≥ 1} = ∅. For every n, because [0] ≺ [gn],
there is a member Vn ∈ U such that gn(x) > 0 for each x ∈ Vn. Define
Wn = Un ∩ (∩{Vj : 1 ≤ j ≤ n}). Then we have Wn ∈ U , gn(x) > 0 for each
x ∈ Wn, and ∩{Wn : n ≥ 1} = ∅. Define a function h : ω → IR by the rule
that h(x) = 1 if x ∈ ω \W1, and h(x) = (1/2)∗min{g1(x), g2(x), ..., gn(x)}
if x ∈ Wn \Wn−1 for some n ≥ 2. Note that h is defined for all x because
∩{Wn : n ≥ 1} = ∅, and h(x) > 0 for all x, and h(x) < gn(x) for all x ∈ Wn.

Therefore, [h] satisfies a) and b) as required.

5.4.9 Theorem: IRω/M is an η1set.

Proof: Suppose A and B are countable subsets of IRω/M with [f ] ≺ [g] for
each [f ] ∈ A and [g] ∈ B. There are four cases:

i) Suppose A has no largest element, and B has no smallest element. Use
Lemma 5.4.7 to find h ∈ IRω with the property that for each [f ] ∈ A and
[g] ∈ B, [f ] � [h] � [g]. Because A has no largest point, we must have
[f ] ≺ [h] for each [f ] ∈ A. Similarly, [h] ≺ [g] for each [g] ∈ B.

ii) Suppose A has a largest element [f0] and B has a smallest element [g0].
Then let h = (f0 + g0)/2, so [f ] ≺ [h] ≺ [g] for every [f ] ∈ A and [g] ∈ B.

iii) Suppose A has a largest element [f0] and B has no smallest element. Let
B∗ = {[g − f0] : [g] ∈ B}. Then Lemma 5.4.8 can be applied to B∗ to find a
function h∗ with [0] ≺ [h∗] ≺ [g − f0] for every [g] ∈ B. Let h = h∗ + f0, so
[f ] ≺ [h] ≺ [g] for every [f ] ∈ A and [g] ∈ B.

iv) The case when A has no largest element and B has a smallest element
[g0] is analogous to case iii).

Therefore, IRω/M is an η1-set.
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The fact that IRω/M is an η1-set has interesting consequences for the subfield
IR of IRω/M (where IR is viewed as {[r] : r ∈ IR}). Fix r ∈ IR. Find
functions, h and k in IRω such that for each n ≥ 1, [r − 1/n] ≺ [h] ≺
[r] ≺ [k] ≺ [r + 1/n]. Consider the open interval ([h], [k]) in IRω/M . We
have ([h], [k]) ∩ IR = {[r]}. Therefore, if IRω/M is equipped with the usual
open interval topology of ≺, then every [r] ∈ IR is isolated in the relative
topology that IR inherits from IRω/M . Therefore, the usual space IR is not
a topological subspace of IRω/M even though the usual field IR is a subfield
of IRω/M .

5.5 Another Characterization of Ultrafilters

The ideas in this chapter lead to one more characterization for ultrafilters.

5.5.1 Theorem: Suppose F is a filter. Let I = {f ∈ IRω : z(f) ∈ F}, which
is an ideal. Then F is an ultrafilter if and only if I is a maximal ideal.

Proof: Note that, for any filter F , I = {f ∈ IRω : z(f) ∈ F} is an ideal (see
proof of Lemma 5.1.1). Lemma 5.1.1 proved that F an ultrafilter implies
that I is a maximal ideal. We want to show the converse.

Suppose I is a maximal ideal. Let S ⊆ ω. We want to show that either
S ∈ F or ω \ S ∈ F . Suppose S /∈ F . For any set A, let χA(x) = 1
for every x ∈ A, and χA(x) = 0 otherwise. The zero set z(χω\S) = S,
so χω\S /∈ I. Therefore, by the maximality of I, the ideal generated by I
and χω\S, denoted 〈I ∪ {χω\S}〉, must be the whole ring IRω. Therefore,
〈I ∪ {χω\S}〉 = {j + gχω\S : g ∈ IRω, j ∈ I} = IRω. So, 1 ∈ 〈I ∪ {χω\S}〉, i.e.
1 = j + gχω\S for some j ∈ I and g ∈ IRω. For every x ∈ S, χω\S(x) = 0, so
1 = j(x) + 0. Thus, for every x ∈ S, i(x) = 1, so z(j) ⊆ ω \ S. Since j ∈ I,
z(j) ∈ F , so ω \ S ∈ F . Therefore, F has the property that either S ∈ F or

ω \ S ∈ F , so F is an ultrafilter.

This characterization can be added the Theorem 4.1.4 as:
(6) The ideal I = {f ∈ IRω : z(f) ∈ F} is maximal.
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